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We continue the investigation of finite-duration varianfsirdinite-duration games by extending
known results for games played on finite graphs to those glayeinfinite ones. In particular, we
establish an equivalence between pushdown parity gamea finite-duration variant. This allows
us to determine the winner of a pushdown parity game by splireachability game on a finite tree.

1 Introduction

Infinite two-player games on graphs are a powerful tool to ehoekerify, and synthesize open reactive
systems and are closely related to fixed-point logics. Thener of a play in such a game typically
emerges only after completing the whole (infinite) play. RMesthis, McNaughton became interested in
playing infinite games in finite time, motivated by his beliet “infinite games might have an interest
for casual living room recreation["[6].

As playing infinitely long is impossible for human playerscNaughton introduced scoring func-
tions for Muller games, a certain type of infinite game. Eatthese functions is associated to one of
the two players, so it makes sense to talk about the scoreplajer. The scoring functions are updated
after every move and describe the progress a player has rmadeds winning the play. However, as
soon as a scoring function reaches its predefined thresti@dyjame is stopped and the player whose
score reached its threshold first is declared to win this (fioke) play.

On the theoretical side, by applying finite-state detergyraf Muller games, McNaughton showed
that a Muller game and a finite-duration variant with a faelothreshold score have the same winner.
Thus, the winner of a Muller game can be determined by soldiffigite reachability game, which is
much simpler to solve, albeit doubly-exponentially larten the original Muller game.

This result was improved by showing that the finite-duratigme with threshold three always has
the same winner as the original Muller garne [3] and by a (sbased) reduction from a Muller game to a
safety game whose solution not only yields the winner of thilé game, but also a winning strate@y [8].
The improved threshold does not rely on finite-state detsginyi, but is proven by constructing strategies
that are winning for both games at the same time.

The reduction from Muller to safety games yields a new menstnycture for Muller games that
implements not only a winning strategy, but also the mosegdamon-deterministic winning strategy (a
so-called permissive strategy) that prevents the losiageplfrom reaching a certain score. This extends
the work of Bernet et al. on permissive strategies for payames([l] to Muller games. For parity games,
the algorithm presented to compute a permissive stratefyrdzinski’'s progress measure algorithr [4]
for solving parity games. This raises the question of whethere is also a (score-based) progress
measure algorithm for Muller games, which can be deriveahfitte construction of a permissive strategy.

In this work, we begin to extend these results to infinite gaplayed on infinite game graphs. At
first, two questions have to be answered: what type of infijgiee graphs and what type of winning
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condition to consider? We have to restrict the type of gana@lug, since stopping a play after a finite
number of rounds can only lead to an equivalent finite-donatiariant if there is some regularity in the
game graph. A well-researched class of infinite graphs amégroation graphs of pushdown systems.
Walukiewicz showed how to solve parity games on such ganpehgrem exponential time by a reduction
to parity games on finite game graphs [9].

As for the second question, we also consider parity gamesislwork on making infinite games
playable for human players, McNaughton was interested illed¥lgames, since he thought that games
for human players should not be positionally determinedrifepto be interesting enough. From a
theoretical point of view, this can be argued as follows:reysitionally determined game in a finite
game graph has a trivial finite-duration variant. In thisiaat, a play is stopped as soon as a vertex is
visited for the second time and the winner is the player whaswthe infinite play induced by this cycle.
As every positional winning strategy for the infinite-dimatgame is also winning for the finite-duration
game, the two games have the same winner.

For a (min-) parity game on a finite game graph this criterian be improved: lefV|. denote the
number of vertices colored by. Then, a positional winning strategy for Playiee {0,1} does not
visit |V |c+ 1 vertices of colorc with parity 1—i without visiting a vertex of smaller color in between.
This condition can be expressed using scoring functiaghat count the number of vertices of color
visited since the last visit of a vertex of cola@ < ¢. Due to positional determinacy of parity games,
the following finite-duration game has the same winner aothgnal parity game: a play is stopped as
soon as some scoring functiGi. reaches valug/|c + 1 for the first time and Playeris declared to be
the winner, if the parity o€ isi. Again, a positional winning strategy for the parity gamal& winning
for the finite-duration game, i.e., the two games indeed kliaesame winner.

However, both criteria do not necessarily yield a finiteadion game when applied to a game on
an infinite game graph; the first one since there could be iafsimple paths, the second one since
there are colors that color infinitely many vertices, i¥|; could be infinite. Hence, devising a finite-
duration variant of games on infinite game graphs requira® regphisticated criteria, even if the game
is positionally determined.

We exploit the intrinsic structure of the game graph indubgdhe pushdown system by defining
stair-score function$tairSc. for every colorc and show the equivalence between a parity game and
the finite-duration version, when played up to an exponkttii@shold stair-score (in the size of the
pushdown system). This result shows how to determine theewiof an infinite game on an infinite
game graph by solving a finite reachability game. We compierigés by giving a lower bound on the
threshold stair-score that always yields the same winnbkighwis exponential in the cubic root of the
size of the underlying pushdown system.

To prove our main theorem, we analyze Walukiewicz’s reductrom parity games on pushdown
graphs to parity games on finite graphs and prove a correspoadetween stair-scores in the pushdown
game and scores in the finite parity game. The winning plaf/éreofinite parity game (who also wins
the pushdown game) has a winning strategy that bounds timg Ipkyer’s scores bV | (the number of
vertices colored by in the finite parity game). We show that this strategy can beetdiinto a winning
strategy for him in the pushdown game that bounds the staies by|V|; as well. Since the finite parity
game is of exponential size, our result follows.

This work is organized as follows: after fixing our notatiasr parity games and pushdown sys-
tems in Section]2, we introduce the score and stair-scomifurs in SectioiI3. In Sectidd 4, we recall
Walukiewicz’s reduction, which we apply in Sectibh 5 to peasur main theorem, namely the equiva-
lence between parity games on pushdown graphs and theg-finiation variant. Finally, in Sectian 6,
we prove the lower bounds on the threshold score that alwialdsyan equivalent finite-duration game.
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2 Preliminaries

The power set of a set is denoted by#?(X). The set of non-negative integers is denoted\byFor
neN, let[n] ={0,...,n—1} and Pafn) = 0 if nis even, and P&n) = 1 if nis odd. Moreover, for
every alphabet, i.e., a finite set of symbols, the set of finite words is dethditg >*, andX® denotes
the set of infinite words. The length of a wonde Z* is denoted byw| and e denotes the empty word,
i.e., the word of lengthe| = 0. Forn € N, the set of words of length at mostis denoted by =" and
for Z*\ {€} we also writeZ". For a wordw € Xt UZ® andn € N, we writew(n— 1) for the n-th
letter of w (the first letter isw(0)) and denote its last letter Hyst(w). Forw e £* andw € Z* U Z%,
we writew C W if wis a prefix ofw’ andw C w if wis a strict prefix ofw/. For a wordp € =%, let
Inf(p) = {a€ Z| p(n) = afor infinitely manyn}.

2.1 Parity Games

A game graph is a tupl& = (V,Vo, Vi1, E,Vvin) where(V,E) is a (possibly countably infinite) directed
graph with seV of vertices and seéE C V xV of edges, wher®,UV; is a partition oV andvi, €V is
the initial vertex. We assume that every vertex has at lessbotgoing edge. Vertices frovh belong to
Playeri, fori € {0,1}.

A parity game¥ = (G, col) consists of a game graph and a coloring function colV — [n], for
somen € N. Given col, we defindMinCol: V* — [n] by MinCol(w) = min{col(w(i)) | 0 <i < |w|)}.
A play of ¢ is built up by the two players by moving a token on the game tyrapitially, the token is
placed onvi,. In every round, if the current vertexs in'V;, then Player has to choose an outgoing edge
(v,V') € E and the token is moved to the succesgoiThus, a play ir is an infinite sequencg € V¢
such thatp(0) = viy and(p(n),p(n+1)) € E for everyn € N. Such a playp is winning for Player O if
min{Inf(col(p))} is even, otherwise it is winning for Player 1. Here, (@l represents the sequence of
colors seen by. Thus, we sometimes refer to the coloring function col asapairity condition.

A strategy for Player is a functiono: V*V; — V such thaf(last(w), o(w)) € E for everyw € V*V,.
A strategyo is called positional ifo(w) = g(w') holds for allw,w' € V*V; with last(w) = last(w/). A
play p is consistent witho for Playeri if p(n+1) = g(p(0)---p(n)) for everyn € N with p(n) € V.
A strategyo is a winning strategy for Playerif every play p that is consistent witlw is winning for
Playeri. We say that Playamwins if there exists a winning strategy for PlayeiA game is determined
if one of the players wins it.

Theorem 1([2,[7]). Parity games are determined with positional winning styss.

2.2 Pushdown Game Graphs

A pushdown system (PDSY = (Q,I',A,qin) consists of a finite set of stat€¥ with an initial state
Oin € Q, a stack alphabdt with the initial stack symbol. ¢ I', which can neither be written nor deleted
from the stack, and a transition relatidnC Q x I} x Q x Ffz, wherelp =T U{Ll}. We say that a
transitiond = (q,A,q, a) € Ais a push-transition ifa| = 2, d is a skip-transition ifa| = 1, andd is a
pop-transition ifa = €. In the following, we assume every PDS to be deadlock-free,for everyg € Q
andA € I, there existf € Qanda € I'=? such thatq,A,q,a) € A.

A stack content is a word from* L. where the leftmost symbol is assumed to be the top of the.stack
A configuration is a paifq, y) consisting of a statg € Q and a stack contepte I'* L. The stack height
of a configuration(q, y) is defined by sfg,y) = |y| — 1. Furthermore, we writéq, y) — (¢, y) if there

exists(q,y(0),q,a) € Aandy = ay(1)--- y(|y| - 1).
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Figure 1: A pushdown game graph (only the part reachable fhenmnitial vertex is shown)

For a PDSZ, the induced pushdown graph is the infinite directed grgpl¥’) = (V,E) where
V ={(g,y) | g€ Q,ye L} is the set of configurations ar@,V') € E if v~ V. Notice that every
vertex of the pushdown gragh(.#?) has at least one outgoing edge, sitéds deadlock-free. Consider
a partitionQp U Q; of the set of state®. The induced pushdown game gragh= (V,Vo,V1,E,vip) is
a game graph wher@/,E) = G(&?), the partitionVo UV; of the set of configuration¥ is defined by
Vi={(g,y) eV |qe Q}, forie {0,1}, andvj, = (qin, L). Given such a pushdown game graph
and a coloring colQ — [n] of its states, we obtain a parity game by extending col to garditions via
col(qg, y) = col(q), for every state] € Q and every stack conteptc I'* L. We refer to such a game as a
pushdown game.
Example 1. Consider the pushdown syste# = ({qin, 01,02}, {A},A, din) WhereA is the following set

{(QinaXaQimAX)» (QimXaQLAX)a (Q1>A7 QLS), (Q1>J—>QZ>J—)7 (QZ7A7 q27£)7 (q27J—7q27J—) | Xe {AvJ—}}

The partition @ = {d1,q2} and Q = {qin} yields the pushdown game graph G depicted in Figure 1,
where the circles indicate Playdr configurations and squares are Playg&rconfigurations. With the
coloring functioncol such thatcol(g;,) = col(gz) = 0 andcol(qg; ) = 1 PlayerO wins the pushdown game
(G,col), as every play visits only a finite number of configurationsreal by1.

We extend the notion of PDS to pushdown transducers (PDTitdgtang input and output alphabets.
A PDT 7 = (Q,I',A,qin,21,20,A), whereQ, I andg;, are as for PDS and is modified such that
ACQxTI x(Zu{e})xQx r=2, additionally contains an input alphaldgt an output alphabeio,
and a partial output functioh: Q — Zo. A PDT is deterministic if it satisfies

[{(d,a) | (q,Aad,a) e} +|{(d,a)|(qA¢d,a)cd}| <1

forallge Q,allac %, and allA € I',. Analogously to PDS, we writéq, y) 2 (d,y) if there exists a
transition(q, y(0),a,d',a) € Asuch that = ay(1)--- y(]ly|—1). Arunp of a PDT on a wordv € ()*
is a sequence of configuratiops= (qo, o) - - - (Om, ¥m) such thaip(0) = (gin, L), for all 0 <i < mthere
existsa € 2 U{e} with (g, y) el (Oi+1,Y+1) suchthatg---am-1=w, and{(q,a) | (Gm, ¥m(0),€,0,0a) €
A} is empty (i.e., no execution of asrtransition is possible from the last configuration of a rus)
deterministic PDTZ defines a partial functiofiy : (Z)* — 2o such thatf > (w) = A(q), whereq is the
state of the last configuration of the (unique) run®fonw, if such a run exists.

To implement pushdown strategies in a pushdown game we sdllRDT. To have a finite input
alphabet, we represent play prefixes here by sequencesisitimas and not by sequences of configura-
tions. Notice that both representations can easily be ctet/énto each other. Furthermore, the output
will be the next transition to be chosen by Playérstead of the next configuration. Hence, we use the
set of transitions of the PDS defining the pushdown game ftir thee input and the output alphabet of
the PDT. So, the transducer consumes a play prefix in the pushgraph represented by a sequence of
transitions and outputs the transition which Playsiould choose next (in case the last configuration of
the play prefix is a Playarconfiguration). Thus, we have to require the output tramsitd be executable
from the last configuration of the play prefix induced by theunsequence.
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3 Finite-Time Pushdown Games

In this section, we introduce a finite-duration variant oklpdown games. To this end, we adapt the
concept of scoring functions, which were originally intewgd by McNaughtori [6] for Muller games
(see also[B]), to parity games. In the following, (&, col) be a parity game witke = (V,Vo, Vi, E, Vi)
and col:V — [n].

Definition 2 (Scoring functions) For every ce [n], define the functioBc.: V* — N by Sc¢(¢) = 0 and
forweV*and veV by

Sce(w) if col(v) > c,
Sce(Wv) = ¢ Sce(w) +1 if col(v) =c,
0 if col(v) < c.
Furthermore, for every € [n], MaxScc: V*UV® — NU {e} is defined byMaxSc¢(p) = max Sce(w).

A positional winning strategy for Playém a parity game does not visit a vertewith Parcol(v)) =
1—i twice without visiting some vertex of strictly smaller coia between. Hence, applying the pigeon-
hole principle shows that positional winning strategiefniie parity games bound the scores of the los-
ing player. Forc € [n], let |V|; denote the number of vertices of cotpii.e.,|V|. = [{veV | col(v) =c}|.

Remark 3. Let o be a positional winning strategy for Player i in a parity gamih a finite vertex setV.
Then, for every that is consistent witlo, MaxScc(p) < |V|c for all ¢ € [n] such thatParc) =1 —1.

Thus, winning a finite parity game, i.e., a parity game witmédigame graph, can also be character-
ized by being able to achieve a certain threshold score. & as this threshold score is reached the play
can be stopped, since the winner is certain. This is the idamd finite-time versions of infinite games.
Formally, a finite-time parity gam@S, col, k) consists of a game gragik a min-parity condition col and
athresholck € N\ {0}. A play in (G, col,k) is a finite pathw = w(0) - - -w(r) € V* with w(0) = viy such
that MaxScc(w) = k for somec € [n], andMaxSce(w(0)---w(r — 1)) < k for all ¢ € [n]. The playw is
winning for Playeir if Par(c) = i. The notions of (winning) strategies are defined as usual.

By induction over ther numbaer of colors one can show that every threshkid eventually reached
by some score function if the path is sufficiently long. Thhere are no draws due to infinite plays.

Lemma 4. For every we V* with |w| > k", there is some € [n] such thatMaxScc(w) > k.

Hence, a play in a finite-time parity game is stopped afteragtraxponentially many rounds. More-
over, using the construction afl[3] for Muller games (whidbaaholds for parity games) it can also be
shown that the bound in Lemrha 4 is tight, i.e., for eviethere is av € V* with |w| = k" — 1 such that
MaxSce(w) < k for all ¢ € [n].

Furthermore, it is never the case that two different sconetfans are increased in the same round:
by definition of the score functions, only the valuesa,wi)) is increased in rounidof a playw. Hence,
as soon as some score function is increased to the threshaolduwe winner can be declared.

Lemma5. Letwe V*, veV and cc € [n]. If Sce(wv) = Sce(w) + 1 andSce (Wv) = Sce (w) + 1, then
c=c.

In [3], the equivalence between Muller games and finite-tvler games (using the original scor-
ing functions for Muller games) on finite game graphs is shdarmthe constant threshold= 3. A
simple consequence of Rematk 3 is an analogous result fiy games on finite game graphs.
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reset(w) lastBump(w)

ght

stack hei

W
col O 2 1 0 2 1 0 0 0 1 1 1 1 2 1
StairSco 1 1 1 2 2 2 3 3 2 2 2 2 2 2 2
StairScy 0 0 1 0 0 1 0 0 0 1 2 3 4 4 3
StairScy 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 2: A finite path w, its stair positions and its staioiss.

Theorem 6. Let G be a finite game graph with vertex setV aott V — [n]. For every threshold k-
max Ve, Player i wins(G, col) if and only if Player i wingG, col, k).
celn

It is easy to see that this result does not hold for infinite g@maphs. Consider the pushdown game
from Example_ll and recall that Player O wins it. However, feerg thresholdk > 0, Player 1 has a
winning strategy in the corresponding finite-time pushdgame by moving the token to configuration
(a1, A<11), which completely specifies a strategy for Player 1. Folhaihis strategy, Player 1 wins
since color 1is the first to reach scdrerhich happens when the token arrives at the configuraétjonL ).

To obtain an analogous result for pushdown games, we hawafu the scoring functions. Now, let
(G,col) be a pushdown game. Fix a path through the pushdown graphnffgomation is said to be a
stair configuration, if no subsequent configuration of seratack height exists in this path.

Definition 7 (Stairs [5]) Define the functionStairPositions: VT UV® — 2V and Stairs: VT UV® —
VT UV? as follows: forwe VUV, let

StairPositions(w) = {n € N | Ym > n: shiw(m)) > sh(w(n))}

andStairs(w) =w(ng)w(ny) - --, where g < ny < --- is the ascending enumeration$thirPositions(w).

Now, using the notion of stairs, we define stair-score fumdifor pushdown games. To simplify
our notation, letreset(v) = € andlastBump(v) = v for ve V and forw = w(0)---w(r) with r > 1, let
reset(w) = w(0)---w(l) andlastBump(w) = w(l +1)---w(r), wherel is the greatest position such that
shiw(l)) < sh(w(r)) andl #r, i.e.,| is the second largesstair position ofw. Figure[2 illustrates the
above definitions, where an example patAnd the corresponding stack heights are depicted. The stair
positions are indicated by the marked stack heights. Fumihie, the figure also illustrates our new
definition of stair-scores which we define next.

Definition 8 (Stair-scoring function) For every color c< [n], define the functioStairSc: V* — N by
StairScc(g) = 0 and for we V' by

StairSce(reset(w)) if MinCol(lastBump(w)) > c,
StairSce(W) = ¢ StairSce(reset(w)) +1  if MinCol(lastBump(w)) =,
0 if MinCol(lastBump(w)) < c.

INotice that the last position of a finite path is always a siasition.
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Furthermore, for every color € [n], the functionMaxStairScc: V¥ UV® — N U {} is defined by
MaxStairSce(p) = max StairSce(w).

Now, using these notions we define finite-time pushdown gafesh a gaméG, col, k) consists of
a pushdown game grafh, a min-parity condition col and a threshdtd= N\ {0}. A play in (G, col, k)
is a finite pathw = w(0) - --w(r) € V* with w(0) = vi5 such thatMaxStairScc(w) = k for somec € [n],
andMaxStairSce(w(0) - --w(r — 1)) < k for all ¢ € [n]. The playw is winning for Playeri if Par(c) = i.
Again, the notions of (winning) strategies are defined aslusu

As above, every threshoklis eventually reached by some stair-score function if ttag @ suffi-
ciently long: a simple induction shows that evevy: V* with 0 € StairPositions(w) and with|w| > 2™
has a prefixw/ C w such that|/StairPositions(w')| > m. Furthermore, for every play prefiw’ C w a
sequencel € Q* of states withu'| = |Stairs(w')| can be constructed such that for every caar [n],
StairSce(W) = Sce(U). Combining these two properties and Lemha 4 yields the etésipper bound
on the length of a play.

Lemma 9. For every we V* with |w| > 2K there is some & [n] such thatMaxStairSce(w) > k.

Thus, a play in a finite-time pushdown game stops after a gestgponential number of rounds.
Again, the bound in Lemnid 9 is tight. Moreover, Lendmha 5 caedllly be translated to the new definition
of stair-scoring functions which ensures a unique winnex play.

Lemma 10. Letwe V*, ve V and ¢c € [n]. If StairScc(wv) = StairSce(w) + 1 and StairScy (wv) =
StairScy (w) +1, then c=C'.

In Sectior5, we prove the equivalence between pushdowngantkfinite-time pushdown games.
To this end, we adapt Walukiewicz’s reduction from pushdganty games to parity games on finite
game graphs, which we recall in the following section.

4 Walukiewicz's Reduction

Walukiewicz showed that pushdown games can be solved innexpial time [9]. In this section, we
recall his technique which comprises a reduction to pardsnes on finite game graphs. We present a
slight modification of the original construction which isau®d to prove our result in the next section.
Let 4 = (G,col) be a pushdown game with game graph= (V,Vp,V1,E,Viy) induced by % =
(Q,I,A,qin) with partition Qo U Q1 of Q and min-parity condition colQ — [n]. To simulate¥ by a
game on a finite game graph the information stored on the staekcoded by some finite memory
structure. The essential component of this structure is¢hered = (Z(Q))", which we call the set of
predictions. A predictiof® = (P, ...,P,_1) € Pred contains for everyg € [n] a subseP; C Q of states.
The core idea of the game simulating the pushdown game isotteving: The players are as-
signed different tasks, one of them makes predictions aadther one verifies them. Whenever a
push-transition is to be simulated the predicting playey toamake a predictioR € Pred about the fu-
ture roundt when the same stack height as before performing the pussiiom is reached again for
the first time (if it is reached at all). With this predictiahe predicting player claims that if the current
push-transition is performed, then in roundome state € P; will be reached ifc € [n] is the minimal
color seen in between. Once a predictiis proposed, the verifying player has two ways of reacting,
either believing thaP is correct or not. In the first case, he is not interested iffweg P, so the push-
transition is not performed and the verifying player chaoaeolorc € [n] and a state € P, for some
P. # 0, and skips a part of the simulated play by jumping to an @gmeite position in the play. In the
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other case, he wants to verify the correctnesB,afo the push-transition is performed and when the top
of the stack is eventually popped it will turn out whetleis correct or not. The predicting player wins
if P turns out to be correct and otherwise the verifying playarswviSo after a pop-transition the winner
is certain. For the other case, where no pop-transitionrfepeed at all, the parity condition determines
the winner.

In the following, let Player take the role of the predicting player and Playerilthe role of the veri-
fying one. The gamé&] = (G, col') which depends one {0,1}, with G’ = (V',V{,V/,E’,V,,) is defined
as follows: For all stateg € Q, stack symbol#\,B € ', colorsc,d € [n] and prediction®, R € Pred,
the setV’ contains the vertice€heck[q, A, P,c,d] which correspond to the configurations éf auxil-
iary verticesPush[P,c,g,AB], Claim[P,c,q,AB,R] andJump|q, A, P,c,d] which serve as intermediates to
signalize the intention to perform a push-transition, tckena new prediction and to skip a part of a
simulated play, and finally the sink vertic@gn;[g] andWin1_;[q].

The setE’ consists of the following edges (for the sake of readability denote an edges, v») € E’
here byv; — V). For every skip-transitiod = (g, A, p,B) € A there are edges

Check|q, A, P,c,d] — Check[p, B, P, min{c,col(p)},col(p)],

for P € Pred andc,d € [n]. Thus, the first two components of tiéeck-vertices are updated according
to 9, the predictiorP remains untouched, the last but one component is used tdieedqof the minimal
color for being able to check the prediction for correctreesd the last component determines the color
of the currentCheck-vertex. For every push-transitian= (g, A, p,BC) € A there are edges

Check|q, A, P,c,d] — Push[P,c, p,BC],

for all P € Pred andc,d € [n]. Here, a player states that a push-transition is to be peedrsuch that
the current statg has to be changed tp and the top of the stack has to be replaced bBC. The
information containing the current predicti®hand the minimal coloc is carried over, as this is needed
in the case where the verifying player decides to skip. Megedo make a new predictidr, all edges

Push[P,c, p,BC] — Claim[P,c, p, BC,R]

for everyR € Pred are needed. In case a new prediction is to be verified, a paskition is finally
performed using edges of the form

Claim[P,c, p,BC,R] — Check[p, B, R, col(p),col(p)]

where the predictiof®, the colorc and the lower stack symb@l are discarded, since they are no longer
needed. For the other case, where the verifying playerdstémskip a part of a play, all edges

Claim[P,c, p,BC,R] — Jumplq,C,P,c, €|

with q € Re are contained ifE’. Here, the verifying player chooses a cotoe [n] for the minimal color

of the skipped part and a stadfrom the corresponding componeRg of the predictionR. Now, the

lower stack symboC, the predictionP and the colorc additionally have to be carried over, wherdas
andR are discarded. Then, all edges

Jumplq,C, P,c,e] — Check[q,C, P, min{c,e col(q)},min{e col(q)}]

are contained i’ where the last component of tiigheck-vertex is set to be the minimum of the color
of the current statg and the minimal color of the part just skipped. For the lagtdne component,
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we also have to account for the colgrwhich is necessary for eventually checkiRdor correctness.
Finally, we have for every pop-transitiqa, A, p, ) € A, the edges

Check[q, A, P,c,d] — Win;[p] if pe R, and
Check[q,A,P,c,d] — Winq_i[p] if p¢ R,

for P € Pred andc,d € [n], which lead to the sink vertex of the predicting play®m;[p] if the predic-
tion P turns out to be correct or to the sink vertex of the verifyitayperWin;_;[p| otherwise. Moreover,
we have(Win;[g], Winj[q]) € E/, for j € {0,1} andg € Q.

The initial vertexv;, has to correspond to the initial configuratian= (qin, L), so it is defined to be
Check[gin, L, P™, col(gn), col(gin)] whereP" = 0 for everyc € [n], as theL-symbol cannot be deleted
from the stack. The set of vertic¥s of the predicting Playeris defined to consist of alfush-vertices,
as there Playerrhas to make a new prediction, and of th@3eck|[p, A, P,c,d] vertices wherep € Q.
Accordingly, all other vertices belong to Player-1. Finally, the coloring function c6i V' — [n+ 1]
is defined by cd[Check[p,A,P,c,d]) = d and col(Winj[q]) = ], for j € {0,1}. All other vertices are
colored by the maximal colar (which does not appear #), since they are auxiliary vertices and should
have no influence on the minimal color seen infinitely oftehisTs guaranteed by the structure@®f as
there are no loops consisting only of auxiliary vertices tibethat in the original constructiodump-
vertices are colored by the minimal color of the skipped péthe play which is chosen by the verifying
player. This is avoided here by shifting the color afuanp-vertex to the successivéheck-vertex. For
this purpose, the last component of thiesck-vertices is introduced.

Theorem 11([9]). Let¥ be a pushdown game. Player i wigsif and only if Player i wins%/.

Now, let us describe how a winning strategyor Playeri in ¢ can be constructed from a positional
winning strategyo; for Playeri in ¢'. The idea is to simulate; in ¢. This works out fine as long as
only skip- and push-transitions are involved. As soon asitsepop-transition is used leads to a sink
Winj-vertex at which the future moves of are no longer useful for playing in the original gasfe To
overcome this, the strategyuses a stack to stofdaim-vertices visited during the simulated play. This
allows us to reset the simulated play and to continue fronagiopriate successdump-vertex of the
Claim-vertex stored on the stack.

Formally, letG'|y = (V'|4/,Vglors Vilor E'lor, Vi) b the game graph o’ restricted to the vertices
and edges visited by;'. This implies that every vertex froW |, has a unique successor@®; and that
Win1_j-vertices are not contained W\Ui/. The pushdown transducel; implementingo is obtained
from o by employingG’|0./ for its finite control and th&€laim-vertices as its stack symbols.

The PDT |mplement|ng7 is defined by7 = (Q7,1%,&,q0,2,28,A7), whereQ? =V'|5/, 7 =
{veV'|y |visaClaim-vertex, qf = Vi,, 2 = 23 = A. To defined’, we first define the labeling

¢: E'|g — AU{€} which assigns to every edgeh‘ﬁ\q/ its corresponding transitiod € A by

g,A, p,B) (v,V') = (Check[q,A,P,c,d], Check[p,B,P,c’,d]),
g,A,p,BC) if (v,V) = (Check[q,A,P c,d],Push[P.c,p,BC)),
q,A,p,e) if (vV) = (Check[q,A, P c,d],Wini[p]),

£ otherwise.

(
ouv) =

Now, the transition relatiod¥ is defined as follows: for everyv,v') € E'|, if v is not aClaim-
vertex and V is not aWin;-vertex, then(v,Z,¢(v,V),V,Z) € Y, for everyZ e I'?. For the other
cases, ifv is a Claim-vertex andv' is a Check-vertex, then(v,Z,£(v,V),V,vZ) € & for Ze T?, i.e.,
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the Claim-vertexv is pushed onto the stack. And finally, (if,v') = (Check[q, A, P,c,d],Win;[p|), then
(v,Z,£(v,V),Jump[p,C,R e c|,e) € & for everyZ € I'? of the formZ = Claim[R,e,d,BC,R], i.e., the
topmost symbollaim[R e ¢ ,BC,R] is popped from the stack and the pushdown transducer preceed
to the statelump[p,C, R, e,c| which would be reached i@ﬂa( if Player 1— i would have chosen colar

and statep € R; to determine the successor ©@aim|[R e, ,BC,R]. To complete the definition o,

we define the output functiok?” by A°(v) = £(v,V) if v € /|57 is aCheck-vertex andv,V') € E'|, i.e.,

the labeling of the edge chosen by determines the output of;. LemmaIB shows this construction
to be correct.

5 Main Theorem

In this section, we prove the equivalence between a pushdanre and the corresponding finite-time
pushdown game for a certain threshold which is exponemtidie size of the PDS defining the pushdown
game. For a pushdown gan#= (G,col) induced by = (Q,I",A,qin) and col:Q — [n], define
ky = |Q|- || -2/ n, which is an upper bound on the numbeChick-vertices in/ of the same color.

Theorem 12. Let¥ = (G, col) be a pushdown game and gt = (G, col, k) be the corresponding finite-
time pushdown game with threshold k. For every ks, Player i wins¥ if and only if Player i wingé.

To prove this theorem, we need the following lemma whichldstaes a relation between the values
of the scoring functions of plays i/ and the values of the stair-scoring functions of correspand
plays in¢. Let g/ be a positional winning strategy for Playein ¢’ and .7; the PDT implementing
the corresponding pushdown winning strategyor Playeri in ¢ as defined in the previous section.
For a play prefixw(0)---w(r) € VT, definelastStrictBump(w) = w if sh(w(r)) = 0, and otherwise
lastStrictBump(w) = w(l +1)---w(r) wherel is the greatest position such that\sfl)) < sh(w(r)).

Lemma 13. For every play prefix w i that is consistent witlw, there is a play prefix hin ¢/’ that is
consistent withg! such thatStairSce(w) = Scc(W) for every ce [n].

Proof. By induction overjw|. To prove our claim, we strengthen the induction hypothesi®llows: for
every play prefixv in ¢ that is consistent witlw, there is a play prefix/ in %’]ai/ (which is consistent
with g by construction) such that the following requirements ates§ed: letlast(w) = (g, Ay).

(i) StairSce(w) = Sce(W) for everyc € [n].
(ii) last(w') = Checklq, A, P,c,d] for someP € Pred, d € [n] andc = MinCol(lastStrictBump(w)).

(ii) Let (v,ys) be the last configuration of the run 6% on the sequence of transitions inducedvwy
Furthermore, if; # L, lety,(j) = Claim[P}, c;, pj, BjCj, R;] for every 0< j <|yy| —2. We require
v =last(w), Cy---Cx = y wherek = |y;| — 2, andRy = P.

For the induction start, we have= Vi, = (Gin, L). Letw’ =/, = Check|[gin, L,P™, col(gin), col(gn)].
Since colvin) = col (Vi) = col(gin), we haveStairSce(w) = Sce(W') for everyc € [n]. Moreover, require-
ments (i) and[(iii) are satisfied as well.

Now, letw =w(0) ---w(r) with r > 0 andw(r — 1) = (g, Ay). Moreover, letreset(w) = w(0) - --W(S)
andw(s) = (gs,Asys). The induction hypothesis yields play prefixésandu; in %’]ai/ such that we have
StairSce(w(0) - - -w(r — 1)) = Sce(U') andStairSce(w(0) - - -w(s)) = Scc(us), for everyc € [n]. Also, for
someP, Ps € Pred andd, ds € [n], last(u') = Check|q, A, P, c,d] andlast(u;) = Check|gs, As, Ps, Cs, ds] with
¢ = MinCol(lastStrictBump(w(0) - - - w(r — 1))) and cs = MinCol(lastStrictBump(w(0) - --w(s))). We
distinguish three cases, whether the transition fre(m— 1) to w(r) is a skip-, push-, or pop-transition.
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In case of a skip-transitiod = (g, A, p,B), we havew(r) = (p,By). By construction, there is also an
edge fromlast(u') = Check|[qg, A, P,c,d] to the vertex

v = Check[p, B, P,min{c,col(p)},col(p)]

in 4| labeled by/(last(u'),v) = 4. Thus, letw’ = u'v. This choice satisfies requiremefit (ii), as for a
skip-transition fromw(r — 1) to w(r) it holds

MinCol(lastStrictBump(w)) = min{MinCol(lastStrictBump(w(0)---w(r —1))),col(w(r))}
= min{c,col(p)} .

Furthermore, requiremerfi {iii) is satisfied, since whercpssingd, 7, changes its statlst(U') to v
while the stack is left unchanged. To prove the equality efdtores, le¢ = col(w(r)), which is also the
color ofvin &/| . Then, we havétairSce(W) = StairSce(W(0) - --w(r — 1)) +1 = Sce(U) + 1= Sce(W),
and fore < e, StairSce (W) = StairSce (W(0) - --w(r — 1)) = Sce (U) = Sce (W). Finally, fore > e, we
haveStairScy (W) = 0= Scg (W).

In case of a push-transitiah = (g, A, p,BC), we havew(r) = (p,BCy). Consider the finite path

u” = Push[P,c, p,BC] — Claim[P,c, p,BC,R] — Check|[p,B,R,col(p),col(p)]

in 4|, whereR is the prediction picked byy. Notice that there is indeed an edge frémst(u’) to
Push[P.c, p,BC]in E'|5. We claim thaw’ = u'u” has the desired properties. Requiremeht (ii) is satisfied,
aslastStrictBump(w) = w(r) in this case, an¥inCol(w(r)) = col(p). Furthermore(laim[P,c, p, BC,R]

is pushed onto the stack of; when processing. Hence, requiremeni {jii) is satisfied.

The scores evolve as in the case of a skip-transition exglaabove, since in both cases we have
lastBump(w) = w(r), andu” contains exactly one vertex with color jn], namely its last vertex, which
has the same color agr). The intermediate auxiliary vertices have cai@nd therefore do not influence
the scores we are interested in.

Finally, the case of a pop-transition is the most involvee,aince a play if%’lo—( ends in a sink
vertex, as soon as a pop-transition is simulated. In thie,c&s uses the topClaim-vertex stored on
its stack to determine the appropridigeck-vertex for being able to continue playing accordingofo
Suppose the transition & = (q,A, p,€), i.e., we havew(r) = (p,y). Let & = (gs,As,d,BC) be the
push-transition (of the PDS underlyirig) which induces the edgén(s),w(s+ 1)) € E. Note that
Cys =, since the stack conte@Ys remains untouched unidl is executed fromwv(r — 1) tow(r). Hence,
w(r) = (p,Cys). By definition of g, there is an edge frorast(u’) = Check[q, A, P,c,d] to Win;[p| in
E'| such thap € R.

Now, consider the run of/; onw. By construction, the transducer pops the @@ m-vertexv from
its stack while processing the transitidn We show thav = Claim|[Ps,cs,q',BC,P]. First, notice that
v was pushed onto the stack while processing the transitan ¥(s) to w(s+ 1) which is induced by
. Applying the induction hypothesis shows that the rurggfon the sequence of transitions induced
by w(0) ---w(s) ends in stateast(us) = Check[gs, As, Ps, Cs,ds] with some stack conterny € (M9)* L
satisfying the above requirements. Since rius to be processed, the run 6% is continued as follows
for someR € Pred:

(Iast(ug), Yo) é (Push[Ps, s, qlvBC]v Yo) u (Claim[P, Cs, qlvBC> R, Vo)
£ (Checklq, B, R, col(q),col(q)], Claim[Ps,cs, ¢ ,BC,R - V)
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It remains to show thaR = P, which is done by applying the induction hypothesis to theoti.7; on
transitions induced bw(0)---w(r — 1). The top symbollaim[Ps, cs,q, BC, R], which is pushed on the
stack while processingn(s),w(s+ 1)), remains untouched unti¥(r — 1) is reached and is again the top
symbol after processingn(r — 2),w(r — 1)). However, sincéast(u') = Checkl[qg,A, P,c,d] is the state
reached by7; after processingv(0) - --w(r — 1) it follows from requirement{(ili) thaR = P.

Consider the following finite path iﬂ}’\q/:

U’ = Push[Ps, cs,q,BC] — v— Jump[p,C, Ps, Cs, €] — Check[p,C, Ps, min{cs,c,col(p)},min{c,col(p)}].

Notice that there is an edge frolast(us) to Push[Ps, cs,f,BC] in E'| 5. So, we can show that' = ugu”
satisfies the above requirements. Requirenidnt (ii) isfatjssince

MinCol(lastStrictBump(w))
=min{MinCol(lastStrictBump(w(0) - --w(s))), MinCol(w(s+1)---w(r — 1)), col(w(r))}
=min{Cs, MinCol(lastStrictBump(w(0) - --w(r — 1))),col(p)}
=min{Cs,C,col(p)} .

Requirement[(ili) is satisfied, since after processingy 7, the top stack symbol is popped from
the stack and the statéheck|[p,C, Ps, min{cs,c,col(p)},min{c,col(p)}] is reached. By doing so, the
same stack content is reestablished as after the rdiy @in reset(w). Hence, by applying the induction
hypothesis, we havgy - - -Cx = ys. Since we have = Cy, this suffices. To show requiremeft (i), let

e = MinCol(lastBump(w))
= min{MinCol(lastStrictBump(w(0) - --w(r — 1))),col(w(r))}
= min{c,col(p)} .

Notice thate is also the color ofast(w') = Check[p,C, R, min{cs,c,col(p)},min{c,col(p)}] in &'
Thus, StairSce(w) = StairSce(w(0) - - - W(S)) + 1 = Sce(Us) + 1 = Sce(W) and fore’ < e StairSce (W) =
StairSce (W(0) - - -wW(S)) = Sce (U) = Scg (W). Finally, if € > e, StairScg (W) = 0= Scg (W). O

Now, the proof of Theoreiin 12 is straightforward.

Proof of Theorerh 12Assume that Playarwins ¢, then he also wing/’ due to Theoreri 11. For ev-
ery colorc € [n|, there are at modt, Check-vertices colored by. Hence, due to RemaiK 3 there
is a positional winning strategy; in ¢ for Playeri such that for everg € [n] with Parc) = 1—1,
MaxScc(p’) < kg, for every playp’ which is consistent witt;. From Lemmad 13, it follows that the
pushdown strategyg which is constructed frons{ bounds the stair-scores of Player1by ky. Thus,
for every playp which is consistent witlo and everk > kg, there existsv C p such thatv is winning
for Playeri in %. Hence, using the same strategyPlayeri wins every finite-time gamj for k > k.
The other direction follows by determinacy of parity games. O

6 Lower Bounds

In the previous section, we proved the equivalence betwashdown games and corresponding finite-
time pushdown games with an exponential threshold. In #ttian, we present an (almost) matching
lower bound on the threshold that always yields equivalam&g. To this end, we construct a pushdown
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Figure 3: Pushdown Ganié&;, coly)

game in which the winning player is forced to reach a configomaof high stack height while only
visiting states colored by a bad color for him. Thereby, thpanent is the first player to reatiigh
stair-scores, although he loses the play eventually.

Theorem 14. There are a family of pushdown gam@s,, col,) and thresholds kexponential in the
cubic root of the size of the underlying PDS such that for yver 0, Player O wins the pushdown
game(Gy, coly), but for every k< k,, Player1 wins the finite-time pushdown gart®y, coly, k).

Proof. We denote theé-th prime number byp. Forn > 0, letk, = [, pi and define the PD$?, =
(Qn, {A},An,qin) as follows:Qn = {din,qn } UL Mi, whereM; = {qiJ | 0< j < pi}, andA, consists of
the following transitions:

® (Gin, X, 0in, AX) and(din, X, 0, AX) for everyX € {A, L},
e (q0,A,q0,A) for every 1< i <n,
. (qij,A,qf,s), wherel = (j+ 1) mod p;, and

e (0,1,q9,1), foreveryge Qn\ {Qin}-.

To specify the partition o, let g belong to Player 1. All other states are Player O states. dlogicg
is given by cok(q®) = 0 for every 1< i < nand coh(q) = 1 for every other statg. We havek, > 2" and
|Qn| can be bounded from above BY(n?log(n)). Hencek, is exponential in the cubic root ¢®;,|. The
pushdown gaméGy, col,) is depicted in FigurEl3. Double-lined vertices are thosered by 0.

A play in the gaméG,,, col,) proceeds as follows. Player 0 picks a natural nunxaei0 by moving
the token to the configuratiofgg, A*L). If he fails to do so by staying in statg, ad infinitum he loses,
since cok(qin) = 1. At (g, A*L), Player 1 picks a modulug; € {ps,...,pn} by moving the token to
(in,AXL). From this configuration, a single path emanates, i.e.etl®eonly one way to continue the
play. Player 0 wins this play if and only ¥mod p; = 0. Hence, Player 0 has a winning strategy for this
game by moving the token to some non-zero multipl&.of.e., Player 0 wingGy, coly).

Now, letk < k,. If Player O reache$q,,A“"1L), then he loses the finite-time pushdown game
(Gn, coln, k), since in this case Player 1 reaches stair-skdog color 1. On the other hand, if he moves
the token to a configuratiofgs, A* L) for somex < k— 1, then there is @; € {pi,..., pn} such that
x mod p; # 0, asx < k,. Hence, assume Player 1 moves the tokefqi?oAXL). Then, the play ends in
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a self-loop at a configuratiofgf", L) for somem+ 0. The pathw from (qn, L) to (g™, L) via (g, AY)
satisfiesMaxStairSco(w) < x. Sinceq™ is colored by 1, the scores of Player O are never increaselé whi
using the self-loop afq", L). Thus, his scores never reach the threslkoltience, Player 1 is the first
to reach this threshold, since Lemifda 9 guarantees that hex@me color that reaches the threshold
eventually. Thus, Player 1 win&,, coly, k). O

7 Conclusion

We have shown how to play parity games on pushdown graphsiie fime. To this end, we adapted
the notions of scoring functions to exploit the intrinsicusture of a pushdown game graph to obtain an
finite-duration game that always has the same winner as fimténgame. Thus, the winner of a parity
game on a pushdown game graph can be determined by solviniteadiachability game.

This work transfers results obtained for games on finite ggraphs to infinite graphs. In ongoing
work, we investigate if and how a winning strategy for theepafyjame, in which Player 0 wins if and
only if he prevents his opponent from reaching an exponkesi#ar-score can be turned into a winning
strategy for the original pushdown game. The winner of thisegames is equal, due to Lemind 13.

On the other hand, our results could be extended by consglenore general classes of infinite
graphs having an intrinsic structure, e.g., configuraticapgs of higher-order pushdown systems. Fi-
nally, there is a small gap between the upper and lower boaortieothreshold score that always yields
an equivalent finite-duration pushdown game, which remiaife closed.
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