
Delay Games with
WMSO+U Winning Conditions

Martin Zimmermann

Saarland University

July 13th, 2015

CSR 2015, Listvyanka, Russia

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 1/18



Introduction

Büchi-Landweber: The winner of a zero-sum two-player game of
infinite duration with ω-regular winning condition can be
determined effectively.

(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a · · ·
O: a a · · · O: b b a b a · · ·
I wins O wins

Many possible extensions: non-zero-sum, n > 2 players, type
of winning condition, concurrency, imperfect information, etc.
We consider two:
Interaction: one player may delay her moves.
Winning condition: quantitative instead of qualitative.
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Büchi-Landweber: The winner of a zero-sum two-player game of
infinite duration with ω-regular winning condition can be
determined effectively.(

α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b

b a b a · · ·

O: a a · · · O: b

b a b a · · ·

I wins

O wins

Many possible extensions: non-zero-sum, n > 2 players, type
of winning condition, concurrency, imperfect information, etc.
We consider two:
Interaction: one player may delay her moves.
Winning condition: quantitative instead of qualitative.

Martin Zimmermann Saarland University Delay Games with WMSO+U Winning Conditions 2/18



Introduction
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The Unbounding Quantifier

Bojańczyk: Let’s add a new quantifier to (weak) monadic second
order logic (WMSO/MSO)

UXϕ(X ) holds, if there are arbitrarily large finite sets X such
that ϕ(X ) holds.

L = {an0ban1ban2b · · · | lim supi ni =∞}

L defined by

∀x∃y(y > x ∧ Pb(y))∧
UX [∀x∀y∀z(x < y < z ∧ x ∈ X ∧ z ∈ X → y ∈ X )

∧ ∀x(x ∈ X → Pa(x)) ]

Theorem (Bojańczyk ’14)

Games with WMSO+U winning conditions are decidable.
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Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

Deterministic finite automata with counters

counter actions: incr, reset, max

acceptance: boolean combination of “counter γ is bounded”.

a: inc(γ) b: reset(γ); inc(γ′)

Acceptance condition: γ and γ′ unbounded.

Theorem (Bojańczyk ’09)

The following are (effectively) equivalent:

1. L WMSO+U-definable.

2. L recognized by max-automaton.
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Delay Games

The delay game Γf (L):

Delay function: f : N→ N+.

ω-language L ⊆ (ΣI × ΣO)ω.

Two players: Input (I ) vs. Output (O).

In round i:

I picks word ui ∈ Σ
f (i)
I (building α = u0u1 · · · ).

O picks letter vi ∈ ΣO (building β = v0v1 · · · ).

O wins iff
(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L.

Definition:

f is constant, if f (i) = 1 for every i > 0.

f is unbounded, if f (i) > 1 for infinitely many i .
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Example

ΣI = {0, 1,#} and ΣO = {0, 1, ∗}.
Input block: #w with w ∈ {0, 1}+. Length: |w |.
Output block:(

#

α(n)

)(
α(1)

∗

)(
α(2)

∗

)
· · ·

(
α(n − 1)

∗

)(
α(n)

α(n)

)
for α(j) ∈ {0, 1}. Length: n.

Define language L0: if infinitely many # and arbitrarily long input
blocks, then arbitrarily long output blocks.

O wins Γf (L0) for every unbounded f :

If I produces arbitrarily long input blocks, then the lookahead
will contain arbitrarily long input blocks.

Thus, O can produce arbitrarily long output blocks.
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Thus, O can produce arbitrarily long output blocks.
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Previous Results

For ω-regular L (given by deterministic parity automaton):

Theorem (Hosch & Landweber ’72)

“Given L, does O win Γf (L) for some constant f ?” is decidable.

Theorem (Holtmann, Kaiser & Thomas ’10)

1. O wins Γf (L) for some f ⇔ O wins Γf (L) for some constant f .

2. Decision problem in 2ExpTime.

3. Doubly-exponential upper bound on necessary (constant)
lookahead.

Theorem (Klein, Z. ’15)

1. Decision problem ExpTime-complete.

2. Tight exponential bounds on necessary (constant) lookahead.
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Previous Results

For ω-context-free L (given by ω-pushdown automaton):

Theorem (Fridman, Löding & Z. ’11)

1. Decision problem is undecidable.

2. Constant lookahead not enough: lookahead has to grow
non-elementarily.

Both results hold already for one-counter, visibly, weak, and
deterministic context-free winning conditions.

Theorem (Klein, Z. ’15)

Delay games with Borel winning conditions are determined.
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Determinacy

Theorem
Delay Games with WMSO+U winning conditions w.r.t fixed delay
functions are determined.

Proof idea:

Winning condition recognized by some automaton A.
Encode game as parity game in countable arena. States store:

Current lookahead (queue over ΣI )
state A reaches on current play prefix.
Current counter values after this run prefix.
Maximal counter values seen thus far.
Flag marking whether maximum was increased during
last transition.

Thus: counter γ unbounded if, and only if, corresponding flag
is raised infinitely often ⇒ parity condition.
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Capturing Finite Runs of Max-Automata

Theorem
The following problem is decidable: given a max-automaton A,
does O win Γf (L(A)) for some constant delay function f .

Proof Idea:
Capture behavior of A, i.e., state changes and evolution of counter
values:

Transfers from counter γ to γ′.
Existence of increments, but not how many.

⇒ equivalence relation ≡ over Σ∗ of exponential index.

Lemma
Let (xi )i∈N and (x ′i )i∈N be two sequences of words over Σ∗ with
supi |xi | <∞, supi |x ′i | <∞, and xi ≡ x ′i for all i . Then,

x0x1x2 · · · ∈ L(A)⇔ x ′0x
′
1x
′
2 · · · ∈ L(A).
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Removing Delay

In A, project away ΣO and construct equivalence ≡ over Σ∗I .

Define abstract game G(A):

I picks equivalence classes,
O constructs run on representatives (always one step
behind to account for delay).
O wins, if run is accepting.

Lemma
O wins Γf (L(A)) for some constant f ⇔ she wins G(A).

G(A) is delay-free with WMSO+U winning condition.

Can be solved effectively by reduction to satisfiability problem
for WMSO+U with path quantifiers over infinite trees.

Doubly-exponential upper bound on necessary constant
lookahead.
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Constant Lookahead is not Sufficient

Recall: O wins Γf (L0) for every unbounded f .

Input block: #w with w ∈ {0, 1}+.

Output block:
( #
α(n)

)(
α(1)
∗
)(
α(2)
∗
)
· · ·

(
α(n−1)
∗

)(α(n)
α(n)

)
Winning condition L0: if infinitely many # and arbitrarily long
input blocks, then arbitrarily long output blocks.

Claim: I wins Γf (L0) for every constant f .

I : # 0 0 · · · 0 1 1 1 · · ·
O: 0 ∗ ∗ · · ·

Lookahead contains only input blocks of length f (0).

I can react to O’s declaration at beginning of an output block
to bound size of output blocks while producing arbitrarily
large input blocks.
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Conclusion

Delay games with WMSO+U winning conditions w.r.t.
constant delay functions are decidable.
Doubly-exponential upper bound on necessary constant
lookahead.
But constant delay is not always sufficient.

Current work:

Tight bounds on necessary lookahead for the case of constant
delay functions.
Solve games w.r.t. arbitrary delay functions.

Conjecture

The following are equivalent for L definable in WMSO+U:

1. O wins Γf (L) for some f .

2. O wins Γf (L) for every unbounded f s.t. f (0) is “large
enough”.
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