Joint work with Bernd Finkbeiner (Saarland University)

Martin Zimmermann

Saarland University

September, 13th 2017

Highlights Conference, London, UK

LTL vs. First-order Logic

Theorem (Kamp '68, Gabbay et al. '80) LTL and FO[<] are expressively equivalent.

HyperLTL

A new logic:

$$\forall \pi \forall \pi'$$
. $\mathbf{F} \operatorname{on}_{\pi} \leftrightarrow \operatorname{on}_{\pi'}$

■ Extend LTL by trace quantifiers to express security, privacy, and information flow properties

HyperLTL

A new logic:

$$\forall \pi \forall \pi'$$
. $\mathbf{F} \operatorname{on}_{\pi} \leftrightarrow \operatorname{on}_{\pi'}$

- Extend LTL by trace quantifiers to express security, privacy, and information flow properties
- Models are sets of traces!

HyperLTL

A new logic:

$$\forall \pi \forall \pi'$$
. $\mathbf{F} \operatorname{on}_{\pi} \leftrightarrow \operatorname{on}_{\pi'}$

- Extend LTL by trace quantifiers to express security, privacy, and information flow properties
- Models are sets of traces!

Is there a first-order logic that is expressively equivalent to HyperLTL?

$$\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \wedge \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$$

- $\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \wedge \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

Fix $AP = \{a\}$ and consider the conjunction φ of

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$

{a} ∅ ∅

- $\blacksquare \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \land \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$
 - {a} ∅ ∅
- Ø Ø

- \emptyset \emptyset \emptyset

- $\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \wedge \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$
- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

$$\blacksquare \forall \pi. (\neg a_{\pi}) U (a_{\pi} \wedge X G \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

{ <i>a</i> }	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
Ø	{a}	Ø	Ø	Ø	Ø	Ø	Ø	
Ø	Ø	{a}	Ø	Ø	Ø	Ø	Ø	

$$\blacksquare \forall \pi. (\neg a_{\pi}) U (a_{\pi} \wedge X G \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \ \forall \pi. \ \exists \pi'. \ \mathsf{F} (a_{\pi} \wedge \mathsf{X} \ a_{\pi'})$

{ <i>a</i> }	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
Ø	{ a}	Ø	Ø	Ø	Ø	Ø	Ø	
Ø	Ø	{a}	Ø	Ø	Ø	Ø	Ø	
			{ <i>a</i> }					
:	:	:	:	:	:	:	:	

Fix $AP = \{a\}$ and consider the conjunction φ of

$$\blacksquare \ \forall \pi. \ (\neg a_{\pi}) \ \mathsf{U} \ (a_{\pi} \wedge \mathsf{X} \ \mathsf{G} \ \neg a_{\pi})$$

- $\blacksquare \exists \pi. \ a_{\pi}$
- $\blacksquare \forall \pi. \exists \pi'. \mathbf{F}(a_{\pi} \wedge \mathbf{X} a_{\pi'})$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}.$

■ FO[<, E]: first-order logic with equality over the signature $\{<$, E} \cup $\{P_a \mid a \in AP\}$ over structures with universe $A \times \mathbb{N}$.

■ FO[<, E]: first-order logic with equality over the signature $\{<, E\} \cup \{P_a \mid a \in AP\}$ over structures with universe $A \times \mathbb{N}$.

Proposition

For every HyperLTL sentence there is an equivalent FO[<, E] sentence.

A Setback

■ Let φ be the following property of sets $T \subseteq (2^{\{a\}})^{\omega}$:

There is an *n* such that $a \notin t(n)$ for every $t \in T$.

A Setback

■ Let φ be the following property of sets $T \subseteq (2^{\{a\}})^{\omega}$:

There is an n such that $a \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

A Setback

■ Let φ be the following property of sets $\mathcal{T} \subseteq (2^{\{a\}})^{\omega}$:

There is an n such that $a \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

■ But, φ is easily expressible in FO[<, E]:

$$\exists x \, \forall y \, E(x,y) \rightarrow \neg P_a(y)$$

Corollary

FO[<, E] strictly subsumes HyperLTL.

- $\blacksquare \exists^I x \text{ and } \forall^I x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

- $\blacksquare \exists^l x \text{ and } \forall^l x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

$$\forall^I x_1 \forall^I x_2 \forall^G y_1 \geq x_1 \forall^G y_2 \geq x_2 E(y_1, y_2) \rightarrow (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

- $\blacksquare \exists^I x \text{ and } \forall^I x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

```
\underbrace{\forall^I x_1 \, \forall^I x_2}_{\substack{\text{quantify} \\ \text{initial} \\ \text{positions}}} \forall^G y_1 \geq x_1 \, \forall^G y_2 \geq x_2 \, E(y_1, y_2) \rightarrow (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))
```

- $\blacksquare \exists^I x \text{ and } \forall^I x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

$$\underbrace{\forall^I x_1 \, \forall^I x_2}_{\substack{\text{quantify} \\ \text{initial} \\ \text{positions}}} \underbrace{\forall^G y_1 \geq x_1 \, \forall^G y_2 \geq x_2}_{\substack{\text{quantify arbitrary} \\ \text{positions on} \\ \text{already quantified traces}}}_{\substack{\text{already quantified traces} \\ \text{quantification}}} E(y_1, y_2) \rightarrow (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2))$$

- $\blacksquare \exists^I x \text{ and } \forall^I x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

$$\underbrace{\forall^I x_1 \, \forall^I x_2}_{\substack{\text{quantify} \\ \text{initial} \\ \text{positions}}} \underbrace{\forall^G y_1 \geq x_1 \, \forall^G y_2 \geq x_2}_{\substack{\text{quantify arbitrary} \\ \text{positions on} \\ \text{already quantified traces}}}_{\substack{\text{already quantified traces} \\ \text{quantification}}} \underbrace{FO[<, E] \text{ kernel}}_{\substack{\text{kernel} \\ \text{positions}}}$$

Conclusion

Theorem

HyperLTL and HyperFO are equally expressive.