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LTL vs. First-order Logic

Theorem (Kamp '68, Gabbay et al. '80)
LTL and FO[<] are expressively equivalent.
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HyperLTL

A new logic:

Vrvr'. F ony, <+ ong

m Extend LTL by trace quantifiers to express security, privacy,
and information flow properties
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HyperLTL

A new logic:
Vrvr'. Fon, <+ ong

m Extend LTL by trace quantifiers to express security, privacy,
and information flow properties

m Models are sets of traces!

Is there a first-order logic that is expressively equivalent to
HyperLTL?
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An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

Martin Zimmermann

Saarland University

The First-order Logic of Hyperproperties

a/8



An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

m Jr. a,

Martin Zimmermann

Saarland University

The First-order Logic of Hyperproperties

a/8



An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

m Jr. a,

{a} 0 0 0 0 0 0 0

Martin Zimmermann Saarland University The First-order Logic of Hyperproperties 4/8



An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

m Jr. a,

m V. 37’ F(ax A Xay)

{a} 0 0 0 0 0 0 0

Martin Zimmermann Saarland University The First-order Logic of Hyperproperties

4/8



An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

m Jr. a,

m V. 37’ F(ax A Xay)
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An Example

Fix AP = {a} and consider the conjunction ¢ of
m V7. (—ar) U (ar A XG—ay)

m Jr. a,
m V. 37’ F(ax A Xay)

[SSERSSIR S
=SSR SSRGS
e e e =

SRS SSRGS
e e e =

The unique model of ¢ is {(" {a} 0¥ | n € N}.
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First-order Logic for Hyperproperties
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First-order Logic for Hyperproperties
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m FO[<, E]: first-order logic with equality over the signature
{<,E}U{P, | a € AP} over structures with universe A x N.

Martin Zimmermann Saarland University The First-order Logic of Hyperproperties 5/8



First-order Logic for Hyperproperties

N
' A N
. . o\ o\o;—o/o . .
) . . olE . . . . . . .

m FO[<, E]: first-order logic with equality over the signature
{<,E}U{P, | a € AP} over structures with universe A x N.

Proposition
For every HyperLTL sentence there is an equivalent FO[<, E]

sentence.
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A Setback

m Let ¢ be the following property of sets T C (2{2})«:

There is an n such that a ¢ t(n) for every t € T.
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A Setback

m Let ¢ be the following property of sets T C (2{2})«:

There is an n such that a ¢ t(n) for every t € T.

Theorem (Bozzelli et al. '15)
@ Is not expressible in HyperLTL.

m But, ¢ is easily expressible in FO[<, E]:
xVy E(x,y) = =Pa(y)

Corollary
FO[<, E] strictly subsumes HyperLTL.
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HyperFO

m 3'x and V/x: quantifiers restricted to initial positions.

m EIGy > x and VGy > x: if x is initial, then quantifiers
restricted to positions on the same trace as x.
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Conclusion

Theorem

HyperLTL and HyperFO are equally expressive.
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