Distributed PROMPT-LTL Synthesis

Joint work with Swen Jacobs and Leander Tentrup (Saarland University)

Martin Zimmermann
Saarland University

September 16th, 2016

GandALF 2016, Catania, ltaly

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 1/15

Motivation

m LTL is the standard language for the specification of reactive
systems...

m but it cannot express timing constraints, e.g., every request is
answered within a bounded amount of time.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 2/15

Motivation

m LTL is the standard language for the specification of reactive
systems...

m but it cannot express timing constraints, e.g., every request is
answered within a bounded amount of time.

m PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT-LTL model checking (synthesis) is as hard as LTL
model checking (synthesis).

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 2/15

Motivation

m LTL is the standard language for the specification of reactive
systems...

m but it cannot express timing constraints, e.g., every request is
answered within a bounded amount of time.

m PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT-LTL model checking (synthesis) is as hard as LTL
model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 2/15

Motivation

m LTL is the standard language for the specification of reactive
systems...

m but it cannot express timing constraints, e.g., every request is
answered within a bounded amount of time.

m PROMPT-LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT-LTL model checking (synthesis) is as hard as LTL
model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

Here: synthesis of distributed systems, i.e., multiple components
with imperfect information.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 2/15

Outline

1. Definitions
PROMPT-LTL
Distributed Synthesis
The Alternating Color Technique

Martin Zimmermann

Saarland University Distributed PROMPT-LTL Synthesis

3/15

PROMPT-LTL

Syntax:

pu=al-aleNp|lpVe[Xe|lpUp|eoRe|Fpyp

where a ranges over a finite set AP of atomic propositions.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 4/15

PROMPT-LTL

Syntax:

pu=al-aleNp|lpVe[Xe|lpUp|eoRe|Fpyp

where a ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound kK € N

(p,n, k) EFpp: Pt : : : : :

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 4/15

PROMPT-LTL

Syntax:

pu=al-aleNp|lpVe[Xe|lpUp|eoRe|Fpyp

where a ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound kK € N

(p,n, k) EFpp: Pt : : : : :

Example: G(g — Fp p) w.r.t. bound k: every request q is
answered by response p within k steps.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis

4/15

Distributed Synthesis

An architecture consists of
m a finite set P of processes with an environment process peny,
m for all p € P aset O, C AP of outputs (pairwise disjoint), and
m forall p€ P\ {pen } a set [, C AP of inputs.

Examples:
p1 —C>
a a b c
Penv P1 P2 —
b d
p2 —>

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 5/15

Distributed Synthesis

An architecture consists of
m a finite set P of processes with an environment process peny,
m for all p € P aset O, C AP of outputs (pairwise disjoint), and
m forall p€ P\ {pen } a set [, C AP of inputs.

An implementation of a process p # penyv is a finite transducer
computing a function f,: (2)* — (20°)«.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 5/15

Distributed Synthesis

An architecture consists of
m a finite set P of processes with an environment process peny,
m for all p € P aset O, C AP of outputs (pairwise disjoint), and
m forall p€ P\ {pen } a set [, C AP of inputs.

An implementation of a process p # penyv is a finite transducer
computing a function f,: (2)* — (20°)«.

The PROMPT-LTL distributed realizability problem for a fixed
architecture A asks, given a PROMPT-LTL formula ¢, to decide
whether implementations f, for every p # pen, and a bound k exist
s.t. every outcome w € @p f, satisfies ¢ w.r.t. k.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 5/15

Distributed Synthesis

An architecture consists of
m a finite set P of processes with an environment process peny,
m for all p € P aset O, C AP of outputs (pairwise disjoint), and
m forall p€ P\ {pen } a set [, C AP of inputs.

An implementation of a process p # penyv is a finite transducer
computing a function f,: (2)* — (20°)«.

The PROMPT-LTL distributed realizability problem for a fixed
architecture A asks, given a PROMPT-LTL formula ¢, to decide
whether implementations f, for every p # pen, and a bound k exist
s.t. every outcome w € @p f, satisfies ¢ w.r.t. k.

Synthesis: compute such f,, if they exist.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 5/15

The Alternating Color Technique

1. Add fresh proposition r ¢ AP: think of a coloring.
2. Obtain rel(y) by replacing each subformula Fp 1) of ¢ by

(r = (rU(=rUrel(¥)))) A(=r — (=r U (rUrel(y))))).

Intuitively: 1) has to be satisfied within one color change.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 6/15

The Alternating Color Technique

1. Add fresh proposition r ¢ AP: think of a coloring.
2. Obtain rel(y) by replacing each subformula Fp 1) of ¢ by

(r = (rU(=rUrel(¥)))) A(=r — (=r U (rUrel(y))))).

Intuitively: 1) has to be satisfied within one color change.

_______ Frv T
d | | | | | otk
y
rel(Fpy) o rel(y)
>k A >k

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 6/15

The Alternating Color Technique

1. Add fresh proposition r ¢ AP: think of a coloring.
2. Obtain rel(y) by replacing each subformula Fp 1) of ¢ by

(r = (rU(=rUrel(¥)))) A(=r — (=r U (rUrel(y))))).

Intuitively: 1) has to be satisfied within one color change.

rel(PFey) ~~ relly)
<k <k
il
_______ A A
no ' ' ' ' ' " n+ 2k

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 6/15

The Alternating Color Technique

1. Add fresh proposition r ¢ AP: think of a coloring.
2. Obtain rel(y) by replacing each subformula Fp 1) of ¢ by

(r = (rU(=rUrel(¥)))) A(=r — (=r U (rUrel(y))))).

Intuitively: 1) has to be satisfied within one color change.

Lemma (Kupferman et al. '07)

Let ¢ be a PROMPT-LTL formula, w € (2A7)~, and
w' € (AP st w and w' coincide on P at every position.

1. If (w, k) E ¢ and distance between color changes is at least k
in w', then w' E rel(p).

2. Let k e N. If w' E rel(y) and distance between color-changes
is at most k in w’, then (w,2k) E ¢.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 6/15

Outline

2. The Synchronous Case

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 7/15

The Synchronous Case

Given architecture A, let A" be A with a new input-free (coloring)
process p.o that outputs r.

R I
b:p2d

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15

The Synchronous Case

Given architecture A, let A" be A with a new input-free (coloring)
process p.o that outputs r.

C

a p1 —>
b : o d
r

Pcol —>

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15

The Synchronous Case

Given architecture A, let A" be A with a new input-free (coloring)
process p.o that outputs r.

Theorem
A PROMPT-LTL formula ¢ is realizable in A if, and only if,
rel(¢) NGFr A GF —r is realizable in A",

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15

The Synchronous Case

Given architecture A, let A" be A with a new input-free (coloring)
process p.o that outputs r.

Theorem
A PROMPT-LTL formula ¢ is realizable in A if, and only if,
rel(¢) NGFr A GF —r is realizable in A",

Proof ldea:

m Let ¢ be realizable in A with bound k by implementations f,.
Add the implementation producing (0%{r}*) for peos in A’

Every outcome in A" coincides on P with an outcome in A.

So, the implementations realize rel(¢) AGFr AGF—rin A"

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15

The Synchronous Case

Given architecture A, let A" be A with a new input-free (coloring)
process p.o that outputs r.

Theorem
A PROMPT-LTL formula ¢ is realizable in A if, and only if,
rel(¢) NGFr A GF —r is realizable in A",

Proof Idea:
m Let rel(p) AGFr A GF —r be realizable in A" by
implementations f,.

m As the implementation for p.. is finite-state, there is a
bound k on the distance between color changes.

m Thus, the implementations also realize ¢ in A with bound 2k.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 8/15

Information Forks

Cc
a P1 a b c
@ Penv P1 P2
i

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 9/15

Information Forks

Cc
a P1 a b c
Penv P1 P2 —
i

Theorem (Finkbeiner & Schewe ’05)

The LTL distributed realizability problem for A is decidable if, and
only if, A has no information fork.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 9/15

Information Forks

d P a b c
Penv P1 P2 —
b

P2 +—

Theorem (Finkbeiner & Schewe ’05)

The LTL distributed realizability problem for A is decidable if, and
only if, A has no information fork.

Adding the coloring process does not introduce information forks.

Corollary

The PROMPT-LTL distributed realizability problem for A is
decidable if, and only if, A has no information fork.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 9/15

Outline

3. The Asynchronous Case

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 10/15

The Asynchronous Case

m Add a scheduler, which is part of the (antagonistic)
environment: For every p € P add scheduling propo-
sition sched,, to Op,,, and to /,.

m Implementation may change its state only if enabled.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 11/15

The Asynchronous Case

m Add a scheduler, which is part of the (antagonistic)
environment: For every p € P add scheduling propo-
sition sched,, to Op,,, and to /,.

m Implementation may change its state only if enabled.
= Need assumptions on scheduler: bounded fairness

/\ GFp sched,
p

m Solution: assume-guarantee realizability for PROMPT-LTL.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 11/15

The Asynchronous Case

m Add a scheduler, which is part of the (antagonistic)
environment: For every p € P add scheduling propo-
sition sched,, to Op,,, and to /,.

m Implementation may change its state only if enabled.
= Need assumptions on scheduler: bounded fairness

/\ GFp sched,
P
m Solution: assume-guarantee realizability for PROMPT-LTL.

The asynchronous assume-guarantee realizability problem for a
fixed architecture A asks, given PROMPT-LTL formulas pa, ©g,
to decide whether implementations f, for every p # pen, exist s.t.

Vka ke Yw € @Dy (w, ka) F pa implies (w, k¢) F ¢c.
p

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 11/15

The Asynchronous Case

Lemma

There exists an assume-guarantee PROMPT-LTL specification
that can be realized with an infinite-state implementation, but not
with a finite-state implemenation.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 12/15

The Asynchronous Case

Lemma

There exists an assume-guarantee PROMPT-LTL specification
that can be realized with an infinite-state implementation, but not
with a finite-state implemenation.

Proof
° wa=GFpoVFG-o
P —
pc = false

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 12/15

The Asynchronous Case

Lemma
There exists an assume-guarantee PROMPT-LTL specification

that can be realized with an infinite-state implementation, but not
with a finite-state implemenation.

Proof
° wa=GFpoVFG-o
P —
pc = false

m Implementation of p; has to falsify assumption 4, i.e., satisfy
F—-Fpo A GF o for every bound k

m This requires to produce infix (¥ for every k, but not suffix ().

m This is impossible for finite-state transducers.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 12/15

The Asynchronous Case

Asynchronous LTL realizability is undecidable for architectures
with at least two processes [Schewe & Finkbeiner '06].

Theorem
The PROMPT-LTL distributed assume-guarantee realizability
problem is semi-decidable.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis

13/15

The Asynchronous Case

Asynchronous LTL realizability is undecidable for architectures
with at least two processes [Schewe & Finkbeiner '06].

Theorem
The PROMPT-LTL distributed assume-guarantee realizability
problem is semi-decidable.

Proof Sketch

m PROMPT-LTL assume-guarantee model checking is
decidable [Kupferman et al. '07].

m Apply bounded synthesis [Finkbeiner & Schewe '07]:
Search through the space of transducers and model check
whether they satisfy the assume-guarantee specification.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 13/15

Outline

4. Conclusion

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 14/15

Conclusion

Results

m For a fixed architecture A: synchronous PROMPT-LTL
realizability for A is decidable if, and only if, synchronous
LTL realizability for A is decidable.

m Asynchronous PROMPT-LTL assume-guarantee realizability
is semi-decidable, just as for LTL.

m Both results can be extended to synthesis and to stronger
logics.

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 15/15

Conclusion

Results

m For a fixed architecture A: synchronous PROMPT-LTL
realizability for A is decidable if, and only if, synchronous
LTL realizability for A is decidable.

m Asynchronous PROMPT-LTL assume-guarantee realizability
is semi-decidable, just as for LTL.

m Both results can be extended to synthesis and to stronger
logics.

Open problems

m Single process asynchronous LTL realizability is decidable.
What about PROMPT-LTL?

m Distributed PROMPT-LTL synthesis as an optimization
problem (see next talk for the single process case!)

Martin Zimmermann Saarland University Distributed PROMPT-LTL Synthesis 15/15

	Definitions
	PROMPT-LTL
	Distributed Synthesis
	The Alternating Color Technique

	The Synchronous Case
	The Asynchronous Case
	Conclusion

