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Motivation

LTL is the standard language for the specification of reactive
systems...

but it cannot express timing constraints, e.g., every request is
answered within a bounded amount of time.

PROMPT–LTL is able to express such properties.

Theorem (Kupferman et al. ’07)

PROMPT–LTL model checking (synthesis) is as hard as LTL
model checking (synthesis).

Note: The synthesis result requires a perfect information setting!

Here: synthesis of distributed systems, i.e., multiple components
with imperfect information.
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PROMPT-LTL

Syntax:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ϕ R ϕ | FP ϕ

where a ranges over a finite set AP of atomic propositions.

Semantics: defined with respect to a fixed bound k ∈ N

(ρ, n, k) � FP ϕ: ρ
n n + k

ϕ

Example: G(q → FP p) w.r.t. bound k: every request q is
answered by response p within k steps.
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Distributed Synthesis

An architecture consists of

a finite set P of processes with an environment process penv ,

for all p ∈ P a set Op ⊆ AP of outputs (pairwise disjoint), and

for all p ∈ P \ {penv} a set Ip ⊆ AP of inputs.

Examples:

penv

p1

p2

c

d

a

b

penv p1 p2
a b c
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for all p ∈ P \ {penv} a set Ip ⊆ AP of inputs.

An implementation of a process p 6= penv is a finite transducer
computing a function fp : (2Ip)ω → (2Op)ω.

The PROMPT–LTL distributed realizability problem for a fixed
architecture A asks, given a PROMPT–LTL formula ϕ, to decide
whether implementations fp for every p 6= penv and a bound k exist
s.t. every outcome w ∈

⊕
p fp satisfies ϕ w.r.t. k .

Synthesis: compute such fp, if they exist.
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The Alternating Color Technique

1. Add fresh proposition r /∈ AP: think of a coloring.

2. Obtain rel(ϕ) by replacing each subformula FP ψ of ϕ by

(r → (r U (¬r U rel(ψ)))) ∧ (¬r → (¬r U (r U rel(ψ)))).

Intuitively: ψ has to be satisfied within one color change.
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n n + k

FP ψ ψ

⇓

︸ ︷︷ ︸
≥k

︸ ︷︷ ︸
≥k
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The Alternating Color Technique

1. Add fresh proposition r /∈ AP: think of a coloring.

2. Obtain rel(ϕ) by replacing each subformula FP ψ of ϕ by

(r → (r U (¬r U rel(ψ)))) ∧ (¬r → (¬r U (r U rel(ψ)))).

Intuitively: ψ has to be satisfied within one color change.

Lemma (Kupferman et al. ’07)

Let ϕ be a PROMPT–LTL formula, w ∈ (2AP)ω, and
w ′ ∈ (2AP∪{r})ω s.t. w and w ′ coincide on P at every position.

1. If (w , k) � ϕ and distance between color changes is at least k
in w ′, then w ′ � rel(ϕ).

2. Let k ∈ N. If w ′ � rel(ϕ) and distance between color-changes
is at most k in w ′, then (w , 2k) � ϕ.
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The Synchronous Case

Given architecture A, let Ar be A with a new input-free (coloring)
process pcol that outputs r .

penv

p1

p2

pcol

c

d

a

b

Theorem
A PROMPT–LTL formula ϕ is realizable in A if, and only if,
rel(ϕ) ∧ G F r ∧ G F¬r is realizable in Ar .

Proof Idea:
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process pcol that outputs r .

Theorem
A PROMPT–LTL formula ϕ is realizable in A if, and only if,
rel(ϕ) ∧ G F r ∧ G F¬r is realizable in Ar .

Proof Idea:

Let ϕ be realizable in A with bound k by implementations fp.

Add the implementation producing (∅k{r}k) for pcol in Ar .

Every outcome in Ar coincides on P with an outcome in A.

So, the implementations realize rel(ϕ) ∧ G F r ∧ G F¬r in Ar .
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The Synchronous Case

Given architecture A, let Ar be A with a new input-free (coloring)
process pcol that outputs r .

Theorem
A PROMPT–LTL formula ϕ is realizable in A if, and only if,
rel(ϕ) ∧ G F r ∧ G F¬r is realizable in Ar .

Proof Idea:

Let rel(ϕ) ∧ G F r ∧ G F¬r be realizable in Ar by
implementations fp.

As the implementation for pcol is finite-state, there is a
bound k on the distance between color changes.

Thus, the implementations also realize ϕ in A with bound 2k .
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Information Forks

penv

p1

p2

c

d

a

b

penv p1 p2
a b c

Theorem (Finkbeiner & Schewe ’05)

The LTL distributed realizability problem for A is decidable if, and
only if, A has no information fork.

Adding the coloring process does not introduce information forks.

Corollary

The PROMPT–LTL distributed realizability problem for A is
decidable if, and only if, A has no information fork.
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The Asynchronous Case

Add a scheduler, which is part of the (antagonistic)
environment: For every p ∈ P add scheduling propo-
sition schedp to Openv and to Ip.
Implementation may change its state only if enabled.

⇒ Need assumptions on scheduler: bounded fairness∧
p

GFP schedp

Solution: assume-guarantee realizability for PROMPT–LTL.

The asynchronous assume-guarantee realizability problem for a
fixed architecture A asks, given PROMPT–LTL formulas ϕA, ϕG ,
to decide whether implementations fp for every p 6= penv exist s.t.

∀kA ∃kG ∀w ∈
⊕
p

fp : (w , kA) � ϕA implies (w , kG ) � ϕG .
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The Asynchronous Case

Lemma
There exists an assume-guarantee PROMPT–LTL specification
that can be realized with an infinite-state implementation, but not
with a finite-state implemenation.

Proof

penv p1
o ϕA = GFP o ∨ FG¬o

ϕG = false

Implementation of p1 has to falsify assumption ϕA, i.e., satisfy
F¬FP o ∧ G F o for every bound k

This requires to produce infix ∅k for every k , but not suffix ∅ω.

This is impossible for finite-state transducers.
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The Asynchronous Case

Asynchronous LTL realizability is undecidable for architectures
with at least two processes [Schewe & Finkbeiner ’06].

Theorem
The PROMPT–LTL distributed assume-guarantee realizability
problem is semi-decidable.

Proof Sketch

PROMPT–LTL assume-guarantee model checking is
decidable [Kupferman et al. ’07].

Apply bounded synthesis [Finkbeiner & Schewe ’07]:
Search through the space of transducers and model check
whether they satisfy the assume-guarantee specification.
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Conclusion

Results

For a fixed architecture A: synchronous PROMPT–LTL
realizability for A is decidable if, and only if, synchronous
LTL realizability for A is decidable.

Asynchronous PROMPT–LTL assume-guarantee realizability
is semi-decidable, just as for LTL.

Both results can be extended to synthesis and to stronger
logics.

Open problems

Single process asynchronous LTL realizability is decidable.
What about PROMPT–LTL?

Distributed PROMPT–LTL synthesis as an optimization
problem (see next talk for the single process case!)
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