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Introduction

Büchi-Landweber Theorem The winner of a zero-sum two-player
game of infinite duration with ω-regular winning condition can be
determined effectively.

(
α(0)

β(0)

)(
α(1)

β(1)

)
· · · ∈ L, if β(i) = α(i + 2) for every i

I : b a b · · · I : b a b b a b a · · ·
O: a a · · · O: b b a b a · · ·
I wins O wins

Hosch & Landweber: what if we allow O to skip moves to obtain
a lookahead on I ’s moves?
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The Delay Game Γf (L)

Delay function: f : N→ N+.

ω-language L ⊆ (ΣI × ΣO)ω.

Two players: Input (I ) vs. Output (O).

In round i:

I picks word ui ∈ Σ
f (i)
I (building α = u0u1 · · · ).

O picks letter vi ∈ ΣO (building β = v0v1 · · · ).

O wins iff
(α(0)
β(0)

)(α(1)
β(1)

)
· · · ∈ L.

Special case:

(delay-free) Gale-Stewart games: pick f (i) = 1 for all i.

Notation: Γ(L).
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Strategies in Delay Games

Fix some f .

A strategy for I in Γf (L) is a mapping τ : Σ∗O → Σ+
I s.t.

|τ(w)| = f (|w |).

A strategy for O in Γf (L) is a mapping σ : Σ∗I → ΣO .

Note:

1. The definition for I depends (syntactically) on f .

2. As usual, a strategy has only access to the opponent’s moves.
No restriction, since own moves can be reconstructed.

3. But: for O, this depends on knowledge about f .

So, both definitions depend on f .
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Borel Hierarchy and Determinacy

A game is determined, if one of the players has a winning strategy.

Theorem (Martin ’75)

Every Gale-Stewart game with Borel winning condition is
determined.

Borel hierarchy: levels levels Σα and Πα for every countable
ordinal α > 0:

Σ1 = {L ⊆ Σω | L = K · Σω for some K ⊆ Σ∗},
Πα = {Σω \ L | L ∈ Σα} for every α, and

Σα = {
⋃

i∈N Li | Li ∈ Παi with αi < α for every i} for every
α > 1.

Our goal: Borel determinacy for delay games.
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Borel Determinacy for Delay Games

Theorem
Let L be Borel and let f be a delay function. Then, Γf (L) is
determined.

Proof.

.: fresh skip-symbol not in ΣO .

shiftf (β) = .f (0)−1 β(0) .f (1)−1 β(1) .f (2)−1 β(2) · · ·
shiftf (L) = {

(
α

shiftf (β)

)
|
(
α
β

)
∈ L}

Lemma

1. shiftf (L) is Borel.

2. I wins Γ(shiftf (L)) ⇒ I wins Γf (L).

3. O wins Γ(shiftf (L)) ⇒ O wins Γf (L).
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Omnipotent Strategies

Example

L0 ⊆ ({a, b, c} × {b, c})ω with
(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)
· · · ∈ L0 if

α(n) = a for every n ∈ N, or

β(0) 6= α(n), where n is the smallest position with α(n) 6= a.

I wins Γf (L0) for every f :

τ(ε) = af (0), and

τ(w0 · · ·wn−1) = w
f (n)
0 .

“Strategy” that is winning for every f :

τ(ε) = aω, and
τ(w0 · · ·wn−1) = wω

0 .

We call such a strategy omnipotent for L0.
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τ(ε) = af (0), and

τ(w0 · · ·wn−1) = w
f (n)
0 .

“Strategy” that is winning for every f :

τ(ε) = aω, and
τ(w0 · · ·wn−1) = wω

0 .

We call such a strategy omnipotent for L0.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 7/13



Omnipotent Strategies

Example

L0 ⊆ ({a, b, c} × {b, c})ω with
(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)
· · · ∈ L0 if

α(n) = a for every n ∈ N, or

β(0) 6= α(n), where n is the smallest position with α(n) 6= a.

I wins Γf (L0) for every f :

τ(ε) = af (0), and

τ(w0 · · ·wn−1) = w
f (n)
0 .

“Strategy” that is winning for every f :

τ(ε) = aω, and
τ(w0 · · ·wn−1) = wω

0 .

We call such a strategy omnipotent for L0.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 7/13



Omnipotent Strategies for I

1. output-tracking strategy: τ : Σ∗O → Σω
I .

2. lookahead-counting strategy: τ : Σ∗O × N→ Σω
I .

3. input-output-tracking strategy: τ : Σ∗O × Σ∗I → Σω
I .

4. history-tracking strategy: τ : (ΣO ∪ {.})∗ → Σω
I .

These notions form a hierarchy, the first three can be separated:

Theorem

1. Every output-tracking strategy is a lookahead-counting one.

2. Every lookahead-counting strategy is an input-output tracking
one.

3. Every input-output tracking strategy is a history tracking one.
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Output-Tracking vs. Lookahead-Counting

Theorem
Let L1 = {

(
α
β

)
| α 6= (ab)ω}. I has an omnipotent

lookahead-counting strategy for L1, but no omnipotent
output-tracking strategy.

Proof.
Assume τ is omnipotent output-tracking strategy:

We have τ(ε) = (ab)ω.

Assume τ(c) starts with a. Then, τ is losing for every f with
odd f (0) (other case dual).

The following lookahead-counting strategy is omnipotent:

τ(x , n) =

{
(ab)ω n even,

(ba)ω n odd.
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Output-Tracking vs. Lookahead-Counting

Theorem
There is a winning condition L2 such that I has an omnipotent
input-output-tracking strategy for L2, but no omnipotent
lookahead-counting strategy.

Open question:
Are omnipotent history-tracking strategies stronger than
omnipotent input-output-tracking strategies?
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Omnipotent Strategies for O

1. input-tracking strategy: σ : Σ∗I → ΣO .

2. round-counting strategy: σ : Σ∗I × N→ ΣO .

These notions form a strict hierarchy:

Theorem

1. Every input-tracking strategy is a round-counting one.

2. There is a winning condition L3 such that O has an
omnipotent round-counting strategy for L3, but no
omnipotent input-tracking strategy.

Theorem
Either, I wins Γf (L) for some f or O has an omnipotent
round-counting strategy for L.
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Omnipotent Borel Determinacy

Theorem
Let l be Borel. Either, O wins Γf (L) for some f or I has an
omnipotent history-tracking strategy for L.

Open whether this is true for input-output-tracking strategies.
Wrong for output-tracking and lookahead-counting strategies.

Proof.

Let skip(L) =
⋃

f shiftf (L).

Lemma

1. skip(L) is Borel.

2. O wins Γ(skip(L)) ⇒ O wins Γf (L) for some f .

3. I wins Γ(skip(L)) ⇒ I has omnipotent history-tracking
strategy for L.
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Conclusion

Borel determinacy for delay-free games [Martin]:

∀σ ∃τ ρ(σ, τ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ) /∈ L

Our results:

Borel Determinacy for fixed f :

∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ, f ) /∈ L

Borel Determinacy for arbitrary f :

∀f ∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀f ∀σ ρ(σ, τ, f ) /∈ L

(Un)decidability results, e.g., it is decidable whether I has an
omnipotent strategy for a given ω-regular L.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 13/13



Conclusion

Borel determinacy for delay-free games [Martin]:

∀σ ∃τ ρ(σ, τ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ) /∈ L

Our results:

Borel Determinacy for fixed f :

∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ, f ) /∈ L

Borel Determinacy for arbitrary f :

∀f ∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀f ∀σ ρ(σ, τ, f ) /∈ L

(Un)decidability results, e.g., it is decidable whether I has an
omnipotent strategy for a given ω-regular L.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 13/13



Conclusion

Borel determinacy for delay-free games [Martin]:

∀σ ∃τ ρ(σ, τ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ) /∈ L

Our results:

Borel Determinacy for fixed f :

∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ, f ) /∈ L

Borel Determinacy for arbitrary f :

∀f ∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀f ∀σ ρ(σ, τ, f ) /∈ L

(Un)decidability results, e.g., it is decidable whether I has an
omnipotent strategy for a given ω-regular L.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 13/13



Conclusion

Borel determinacy for delay-free games [Martin]:

∀σ ∃τ ρ(σ, τ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ) /∈ L

Our results:

Borel Determinacy for fixed f :

∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀σ ρ(σ, τ, f ) /∈ L

Borel Determinacy for arbitrary f :

∀f ∀σ ∃τ ρ(σ, τ, f ) /∈ L⇔ ∃τ ∀f ∀σ ρ(σ, τ, f ) /∈ L

(Un)decidability results, e.g., it is decidable whether I has an
omnipotent strategy for a given ω-regular L.

Martin Zimmermann Saarland University Borel Determinacy for Games with Lookahead 13/13


