Easy to Win, Hard to Master: Playing Parity Games with Costs Optimally

Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

Saarland University

December 16th, 2016 AVeRTS 2016, Chennai, India

0

 $0 \rightarrow 1$

 $0 \rightarrow 1 \rightarrow 0$

$0 \rightarrow 1 \rightarrow 0 \rightarrow 0$

$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0$

$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0 \rightarrow 0$

$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0 \rightarrow 0 \rightarrow 4$

$0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \longrightarrow 0 \rightarrow 0 \rightarrow 4 \rightarrow 0$

$$\begin{array}{c} 0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0 \\ \hline \\ 0 \end{array}$$

$$0 \to 1 \to 0 \to 0 \longrightarrow 0 \to 0 \to 4 \to 0$$

$$\checkmark 0 \to 0 \to 3 \to 0$$

Various applications: μ-calculus model checking, Rabin's theorem, reactive synthesis, alternating automata,...

Finitary Parity Games

Finitary Parity Games

Finitary Parity Games

• A quantitative strengthening of parity games.

()

- Player 1 wins from every vertex,
- but needs to stay longer and longer in vertex of color 0.
 ⇒ requires infinite memory.

Previous Work

- **Parity:** Almost all requests are answered.
- **Finitary Parity:** There is a bound *b* such that almost all requests are answered within *b* steps.

Previous Work

- **Parity:** Almost all requests are answered.
- **Finitary Parity:** There is a bound *b* such that almost all requests are answered within *b* steps.

Condition	Complexity	Memory Pl. 0	Memory Pl. 1
Parity		Memoryless	Memoryless
Finitary Parity		Memoryless	Infinite

Previous Work

- **Parity:** Almost all requests are answered.
- **Finitary Parity:** There is a bound *b* such that almost all requests are answered within *b* steps.

Condition	Complexity	Memory Pl. 0	Memory Pl. 1
Parity		Memoryless	Memoryless
Finitary Parity		Memoryless	Infinite

Corollary

If Player 0 wins a finitary parity game G, then a uniform bound $b \leq |G|$ suffices.

A trivial example shows that the upper bound $|\mathcal{G}|$ is tight.

Back to the Example

Answering requests as soon as possible requires memory.

Every request can be answered within four steps:

 \Rightarrow requires one bit of memory.

Back to the Example

Answering requests as soon as possible requires memory.

Every request can be answered within four steps:

- a 1 by a 2
- a 3 by a 4

 \Rightarrow requires one bit of memory.

But answering a 1 by a 4 takes five steps.

 \Rightarrow every memoryless strategy has at least *cost* 5.

Questions

- 1. How much memory is needed to play finitary parity games optimally?
- **2.** How hard is it to determine the optimal bound *b* for a finitary parity game?
- **3.** There is a tradeoff between size and cost of strategies! What is its extent?

Outline

- 1. Memory Requirements of Optimal Strategies
- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Outline

1. Memory Requirements of Optimal Strategies

- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Memory Requirements

Memory Requirements

- Player 0 has winning strategy with cost d² + 2d: answer j-th unique request in j-th response-gadget.
 - \Rightarrow requires exponential memory (in d).
- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Memory Requirements

- Player 0 has winning strategy with cost d² + 2d: answer j-th unique request in j-th response-gadget.
 - \Rightarrow requires exponential memory (in d).
- Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of requests.

Theorem

For every d > 1, there exists a finitary parity game \mathcal{G}_d such that

- $|\mathcal{G}_d| \in \mathcal{O}(d^2)$ and \mathcal{G}_d has d odd colors, and
- every optimal strategy for Player 0 has at least size $2^d 2$.

Outline

1. Memory Requirements of Optimal Strategies

2. Determining Optimal Bounds is Hard

- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof

- By a reduction from QBF (w.l.o.g. in CNF).
- Checking the truth of φ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) as a two-player game (Player 0 wants to prove truth of φ):

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof

- By a reduction from QBF (w.l.o.g. in CNF).
- Checking the truth of φ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) as a two-player game (Player 0 wants to prove truth of φ):
 - **1.** Player 1 picks truth value for x.
 - **2.** Player 0 picks truth value for *y*.
 - 3. Player 1 picks clause C.
 - **4.** Player 0 picks literal ℓ from *C*.
 - **5.** Player 0 wins $\Leftrightarrow \ell$ is picked to be satisfied in step 1 or 2.

$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

$$\varphi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$$

$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof Sketch

Fix \mathcal{G} and b (w.l.o.g. $b \leq |\mathcal{G}|$).

 Construct equivalent parity game G' storing the costs of open requests (up to bound b) and the number of overflows (up to bound |G|) ⇒ |G'| ∈ |G|^{O(d)}.

The following problem is in PSPACE: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy for \mathcal{G} whose cost is at most b?"

Proof Sketch

Fix \mathcal{G} and b (w.l.o.g. $b \leq |\mathcal{G}|$).

- Construct equivalent parity game G' storing the costs of open requests (up to bound b) and the number of overflows (up to bound |G|) ⇒ |G'| ∈ |G|^{O(d)}.
- **2.** Define equivalent finite-duration variant \mathcal{G}'_f of \mathcal{G}' with polynomial play-length.
- **3.** \mathcal{G}'_f can be solved on alternating polynomial-time Turing machine.
- **4.** APTIME = PSPACE concludes the proof.

Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}' yields upper bounds on memory requirements.

Corollary

Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^d = 2^{d \log(b+2)}$. Equivalence between finitary parity game \mathcal{G} w.r.t. bound b and parity game \mathcal{G}' yields upper bounds on memory requirements.

Corollary

Let \mathcal{G} be a finitary parity game with costs with d odd colors. If Player 0 has a strategy for \mathcal{G} with cost b, then she also has a strategy with cost b and size $(b+2)^d = 2^{d \log(b+2)}$.

Recall: lower bound 2^d .

■ The same bounds hold for Player 1.

Outline

1. Memory Requirements of Optimal Strategies

- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Tradeoffs

Tradeoffs

- Recall: Player 0 has winning strategy with cost $d^2 + 2d$: answer *j*-th unique request in *j*-th response-gadget, which requires memory of size $2^d - 2$.
- Only store first *i* unique requests, then go to largest answer in next gadget.

 \Rightarrow achieves cost $d^2 + 3d - i$ and size $\sum_{j=1}^{i-1} {d \choose j}$.

 Against a smaller strategy Player 1 can enforce a larger cost, as Player 0 cannot store every sequence of *i* requests.

Tradeoffs

Theorem

Fix some finitary parity game \mathcal{G}_d as before. For every *i* with $1 \le i \le d$ there exists a strategy σ_i for Player 0 in \mathcal{G}_d such that σ_i has cost $d^2 + 3d - i$ and size $\sum_{j=1}^{i-1} {d \choose j}$. Also, every strategy σ'_i for Player 0 in \mathcal{G}_i whose cost is at most th

Also, every strategy σ' for Player 0 in \mathcal{G}_d whose cost is at most the cost of σ_i has at least the size of σ_i .

Outline

1. Memory Requirements of Optimal Strategies

- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Generalizations 1: Cost

Parity Games with costs

- In a finitary parity game, every edge has unit cost.
- In parity games with costs, allow arbitrary weights from \mathbb{N} .
- Subsumes parity games (cost zero for every edge) and finitary parity games (cost one for every edge) as special cases.

Parity Games with costs

- In a finitary parity game, every edge has unit cost.
- In parity games with costs, allow arbitrary weights from \mathbb{N} .
- Subsumes parity games (cost zero for every edge) and finitary parity games (cost one for every edge) as special cases.

New challenges:

- Arbitrarily long infixes of cost zero have to be dealt with.
 ⇒ Use techniques for parity games.
- A binary encoding of the weights only allows an exponential upper bound on the cost of an optimal strategy.
 ⇒ Adapt finite-duration game G'_f accordingly.

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_j and responses P_j of condition j.

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_j and responses P_j of condition j.

Finitary Streett Games / Streett Games with Costs

• Streett condition and weights from $\{1\} / \mathbb{N}$.

Streett Games

- In parity games, requests and responses are hierarchical.
- In Streett games, use a finite collection $(Q_j, P_j)_j$ of sets of vertices, requests Q_j and responses P_j of condition j.

Finitary Streett Games / Streett Games with Costs

• Streett condition and weights from $\{1\} / \mathbb{N}$.

New relief:

 ■ Finitary Streett games are already EXPTIME-complete and exponential memory is necessary
 ⇒ Appropriate adaption of G' can be solved straightaway in

exponential time, yielding exponential upper bounds on memory

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity	$UP \cap CO-UP$	Memoryless	Memoryless
Finitary Parity	PTIME	Memoryless	

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity	$UP \cap CO-UP$	Memoryless	
Finitary Parity	PTIME	Memoryless	
Parity with Cost	UP $\cap CO-UP$	Memoryless	
Streett	CO-NP-complete	Exponential	
Finitary Streett	EXPTIME-compl.	Exponential	
Streett with Cost	EXPTIME-compl.	Exponential	

More Results

Condition	Complexity	Mem. Pl. 0	Mem. Pl. 1
Parity	$UP \cap CO-UP$	Memoryless	Memoryless
Finitary Parity	PTIME	Memoryless	Infinite
Parity with Cost	UP $\cap CO-UP$	Memoryless	Infinite
Streett	CO-NP-complete	Exponential	Memoryless
Finitary Streett	EXPTIME-compl.	Exponential	Infinite
Streett with Cost	EXPTIME-compl.	Exponential	Infinite
Opt. Finitary Parity	PSpace-compl.	Exponential	Exponential
Opt. Parity with Cost*	PSpace-compl.	Exponential	Exponential
Opt. Finitary Streett	ExpTime-compl.	Exponential	Exponential
Opt. Streett with Cost*	ExpTime-compl.	Exponential	Exponential

* Holds for binary encoding of the weights.

Outline

1. Memory Requirements of Optimal Strategies

- 2. Determining Optimal Bounds is Hard
- 3. Trading Memory for Quality and Vice Versa
- 4. Generalizations
- 5. Conclusion

Conclusion

Results

- Playing finitary games/games with costs optimally is harder than just winning them.
- Both in terms of memory requirements and computational complexity.
- Quality can (gradually) be traded for memory and vice versa.

Conclusion

Results

- Playing finitary games/games with costs optimally is harder than just winning them.
- Both in terms of memory requirements and computational complexity.
- Quality can (gradually) be traded for memory and vice versa.

Open problems

- Parity games with mutiple cost functions
- Multi-dimensional games
- Tradeoffs in other games (first results for parametric LTL and energy games)