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Motivation

Büchi & Landweber ’69: The winner of a zero-sum two-player
game of infinite duration with ω-regular winning condition can be
determined effectively.
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I : b a b · · ·
O: a a · · · I wins
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Motivation

Hosch & Landweber ’72: Let O delay her moves to obtain a
lookahead on I ’s moves.
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A Formal Definition

A delay game Γf (L) consists of

a delay function f : N→ N+ and

an ω-language L ⊆ (ΣI × ΣO)ω.

It is contested by players “Input” (I ) and “Output” (O) as follows:

In each round i = 0, 1, 2, . . .

first, I picks word ui ∈ Σ
f (i)
I ,

then, O picks letter vi ∈ ΣO .

O wins iff
(u0u1u2···
v0v1v2···

)
∈ L.
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A Formal Definition

Questions we are interested in:

Given L, is there an f such that O wins Γf (L)?

How hard is the problem to solve?

How large does f have to be?

Definition A delay function f is constant, if f (i) = 1 for every
i > 0.

Intuition: W.r.t. constant f , O has lookahead of size f (0) in each
round.
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History

Hosch & Landweber ’72: ω-regular delay games restricted
to constant delay functions decidable.

Kaiser, Holtmann & Thomas ’10: ω-regular delay games
decidable in 2ExpTime, doubly-exponential constant
lookahead sufficient.

Fridman, Löding & Z. ’11: (very weak subclasses of)
ω-contextfree delay games are undecidable w.r.t. constant
delay functions, fast-growing unbounded lookahead necessary.

Klein & Z. ’15: ω-regular delay games ExpTime-complete,
exponential constant lookahead sufficient and necessary.

Z. ’15: max-regular delay games restricted to constant delay
functions decidable, in general unbounded lookahead
necessary, but no lower bound on growth rate. If constant
lookahead suffices, then doubly-exponential one is sufficient.
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More History

Klein & Z. ’15: Borel determinacy for delay games.

Klein & Z. ’16: LTL delay games 3ExpTime-complete,
triply-exponential constant lookahead sufficient and necessary.
Same holds for parameterized variants of LTL, e.g.,
Prompt-LTL.

Z. ’17: Delay games over parity automata with costs
ExpTime-complete, exponential constant lookahead
sufficient and necessary. Tradeoffs between lookahead and
quality of strategies.

Z. ’17: A general framework to solve delay games and
compute finite-state strategies for them.

Winter & Z.: Tradeoffs between lookahead and memory size.
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Uniformization of Relations

A strategy σ for O in Γf (L) induces a mapping gσ : Σω
I → Σω

O .

σ is winning ⇔ {
(

α
gσ(α)

)
| α ∈ Σω

I } ⊆ L (gσ uniformizes L).

Continuity in terms of strategies:

Strategy without delay: i-th letter of gσ(α) only depends on
first i letters of α (very strong notion of continuity).

Strategy with constant delay: gσ Lipschitz-continuous.

Strategy with arbitrary (finite) delay: gσ continuous.

Holtmann, Kaiser, Thomas: for ω-regular L

L uniformizable by continuous function
⇔

L uniformizable by Lipschitz-continuous function
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Lower Bounds on Lookahead

A reachability automaton accepts if an accepting state is reached
at least once.

a

a

c c

∗ b b ∗

L(A) = {α ∈ {a, b, c}ω |
α contains a c and has an even number of a’s before the first one}
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Lower Bounds on Lookahead

A reachability automaton accepts if an accepting state is reached
at least once.

Theorem
For every n > 1 there is a language Ln recognized by a
deterministic reachability automaton An with |An| ∈ O(n) s.t.

O wins Γf (Ln) for some constant delay function f , but

I wins Γf (Ln) for every delay function f with f (0) ≤ 2n.
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Proof

Fix ΣI = ΣO = {1, . . . , n}.
w ∈ Σ∗I contains bad j-pair ( j ∈ ΣI ) if there are two
occurrences of j in w such that no j ′ > j occurs in between.
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w ∈ Σ∗I contains bad j-pair ( j ∈ ΣI ) if there are two
occurrences of j in w such that no j ′ > j occurs in between.

Claim: w ∈ Σ≥2n

I ⇒ w has a bad j-pair for some j .

Proof by induction over n:

n = 1: w = 1k for k ≥ 21 has bad 1-pair.

n > 1: Consider two cases:

If w has more than one letter n, then it contains bad n-pair.

Otherwise, w has infix w ′ ∈ {1, . . . , n − 1}≥2n−1
. Then, w ′

has bad j-pair for some j < n by induction hypothesis.
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occurrences of j in w such that no j ′ > j occurs in between.

Claim: There is a wn ∈ Σ2n−1
I without bad j-pairs for every j .

Construction by induction over n:

n = 1: w1 = 1.

n > 1: wn = wn−1 n wn−1.
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w ∈ Σ∗I contains bad j-pair ( j ∈ ΣI ) if there are two
occurrences of j in w such that no j ′ > j occurs in between.
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I without bad j-pairs for every j .

Construction by induction over n:

n = 1: w1 = 1.

n > 1: wn = wn−1 n wn−1.
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Proof continued

(
α
β

)
∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.
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(
α
β

)
∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.

Ln is recognized by the following deterministic reachability
automaton:

Gj

( 6=j
∗
) (

<j
∗
)(j

∗
)

(
>j
∗
)

...

G1

Gn

(∗
∗
)(∗

1

)
(∗
n

)
(1
∗
)

(n
∗
)
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(
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β

)
∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.

Claim: O wins Γf (Ln) for some constant delay function f .
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Proof continued

(
α
β

)
∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.

Claim: O wins Γf (Ln) for some constant delay function f .

Pick any f with f (0) ≥ 2n + 1, i.e., I has to pick a word
u ∈ Σ≥2n+1

I in round 0.

Thus, u without its first letter contains a bad j-pair for some j .

O picks such a j in round 0.

The resulting play is winning for O, no matter how it is
continued.

Martin Zimmermann Saarland University Delay Games 14/26
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∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.

Claim: I wins Γf (Ln) for every delay function f with f (0) ≤ 2n.
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Proof continued

(
α
β

)
∈ Ln iff α(1)α(2)α(3) · · · contains bad β(0) pair, i.e., O has

to find a bad j-pair in I ’s moves and play j as first move.

Claim: I wins Γf (Ln) for every delay function f with f (0) ≤ 2n.

Let f be a delay function with f (0) ≤ 2n.

In round 0, I picks the prefix of 1wn of length f (0).

Then, O has to pick some j ∈ ΣO in round 0.

I completes wn (if necessary) and then plays j ′ 6= j ad
infinitum.

I wins the resulting play, as wn(j ′)ω does not contain a bad
j-pair.
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Remarks

The bad j-pair construction is very general:

A similar construction witnesses an exponential lower bound
for deterministic safety automata.

Thus, exponential lookahead is necessary for any formalism
that subsumes deterministic reachability or safety automata,
in particular deterministic parity automata.

Using the alphabet {1, . . . , 2n} (encoded in binary) and some
tricks yield doubly-exponential lower bounds for
non-deterministic and universal automata.

Using the alphabet {1, . . . , 22n} (encoded in binary) and even
more tricks yield triply-exponential lower bounds for LTL and
alternating automata.
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Solving Delay Games

We consider the special case of safety automata, which accept if
only safe states are visited.

qI

qA

qB

qR

(∗
a

)

(∗
b

)

(b
∗
)

(a
∗
)

(a
a

)

(b
b

)

(∗
∗
)(a

b

) (b
a

)

L(A) = {
(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)
· · · | β(i) = α(i + 1) for every i}
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Solving Delay Games

We consider the special case of safety automata, which accept if
only safe states are visited.

Theorem
The following problem is in ExpTime: “Given a deterministic
safety automaton A, is there a delay function f such that O wins
Γf (L(A))?”
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Solving Delay Games

We consider the special case of safety automata, which accept if
only safe states are visited.

Theorem
The following problem is in ExpTime: “Given a deterministic
safety automaton A, is there a delay function f such that O wins
Γf (L(A))?”

W.l.o.g.: Every unsafe state of A is a sink.
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Proof

Consider a typical situation during a play.

I :

O:

α(0) α(j) α(i)

β(0) β(j)

qI q P ⊆ Q

We abstract moves of I by considering transition profiles of
the (non-deterministic) projection automaton πΣI

(A).
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Transition Profiles

qI

qA

qB

qR

(∗
a

)

(∗
b

)

(b
∗
)

(a
∗
)

(a
a

)

(b
b

)

(∗
∗
)(a

b

) (b
a

)

The transition profile of a word w contains for each state q the set
of states reachable from q by processing w .
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The transition profile of a word w contains for each state q the set
of states reachable from q by processing w .

qI

qA

qB

qR

qI

qA

qB

qR
a

qI

qA

qB

qR

qI

qA

qB

qR
b

qI

qA

qB

qR

qI

qA

qB

qR
ab
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Transition Profiles

qI

qA

qB

qR

a, b

a, b

b

a

a

b

a, ba b

The transition profile of a word w contains for each state q the set
of states reachable from q by processing w .

There are at most 2|Q|
2

different transition profiles.

For each transition profile, there is a DFA with 2|Q|
2

states
recognizing all words of that profile.

A transition profile is said to be infinite, if there are infinitely
many words of that profile.
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Removing Delay

Define the game G(A) played in rounds i = 0, 1, 2, . . . as follows:

In round 0,

first I picks an infinite transition profile τ0, then
O has to pick q0 = qI (the initial state of A).

In round i > 0,

first I picks an infinite transition profile τi , then
O picks a state qi that is reachable from qi−1 in the
profile τi−1.

O wins if each qi is safe.

qI

qA

qB

qR

qI

qA

qB

qR

qI

qA

qB

qR

qI

qA

qB

qR

qI

qA

qB

qR

· · ·
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Equivalence

Lemma
The following are equivalent:

O wins Γf (L(A)) for some f .

O wins G(A).

Note
G(A) can be modeled as a safety game of exponential size, which
yields the desired exponential-time algorithm.
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From Γf (L(A)) to G(A)

Γ

I :

O:

G
I :

O:

τ0

q0

τ1

q0 q1

q1

τ2

The play in Γf (L(A)) is consistent with a winning strategy for
O.
Hence, all qi are safe, i.e., O wins the play in G(A).
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Γ

I :

O:

G
I :

O:
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q0 q1

q1

τ2

The play in Γf (L(A)) is consistent with a winning strategy for
O.
Hence, all qi are safe, i.e., O wins the play in G(A).
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O:

G
I :

O:

τ0

q0

τ1

words of that profile

︸ ︷︷ ︸
long enough..

..to get answer according to winning strategy

q0 q1

q1

τ2

The play in Γf (L(A)) is consistent with a winning strategy for
O.
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From G(A) to Γf (L(A))

Let d = 2|Q|
2

and f (0) = 2d .

G

I :

O:

Γ

I :

O:

τ0

q0

τ1

q1

τ2

q2

τ3 τ4 τ5

q3 q4

q0 q1 q2 q3 q4 q5 q6

The play in G(A) is consistent with a winning strategy for O.
Hence, all qi are safe, i.e., O wins the play in Γf (L(A)).
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Remarks

Applying both directions yields an upper bound on the lookahead.

Corollary

The following are equivalent.

O wins Γf (L(A)) for some f .

O wins Γf (L(A)) for the constant delay function f with
f (0) = 2|Q|

2+1.

More results:

By aggregating colors occurring during a run, the same
technique is applicable to parity automata.

In fact, it is applicable to every winning condition that can be
aggregated in a certain sense, e.g., Muller, Rabin, Streett, and
parity with costs.

ExpTime-hardness for safety delay games.
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Outlook

Many aspects of the classical theory of infinite games have
been transferred to the setting with delay.

New interesting phenomena appear in this setting: bounds on
the lookahead, tradeoffs, etc.

Many challenging problem are still open:

Delay games with succinct acceptance conditions, e.g.,
Muller, Rabin, Streett.
Lower bounds on necessary memory for finite-state
strategies in delay games.
Solving delay games without reductions to delay-free
games.
Delay games as optimization problem.

Martin Zimmermann Saarland University Delay Games 26/26



Outlook

Many aspects of the classical theory of infinite games have
been transferred to the setting with delay.

New interesting phenomena appear in this setting: bounds on
the lookahead, tradeoffs, etc.

Many challenging problem are still open:

Delay games with succinct acceptance conditions, e.g.,
Muller, Rabin, Streett.
Lower bounds on necessary memory for finite-state
strategies in delay games.
Solving delay games without reductions to delay-free
games.
Delay games as optimization problem.

Martin Zimmermann Saarland University Delay Games 26/26


	Introduction
	Lower Bounds on the Necessary Lookahead
	Solving Delay Games
	Conclusion

