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Introduction

Two-player games of infinite duration on graphs

B Solution to the synthesis problem for reactive systems.

B Well-developed theory with nice results.

B Classical quality measure: memory size of a winning strategy.
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Introduction

Two-player games of infinite duration on graphs
B Solution to the synthesis problem for reactive systems.
B Well-developed theory with nice results.

B Classical quality measure: memory size of a winning strategy.

But: many winning conditions allow other quality measures.

B “From qualitative to quantitative games.”

B “Optimal controller synthesis.”
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Outline

Outline
B Definitions & Related Work
B Poset Games

B Time-optimal Winning Strategies for Poset Games
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1. Definitions & Related Work
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Arenas, Plays and Strategies

An (initialized) Arena G = (V, Vi), V1, E, sy) consists of
B a finite directed graph (V, F),
B a partition {V, V1} of V denoting the positions of Player 0 and 1,

B an initial vertex sy € V.

A play popipo ... in G is an infinite path starting in s.

A strategy for Player ¢ is a (partial) mapping o : V*V; — V such that
(s,0(ws)) € E forallw e V*and all s € V.

PopP1pP2 - - - is consistent with o if p,.1 = o(py ... py) for all p, € V.

Martin Zimmermann RWTH Aachen Time-optimal Winning Strategies in Infinite Games



Outcome of a Play

The outcome of a play can be

B qualitative: win or lose
m one player wins a play, the other loses it.
m Biichi, Co-Biichi, Rabin, Streett, Parity, Muller, ...

B 0 winning strategy for Player ¢: every play that is consistent with o

is won by Player 3.
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Outcome of a Play

The outcome of a play can be

B qualitative: win or lose
m one player wins a play, the other loses it.
m Biichi, Co-Bichi, Rabin, Streett, Parity, Muller,...
B 0 winning strategy for Player ¢: every play that is consistent with o
is won by Player 1.
B quantitative: a payoff for each player
m each player tries to maximize her payoff.
m Mean-Payoff, Discounted Payoff,...

m Value of o: payoff of the worst play consistent with o.
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Optimal Strategies

|dea:

B The outcome of a play is still binary: win or lose.
B But the quality of the (winning) plays and strategies is measured:

B determine optimal (w.r.t. given quality measure) winning strategies

for Player 0.
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An Example

Request-Response Game G = (G, (@, Pj)=1.. k) where Q,;, P; C V.

B Player 0 wins a play if every visit to a (); vertex is responded by a

later visit to P;.

B Waiting times: start a clock for every request that is stopped as soon

as it is responded (and ignore subsequent requests).

B Accumulated waiting time: sum up the clock values up to that

position (quadratic influence).

B Value of a play: limit superior of the average accumulated waiting

time; corresponding notion of optimal strategies.
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An Example

Theorem: (Horn, Thomas, Wallmeier)

If Player 0 has a winning strategy for an RR Game, then she also has an

optimal winning strategy, which is finite-state and effectively computable.
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Other Winning Conditions

Many other winning conditions have a natural notion of waiting times.

B Reachability Games: the number of steps to the target vertices.
B Bichi Games: the periods between visits of the target vertices.

B Co-Biichi Games: the number of steps until the target vertices are

reached for good.

B Parity Games: the periods between visits of vertices colored with a

maximal even color (which can be optimized as well).

Some classical algorithms compute optimal winning strategies.
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2. Poset Games
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Motivation
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Motivation
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Motivation

green, greemn;

.

ralsey ralsej

= \ /

— - — —_—_- - - crossing free

m ; T
train go

/N

lowery lower;

Request: still a singular event. T T

Response: partially ordered set of events. redg  red;
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Definition

Poset Game G = (G, (¢;, P;)j=1...k), P set of atomic propositions

B G arena (labeled with I : V — 2F)
M ¢, € P request
B P = (D, <,) labeled poset where D; C P
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Definition cont’d

Embedding of P; in ppp1p2...: function f : D; — N such that
B dclclpsa) foralld € D
B d=,;d implies f(d) < f(d') for all d,d’ € D,

Player 0 wins pgp1ps ... if
Vivn (q; € la(pn) — pupnsi- .- allows embedding of P;)

“Every request ¢; is responded by a later embedding of P; in p.”
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An Example

{req}

train go
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lowery lower;
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An Example
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An Example
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An Example
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An Example
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An Example
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Overlapping Embeddings
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Overlapping Embeddings
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Solving Poset Games

Theorem:

Poset Games are reducible to Buchi Games.
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Solving Poset Games

Theorem:

Poset Games are reducible to Buchi Games.

Proof:

Use memory to

B store elements of the posets that still have to be embedded,
B deal with overlapping embeddings, and

B implement a cyclic counter to ensure that every request is responded

by an embedding.
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3. Time-optimal Winning Strategies
for Poset Games
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Waiting Times

As desired, there is a natural definition of waiting times
B Start a clock if a request is encountered...

B ... that is stopped as soon as the embedding is completed.
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Waiting Times

As desired, there is a natural definition of waiting times
B Start a clock if a request is encountered...
B ... that is stopped as soon as the embedding is completed.

B Need a clock for every revisit of a request (while the request is

already active).
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Waiting Times

As desired, there is a natural definition of waiting times
B Start a clock if a request is encountered...
B ... that is stopped as soon as the embedding is completed.

B Need a clock for every revisit of a request (while the request is

already active).

B The value of a play is the limit superior of the average accumulated

waiting time.

B The value of a strategy is the value of the worst play consistent with

that strategy; corresponding notion of optimal strategies.
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The Main Theorem

Theorem:
If Player 0 has a winning strategy for a Poset Game G, then she also has

an optimal winning strategy, which is finite-state and effectively

computable.
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The Main Theorem

Proof:

B If Player 0 has a winning strategy, then she also has one of value less
than a certain constant (from reduction). This bounds the value of

the optimal strategy, too.

B For every strategy there is another strategy of smaller or equal value,

that also bounds all waiting times.

B If the waiting times are bounded, then G can be reduced to a finite

Mean-Payoff Game such that the values coincide.
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Step 1: Bounding Waiting Times
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Step 1: Bounding Waiting Times

train go
/ \\\
N
N\
\\
lowery lower; .
e \ \
’ \ \
/ \ \
/ \ \
/ \ \
/ __redy red; AN
Y - - \
2 P \ \
//I 7/ 1 \
i / \ \
R / \ \
’ 1 / 1 \
/ 1 / 1 \
/ I} / | \
,/ I / I \
y I / I \
y v y v \

{réq}

Skip loops, but pay attention to other embeddings!
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Step 1: Bounding Waiting Times
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Repeating this leads to bounded waiting times.
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Step 2: Reduction to Mean-Payoff Games

Mean-Payoff Game:
B edges labeled by [ : &/ — N.

B goal for Player O: maximize limit inferior of the average accumulated

edge labels.

B goal for Player 1: minimize limit superior of the average accumulated

edge labels.

Theorem: (Ehrenfeucht, Mycielski / Zwick, Paterson)
In a Mean-Payoff Game, both players have optimal strategies, which are

positional and effectively computable.
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Step 2: Reduction to Mean-Payoff Games

From a Poset Game G with bounded waiting times, construct a

Mean-Payoff Game G’ such that
B the memory keeps track of the waiting times, and

B the value of a play in G and the payoff for Player 1 of the

corresponding play in G’ are equal.

Then: an optimal strategy for Player 1 in G’ induces an optimal strategy
for Player 0 in G.

Complexity analysis: size of the Mean-Payoff Game is super-exponential

(holds already for RR Games).
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4. Conclusion & Further Research
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Conclusion

We have introduced a novel winning condition for Infinite Games that
B extends the Request-Response condition,

B is well-suited to model Planning Problems,

B but retains a natural definition of waiting times and optimal

strategies.

We have proven the existence of optimal strategies for Poset Games,

which are finite-state and effectively computable.
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Conclusion

Further Research

B Avoid the detour via Mean-Payoff Games and directly compute

(approximatively) optimal strategies.
B Understand the trade-off between the size and value of a strategy.

B Define and determine optimal strategies for other winning conditions.
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