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Counting Complexity

f : Σ∗ → N is in #P if there is an NP machine M such that
f (w) is equal to the number of accepting runs of M on w .

For complexity class C:

f : Σ∗ → N is in #C if there is an NP machine M with oracle
in C such that f (w) is equal to the number of accepting runs
of M on w .

Remark: f ∈ #C implies f (w) ∈ O(2p(|w |)) for some polynomial p.

We need larger counting classes.

f : Σ∗ → N is in #dPspace, if there is a nondeterministic
polynomial-space Turing machine M such that f (w) is equal
to the number of accepting runs of M on w .

Analogously: #dExptime, #dExpspace, and #d2Exptime.
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Counting Complexity

Lemma

#P

#Pspace⊆ #Exptime⊆ #NExptime⊆ #Expspace⊆ #2Exptime⊆

#dPspace #dExptime⊆ #dExpspace( #d2Exptime⊆

( ( ( (

Reductions:

f is #P-hard, if there is a polynomial time computable
function r s. t. f (r(M,w)) is equal to the number of
accepting runs of M on w .

Hardness for other classes analogously.

Completeness as usual.
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Counting Word-Models

Theorem

The following problem is #P-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-word-models
does ϕ have?

The following problem is #dPspace-complete: Given an LTL
formula ϕ and a bound k (in binary), how many
k-word-models does ϕ have?

Lower bound: Pspace-hardness of LTL satisfiability [SC85] made
one-to-one

Upper bound: Guess word of length k and model-check it
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Counting Tree-Models with Unary Bounds

Theorem
The following problem is #dExptime-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-tree-models does
ϕ have?

Lower bound:
2p(n)

2p(n)

c1 c2 c2p(n)−1 c2p(n)

p(n)

p(n)
left

right

Upper bound: Guess tree of height k and model-check it.

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 5/7



Counting Tree-Models with Unary Bounds

Theorem
The following problem is #dExptime-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-tree-models does
ϕ have?

Lower bound:
2p(n)

2p(n)

c1 c2 c2p(n)−1 c2p(n)

p(n)

p(n)
left

right

Upper bound: Guess tree of height k and model-check it.

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 5/7



Counting Tree-Models with Unary Bounds

Theorem
The following problem is #dExptime-complete: Given an LTL
formula ϕ and a bound k (in unary), how many k-tree-models does
ϕ have?

Lower bound:
2p(n)

2p(n)

c1 c2 c2p(n)−1 c2p(n)

p(n)

p(n)
left

right

Upper bound: Guess tree of height k and model-check it.

Martin Zimmermann Saarland University The Complexity of Counting LTL Models 5/7



Counting Tree-Models with Binary Bounds

Theorem
The following problem is #dExpspace-hard and in #d2Exptime:
Given an LTL formula ϕ and a bound k (in binary), how many
k-tree-models does ϕ have?

Lower bound:

C1

C2

C3

C4 C5

C6

C7 C8

C9

C10

C11 C12

C13

C14 C15

left

right

each inner tree has exponentially many leaves
tree has exponential height (thus, doubly-exponentially
many inner trees)

Upper bound: Guess tree of height k and model-check it
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Conclusion

Overview of results:

unary binary

words #P-compl. #dPspace-compl.
trees #dExptime-compl. #dExpspace-hard/#d2Exptime

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

Close the gap!

Lowering the upper bound: how to guess and model-check
doubly-exponentially sized trees in exponential space?
Raising the lower bound: how to encode
doubly-exponentially sized configurations using
polynomially sized formulas? Do games help?
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