
M. Faella, A. Murano (Eds.): Games, Automata, Logics
and Formal Verification (GandALF 2012)
EPTCS ??, 2012, pp. 1–14, doi:10.4204/EPTCS.??.??

c© W. Fridman & M. Zimmermann
This work is licensed under the
Creative Commons Attribution License.

Playing Pushdown Parity Games in a Hurry

Wladimir Fridman
Chair of Computer Science 7
RWTH Aachen University

Aachen, Germany

fridman@automata.rwth-aachen.de

Martin Zimmermann
Institute of Informatics
University of Warsaw

Warsaw, Poland

zimmermann@mimuw.edu.pl

We continue the investigation of finite-duration variants of infinite-duration games by extending
known results for games played on finite graphs to those played on infinite ones. In particular, we
establish an equivalence between pushdown parity games anda finite-duration variant. This allows
us to determine the winner of a pushdown parity game by solving a reachability game on a finite tree.

1 Introduction

Infinite two-player games on graphs are a powerful tool to model, verify, and synthesize open reactive
systems and are closely related to fixed-point logics. The winner of a play in such a game typically
emerges only after completing the whole (infinite) play. Despite this, McNaughton became interested in
playing infinite games in finite time, motivated by his beliefthat “infinite games might have an interest
for casual living room recreation” [6].

As playing infinitely long is impossible for human players, McNaughton introduced scoring func-
tions for Muller games, a certain type of infinite game. Each of these functions is associated to one of
the two players, so it makes sense to talk about the scores of aplayer. The scoring functions are updated
after every move and describe the progress a player has made towards winning the play. However, as
soon as a scoring function reaches its predefined threshold,the game is stopped and the player whose
score reached its threshold first is declared to win this (nowfinite) play.

On the theoretical side, by applying finite-state determinacy of Muller games, McNaughton showed
that a Muller game and a finite-duration variant with a factorial threshold score have the same winner.
Thus, the winner of a Muller game can be determined by solvinga finite reachability game, which is
much simpler to solve, albeit doubly-exponentially largerthan the original Muller game.

This result was improved by showing that the finite-durationgame with threshold three always has
the same winner as the original Muller game [3] and by a (score-based) reduction from a Muller game to a
safety game whose solution not only yields the winner of the Muller game, but also a winning strategy [8].
The improved threshold does not rely on finite-state determinacy, but is proven by constructing strategies
that are winning for both games at the same time.

The reduction from Muller to safety games yields a new memorystructure for Muller games that
implements not only a winning strategy, but also the most general non-deterministic winning strategy (a
so-called permissive strategy) that prevents the losing player from reaching a certain score. This extends
the work of Bernet et al. on permissive strategies for paritygames [1] to Muller games. For parity games,
the algorithm presented to compute a permissive strategy isJurdziński’s progress measure algorithm [4]
for solving parity games. This raises the question of whether there is also a (score-based) progress
measure algorithm for Muller games, which can be derived from the construction of a permissive strategy.

In this work, we begin to extend these results to infinite games played on infinite game graphs. At
first, two questions have to be answered: what type of infinitegame graphs and what type of winning

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Playing Pushdown Parity Games in a Hurry

condition to consider? We have to restrict the type of game graphs, since stopping a play after a finite
number of rounds can only lead to an equivalent finite-duration variant if there is some regularity in the
game graph. A well-researched class of infinite graphs are configuration graphs of pushdown systems.
Walukiewicz showed how to solve parity games on such game graphs in exponential time by a reduction
to parity games on finite game graphs [9].

As for the second question, we also consider parity games. Inhis work on making infinite games
playable for human players, McNaughton was interested in Muller games, since he thought that games
for human players should not be positionally determined in order to be interesting enough. From a
theoretical point of view, this can be argued as follows: every positionally determined game in a finite
game graph has a trivial finite-duration variant. In this variant, a play is stopped as soon as a vertex is
visited for the second time and the winner is the player who wins the infinite play induced by this cycle.
As every positional winning strategy for the infinite-duration game is also winning for the finite-duration
game, the two games have the same winner.

For a (min-) parity game on a finite game graph this criterion can be improved: let|V|c denote the
number of vertices colored byc. Then, a positional winning strategy for Playeri ∈ {0,1} does not
visit |V|c+1 vertices of colorc with parity 1− i without visiting a vertex of smaller color in between.
This condition can be expressed using scoring functionsScc that count the number of vertices of colorc
visited since the last visit of a vertex of colorc′ < c. Due to positional determinacy of parity games,
the following finite-duration game has the same winner as theoriginal parity game: a play is stopped as
soon as some scoring functionScc reaches value|V|c+1 for the first time and Playeri is declared to be
the winner, if the parity ofc is i. Again, a positional winning strategy for the parity game isalso winning
for the finite-duration game, i.e., the two games indeed havethe same winner.

However, both criteria do not necessarily yield a finite-duration game when applied to a game on
an infinite game graph; the first one since there could be infinite simple paths, the second one since
there are colors that color infinitely many vertices, i.e.,|V|c could be infinite. Hence, devising a finite-
duration variant of games on infinite game graphs requires more sophisticated criteria, even if the game
is positionally determined.

We exploit the intrinsic structure of the game graph inducedby the pushdown system by defining
stair-score functionsStairScc for every colorc and show the equivalence between a parity game and
the finite-duration version, when played up to an exponential threshold stair-score (in the size of the
pushdown system). This result shows how to determine the winner of an infinite game on an infinite
game graph by solving a finite reachability game. We complement this by giving a lower bound on the
threshold stair-score that always yields the same winner, which is exponential in the cubic root of the
size of the underlying pushdown system.

To prove our main theorem, we analyze Walukiewicz’s reduction from parity games on pushdown
graphs to parity games on finite graphs and prove a correspondence between stair-scores in the pushdown
game and scores in the finite parity game. The winning player of the finite parity game (who also wins
the pushdown game) has a winning strategy that bounds the losing player’s scores by|V|c (the number of
vertices colored byc in the finite parity game). We show that this strategy can be turned into a winning
strategy for him in the pushdown game that bounds the stair-scores by|V|c as well. Since the finite parity
game is of exponential size, our result follows.

This work is organized as follows: after fixing our notation for parity games and pushdown sys-
tems in Section 2, we introduce the score and stair-score functions in Section 3. In Section 4, we recall
Walukiewicz’s reduction, which we apply in Section 5 to prove our main theorem, namely the equiva-
lence between parity games on pushdown graphs and their finite-duration variant. Finally, in Section 6,
we prove the lower bounds on the threshold score that always yields an equivalent finite-duration game.

W. Fridman & M. Zimmermann 3

2 Preliminaries

The power set of a setX is denoted byP(X). The set of non-negative integers is denoted byN. For
n ∈ N, let [n] = {0, . . . ,n− 1} and Par(n) = 0 if n is even, and Par(n) = 1 if n is odd. Moreover, for
every alphabetΣ, i.e., a finite set of symbols, the set of finite words is denoted by Σ∗, andΣω denotes
the set of infinite words. The length of a wordw∈ Σ∗ is denoted by|w| andε denotes the empty word,
i.e., the word of length|ε | = 0. Forn∈ N, the set of words of length at mostn is denoted byΣ≤n and
for Σ∗ \ {ε} we also writeΣ+. For a wordw ∈ Σ+ ∪ Σω and n ∈ N, we write w(n− 1) for the n-th
letter of w (the first letter isw(0)) and denote its last letter bylast(w). For w ∈ Σ∗ andw′ ∈ Σ∗ ∪Σω ,
we write w ⊑ w′ if w is a prefix ofw′ andw ⊏ w′ if w is a strict prefix ofw′. For a wordρ ∈ Σω , let
Inf(ρ) = {a∈ Σ | ρ(n) = a for infinitely manyn}.

2.1 Parity Games

A game graph is a tupleG = (V,V0,V1,E,vin) where(V,E) is a (possibly countably infinite) directed
graph with setV of vertices and setE ⊆V ×V of edges, whereV0∪V1 is a partition ofV andvin ∈V is
the initial vertex. We assume that every vertex has at least one outgoing edge. Vertices fromVi belong to
Playeri, for i ∈ {0,1}.

A parity gameG = (G,col) consists of a game graphG and a coloring function col :V → [n], for
somen ∈ N. Given col, we defineMinCol : V+ → [n] by MinCol(w) = min{col(w(i)) | 0 ≤ i < |w|)}.
A play of G is built up by the two players by moving a token on the game graph. Initially, the token is
placed onvin. In every round, if the current vertexv is inVi , then Playeri has to choose an outgoing edge
(v,v′) ∈ E and the token is moved to the successorv′. Thus, a play inG is an infinite sequenceρ ∈Vω

such thatρ(0) = vin and(ρ(n),ρ(n+1)) ∈ E for everyn∈ N. Such a playρ is winning for Player 0 if
min{Inf(col(ρ))} is even, otherwise it is winning for Player 1. Here, col(ρ) represents the sequence of
colors seen byρ . Thus, we sometimes refer to the coloring function col as a min-parity condition.

A strategy for Playeri is a functionσ : V∗Vi →V such that(last(w),σ(w)) ∈ E for everyw∈V∗Vi .
A strategyσ is called positional ifσ(w) = σ(w′) holds for allw,w′ ∈V∗Vi with last(w) = last(w′). A
play ρ is consistent withσ for Playeri if ρ(n+1) = σ(ρ(0) · · ·ρ(n)) for everyn∈ N with ρ(n) ∈Vi .
A strategyσ is a winning strategy for Playeri if every playρ that is consistent withσ is winning for
Playeri. We say that Playeri winsG if there exists a winning strategy for Playeri. A game is determined
if one of the players wins it.

Theorem 1([2, 7]). Parity games are determined with positional winning strategies.

2.2 Pushdown Game Graphs

A pushdown system (PDS)P = (Q,Γ,∆,qin) consists of a finite set of statesQ with an initial state
qin ∈ Q, a stack alphabetΓ with the initial stack symbol⊥ /∈ Γ, which can neither be written nor deleted
from the stack, and a transition relation∆ ⊆ Q×Γ⊥ ×Q×Γ≤2

⊥ , whereΓ⊥ = Γ∪{⊥}. We say that a
transitionδ = (q,A,q′,α) ∈ ∆ is a push-transition if|α |= 2, δ is a skip-transition if|α |= 1, andδ is a
pop-transition ifα = ε . In the following, we assume every PDS to be deadlock-free, i.e., for everyq∈ Q
andA∈ Γ⊥ there existq′ ∈ Q andα ∈ Γ≤2

⊥ such that(q,A,q′,α) ∈ ∆.
A stack content is a word fromΓ∗⊥ where the leftmost symbol is assumed to be the top of the stack.

A configuration is a pair(q,γ) consisting of a stateq∈ Q and a stack contentγ ∈ Γ∗⊥. The stack height
of a configuration(q,γ) is defined by sh(q,γ) = |γ |−1. Furthermore, we write(q,γ) 7− (q′,γ ′) if there
exists(q,γ(0),q′,α) ∈ ∆ andγ ′ = αγ(1) · · · γ(|γ |−1).

4 Playing Pushdown Parity Games in a Hurry

· · ·

· · ·

qin

q1

q2

Figure 1: A pushdown game graph (only the part reachable fromthe initial vertex is shown)

For a PDSP, the induced pushdown graph is the infinite directed graphG(P) = (V,E) where
V = {(q,γ) | q ∈ Q,γ ∈ Γ∗⊥} is the set of configurations and(v,v′) ∈ E if v 7− v′. Notice that every
vertex of the pushdown graphG(P) has at least one outgoing edge, sinceP is deadlock-free. Consider
a partitionQ0∪Q1 of the set of statesQ. The induced pushdown game graphG = (V,V0,V1,E,vin) is
a game graph where(V,E) = G(P), the partitionV0 ∪V1 of the set of configurationsV is defined by
Vi = {(q,γ) ∈ V | q ∈ Qi}, for i ∈ {0,1}, andvin = (qin,⊥). Given such a pushdown game graphG
and a coloring col :Q→ [n] of its states, we obtain a parity game by extending col to configurations via
col(q,γ) = col(q), for every stateq∈ Q and every stack contentγ ∈ Γ∗⊥. We refer to such a game as a
pushdown game.
Example 1. Consider the pushdown systemP = ({qin,q1,q2},{A},∆,qin) where∆ is the following set

{(qin,X,qin,AX),(qin,X,q1,AX),(q1,A,q1,ε),(q1,⊥,q2,⊥),(q2,A,q2,ε),(q2,⊥,q2,⊥) |X ∈ {A,⊥}}.

The partition Q0 = {q1,q2} and Q1 = {qin} yields the pushdown game graph G depicted in Figure 1,
where the circles indicate Player0 configurations and squares are Player1 configurations. With the
coloring functioncol such thatcol(qin) = col(q2) = 0 andcol(q1) = 1 Player0 wins the pushdown game
(G,col), as every play visits only a finite number of configurations colored by1.

We extend the notion of PDS to pushdown transducers (PDT) by attaching input and output alphabets.
A PDT T = (Q,Γ,∆,qin,ΣI ,ΣO,λ), whereQ, Γ and qin are as for PDS and∆ is modified such that
∆ ⊆ Q×Γ⊥× (ΣI ∪{ε})×Q×Γ≤2

⊥ , additionally contains an input alphabetΣI , an output alphabetΣO,
and a partial output functionλ : Q→ ΣO. A PDT is deterministic if it satisfies

∣

∣{(q′,α) | (q,A,a,q′,α) ∈ ∆}
∣

∣+
∣

∣{(q′,α) | (q,A,ε ,q′,α) ∈ ∆}
∣

∣≤ 1

for all q∈ Q, all a∈ ΣI , and allA∈ Γ⊥. Analogously to PDS, we write(q,γ) a
7− (q′,γ ′) if there exists a

transition(q,γ(0),a,q′ ,α) ∈ ∆ such thatγ ′ = αγ(1) · · · γ(|γ |−1). A run ρ of a PDT on a wordw∈ (ΣI)
∗

is a sequence of configurationsρ = (q0,γ0) · · · (qm,γm) such thatρ(0) = (qin,⊥), for all 0≤ i < m there
existsai ∈ΣI ∪{ε}with (qi ,γi)

ai7− (qi+1,γi+1) such thata0 · · ·am−1 =w, and{(q,α) | (qm,γm(0),ε ,q,α)∈
∆} is empty (i.e., no execution of anε-transition is possible from the last configuration of a run). A
deterministic PDTT defines a partial functionfT : (ΣI)

∗ → ΣO such thatfT (w) = λ (q), whereq is the
state of the last configuration of the (unique) run ofT onw, if such a run exists.

To implement pushdown strategies in a pushdown game we will use PDT. To have a finite input
alphabet, we represent play prefixes here by sequences of transitions and not by sequences of configura-
tions. Notice that both representations can easily be converted into each other. Furthermore, the output
will be the next transition to be chosen by Playeri instead of the next configuration. Hence, we use the
set of transitions of the PDS defining the pushdown game for both the input and the output alphabet of
the PDT. So, the transducer consumes a play prefix in the pushdown graph represented by a sequence of
transitions and outputs the transition which Playeri should choose next (in case the last configuration of
the play prefix is a Playeri configuration). Thus, we have to require the output transition to be executable
from the last configuration of the play prefix induced by the input sequence.

W. Fridman & M. Zimmermann 5

3 Finite-Time Pushdown Games

In this section, we introduce a finite-duration variant of pushdown games. To this end, we adapt the
concept of scoring functions, which were originally introduced by McNaughton [6] for Muller games
(see also [3]), to parity games. In the following, let(G,col) be a parity game withG= (V,V0,V1,E,vin)
and col :V → [n].

Definition 2 (Scoring functions). For every c∈ [n], define the functionScc : V∗ → N byScc(ε) = 0 and
for w∈V∗ and v∈V by

Scc(wv) =











Scc(w) if col(v)> c,

Scc(w)+1 if col(v) = c,

0 if col(v)< c.

Furthermore, for every c∈ [n], MaxScc : V∗∪Vω → N∪{∞} is defined byMaxScc(ρ) =max
w⊑ρ

Scc(w).

A positional winning strategy for Playeri in a parity game does not visit a vertexv with Par(col(v)) =
1− i twice without visiting some vertex of strictly smaller color in between. Hence, applying the pigeon-
hole principle shows that positional winning strategies infinite parity games bound the scores of the los-
ing player. Forc∈ [n], let |V|c denote the number of vertices of colorc, i.e.,|V|c = |{v∈V | col(v) = c}|.

Remark 3. Letσ be a positional winning strategy for Player i in a parity gamewith a finite vertex set V .
Then, for everyρ that is consistent withσ , MaxScc(ρ)≤ |V|c for all c ∈ [n] such thatPar(c) = 1− i.

Thus, winning a finite parity game, i.e., a parity game with a finite game graph, can also be character-
ized by being able to achieve a certain threshold score. As soon as this threshold score is reached the play
can be stopped, since the winner is certain. This is the idea behind finite-time versions of infinite games.
Formally, a finite-time parity game(G,col,k) consists of a game graphG, a min-parity condition col and
a thresholdk∈ N\{0}. A play in (G,col,k) is a finite pathw= w(0) · · ·w(r) ∈V∗ with w(0) = vin such
thatMaxScc(w) = k for somec∈ [n], andMaxScc(w(0) · · ·w(r −1)) < k for all c∈ [n]. The playw is
winning for Playeri if Par(c) = i. The notions of (winning) strategies are defined as usual.

By induction over ther numbern of colors one can show that every thresholdk is eventually reached
by some score function if the path is sufficiently long. Thus,there are no draws due to infinite plays.

Lemma 4. For every w∈V∗ with |w| ≥ kn, there is some c∈ [n] such thatMaxScc(w)≥ k.

Hence, a play in a finite-time parity game is stopped after at most exponentially many rounds. More-
over, using the construction of [3] for Muller games (which also holds for parity games) it can also be
shown that the bound in Lemma 4 is tight, i.e., for everyk there is aw∈V∗ with |w|= kn−1 such that
MaxScc(w)< k for all c∈ [n].

Furthermore, it is never the case that two different score functions are increased in the same round:
by definition of the score functions, only the value ofSccol(w(i)) is increased in roundi of a playw. Hence,
as soon as some score function is increased to the threshold aunique winner can be declared.

Lemma 5. Let w∈V∗, v∈V and c,c′ ∈ [n]. If Scc(wv) = Scc(w)+1 andScc′(wv) = Scc′(w)+1, then
c= c′.

In [3], the equivalence between Muller games and finite-timeMuller games (using the original scor-
ing functions for Muller games) on finite game graphs is shownfor the constant thresholdk = 3. A
simple consequence of Remark 3 is an analogous result for parity games on finite game graphs.

6 Playing Pushdown Parity Games in a Hurry

reset(w) lastBump(w)

st
ac

k
he

ig
ht

w
col 0 2 1 0 2 1 0 0 0 1 1 1 1 2 1

StairSc0 1 1 1 2 2 2 3 3 2 2 2 2 2 2 2
StairSc1 0 0 1 0 0 1 0 0 0 1 2 3 4 4 3
StairSc2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 2: A finite path w, its stair positions and its stair-scores.

Theorem 6. Let G be a finite game graph with vertex set V andcol : V → [n]. For every threshold k>
max
c∈[n]

|V|c, Player i wins(G,col) if and only if Player i wins(G,col,k).

It is easy to see that this result does not hold for infinite game graphs. Consider the pushdown game
from Example 1 and recall that Player 0 wins it. However, for every thresholdk > 0, Player 1 has a
winning strategy in the corresponding finite-time pushdowngame by moving the token to configuration
(q1,Ak−1⊥), which completely specifies a strategy for Player 1. Following this strategy, Player 1 wins
since color 1 is the first to reach scorek which happens when the token arrives at the configuration(q1,⊥).

To obtain an analogous result for pushdown games, we have to adapt the scoring functions. Now, let
(G,col) be a pushdown game. Fix a path through the pushdown graph. A configuration is said to be a
stair configuration, if no subsequent configuration of smaller stack height exists in this path.
Definition 7 (Stairs [5]). Define the functionsStairPositions : V+ ∪Vω → 2N andStairs : V+ ∪Vω →
V+∪Vω as follows: for w∈V+∪Vω , let

StairPositions(w) = {n∈ N | ∀m≥ n : sh(w(m))≥ sh(w(n))}

andStairs(w) =w(n0)w(n1) · · · , where n0 < n1 < · · · is the ascending enumeration ofStairPositions(w).
Now, using the notion of stairs, we define stair-score functions for pushdown games. To simplify

our notation, letreset(v) = ε and lastBump(v) = v for v ∈V and forw = w(0) · · ·w(r) with r ≥ 1, let
reset(w) = w(0) · · ·w(l) andlastBump(w) = w(l +1) · · ·w(r), wherel is the greatest position such that
sh(w(l)) ≤ sh(w(r)) and l 6= r, i.e., l is the second largest1 stair position ofw. Figure 2 illustrates the
above definitions, where an example pathw and the corresponding stack heights are depicted. The stair
positions are indicated by the marked stack heights. Furthermore, the figure also illustrates our new
definition of stair-scores which we define next.
Definition 8 (Stair-scoring function). For every color c∈ [n], define the functionStairScc : V∗ → N by
StairScc(ε) = 0 and for w∈V+ by

StairScc(w) =











StairScc(reset(w)) if MinCol(lastBump(w))> c,

StairScc(reset(w))+1 if MinCol(lastBump(w)) = c,

0 if MinCol(lastBump(w))< c.

1Notice that the last position of a finite path is always a stairposition.

W. Fridman & M. Zimmermann 7

Furthermore, for every color c∈ [n], the functionMaxStairScc : V∗ ∪Vω → N ∪ {∞} is defined by
MaxStairScc(ρ) =max

w⊑ρ
StairScc(w).

Now, using these notions we define finite-time pushdown games. Such a game(G,col,k) consists of
a pushdown game graphG, a min-parity condition col and a thresholdk∈ N\{0}. A play in (G,col,k)
is a finite pathw= w(0) · · ·w(r) ∈V∗ with w(0) = vin such thatMaxStairScc(w) = k for somec∈ [n],
andMaxStairScc(w(0) · · ·w(r −1)) < k for all c∈ [n]. The playw is winning for Playeri if Par(c) = i.
Again, the notions of (winning) strategies are defined as usual.

As above, every thresholdk is eventually reached by some stair-score function if the play is suffi-
ciently long: a simple induction shows that everyw∈V+ with 0∈ StairPositions(w) and with|w| ≥ 2m

has a prefixw′ ⊑ w such that|StairPositions(w′)| > m. Furthermore, for every play prefixw′ ⊑ w a
sequenceu′ ∈ Q∗ of states with|u′| = |Stairs(w′)| can be constructed such that for every colorc∈ [n],
StairScc(w′) = Scc(u′). Combining these two properties and Lemma 4 yields the desired upper bound
on the length of a play.

Lemma 9. For every w∈V∗ with |w| ≥ 2kn
there is some c∈ [n] such thatMaxStairScc(w)≥ k.

Thus, a play in a finite-time pushdown game stops after a doubly-exponential number of rounds.
Again, the bound in Lemma 9 is tight. Moreover, Lemma 5 can directly be translated to the new definition
of stair-scoring functions which ensures a unique winner ofa play.

Lemma 10. Let w∈V∗, v∈V and c,c′ ∈ [n]. If StairScc(wv) = StairScc(w)+1 andStairScc′(wv) =
StairScc′(w)+1, then c= c′.

In Section 5, we prove the equivalence between pushdown games and finite-time pushdown games.
To this end, we adapt Walukiewicz’s reduction from pushdownparity games to parity games on finite
game graphs, which we recall in the following section.

4 Walukiewicz’s Reduction

Walukiewicz showed that pushdown games can be solved in exponential time [9]. In this section, we
recall his technique which comprises a reduction to parity games on finite game graphs. We present a
slight modification of the original construction which is needed to prove our result in the next section.

Let G = (G,col) be a pushdown game with game graphG = (V,V0,V1,E,vin) induced byP =
(Q,Γ,∆,qin) with partition Q0∪Q1 of Q and min-parity condition col :Q → [n]. To simulateG by a
game on a finite game graph the information stored on the stackis encoded by some finite memory
structure. The essential component of this structure is thesetPred= (P(Q))n, which we call the set of
predictions. A predictionP= (P0, . . . ,Pn−1) ∈ Pred contains for everyc∈ [n] a subsetPc ⊆ Q of states.

The core idea of the game simulating the pushdown game is the following: The players are as-
signed different tasks, one of them makes predictions and the other one verifies them. Whenever a
push-transition is to be simulated the predicting player has to make a predictionP∈ Pred about the fu-
ture roundt when the same stack height as before performing the push-transition is reached again for
the first time (if it is reached at all). With this prediction,the predicting player claims that if the current
push-transition is performed, then in roundt some stateq∈ Pc will be reached ifc∈ [n] is the minimal
color seen in between. Once a predictionP is proposed, the verifying player has two ways of reacting,
either believing thatP is correct or not. In the first case, he is not interested in verifying P, so the push-
transition is not performed and the verifying player chooses a colorc∈ [n] and a stateq∈ Pc, for some
Pc 6= /0, and skips a part of the simulated play by jumping to an appropriate position in the play. In the

8 Playing Pushdown Parity Games in a Hurry

other case, he wants to verify the correctness ofP, so the push-transition is performed and when the top
of the stack is eventually popped it will turn out whetherP is correct or not. The predicting player wins
if P turns out to be correct and otherwise the verifying player wins. So after a pop-transition the winner
is certain. For the other case, where no pop-transition is performed at all, the parity condition determines
the winner.

In the following, let Playeri take the role of the predicting player and Player 1− i the role of the veri-
fying one. The gameG ′

i = (G′,col′) which depends oni ∈ {0,1}, with G′ = (V ′,V ′
0,V

′
1,E

′,v′in) is defined
as follows: For all statesq∈ Q, stack symbolsA,B∈ Γ⊥, colorsc,d ∈ [n] and predictionsP,R∈ Pred,
the setV ′ contains the verticesCheck[q,A,P,c,d] which correspond to the configurations ofG , auxil-
iary verticesPush[P,c,q,AB], Claim[P,c,q,AB,R] andJump[q,A,P,c,d] which serve as intermediates to
signalize the intention to perform a push-transition, to make a new prediction and to skip a part of a
simulated play, and finally the sink verticesWini [q] andWin1−i [q].

The setE′ consists of the following edges (for the sake of readability, we denote an edge(v1,v2)∈E′

here byv1 → v2). For every skip-transitionδ = (q,A, p,B) ∈ ∆ there are edges

Check[q,A,P,c,d]→ Check[p,B,P,min{c,col(p)},col(p)] ,

for P∈ Pred andc,d ∈ [n]. Thus, the first two components of theCheck-vertices are updated according
to δ , the predictionP remains untouched, the last but one component is used to keeptrack of the minimal
color for being able to check the prediction for correctnessand the last component determines the color
of the currentCheck-vertex. For every push-transitionδ = (q,A, p,BC) ∈ ∆ there are edges

Check[q,A,P,c,d]→ Push[P,c, p,BC] ,

for all P∈ Pred andc,d ∈ [n]. Here, a player states that a push-transition is to be performed such that
the current stateq has to be changed top and the top of the stackA has to be replaced byBC. The
information containing the current predictionP and the minimal colorc is carried over, as this is needed
in the case where the verifying player decides to skip. Moreover, to make a new predictionR, all edges

Push[P,c, p,BC]→ Claim[P,c, p,BC,R]

for everyR∈ Pred are needed. In case a new prediction is to be verified, a push-transition is finally
performed using edges of the form

Claim[P,c, p,BC,R]→ Check[p,B,R,col(p),col(p)]

where the predictionP, the colorc and the lower stack symbolC are discarded, since they are no longer
needed. For the other case, where the verifying player intends to skip a part of a play, all edges

Claim[P,c, p,BC,R]→ Jump[q,C,P,c,e]

with q∈ Re are contained inE′. Here, the verifying player chooses a colore∈ [n] for the minimal color
of the skipped part and a stateq from the corresponding componentRe of the predictionR. Now, the
lower stack symbolC, the predictionP and the colorc additionally have to be carried over, whereasB
andR are discarded. Then, all edges

Jump[q,C,P,c,e]→ Check[q,C,P,min{c,e,col(q)},min{e,col(q)}]

are contained inE′ where the last component of theCheck-vertex is set to be the minimum of the color
of the current stateq and the minimal color of the part just skipped. For the last but one component,

W. Fridman & M. Zimmermann 9

we also have to account for the colorc, which is necessary for eventually checkingP for correctness.
Finally, we have for every pop-transition(q,A, p,ε) ∈ ∆, the edges

Check[q,A,P,c,d]→Wini [p] if p∈ Pc , and

Check[q,A,P,c,d]→Win1−i[p] if p /∈ Pc ,

for P∈ Pred andc,d ∈ [n], which lead to the sink vertex of the predicting playerWini [p] if the predic-
tion P turns out to be correct or to the sink vertex of the verifying playerWin1−i [p] otherwise. Moreover,
we have(Win j [q],Win j [q]) ∈ E′, for j ∈ {0,1} andq∈ Q.

The initial vertexv′in has to correspond to the initial configurationvin = (qin,⊥), so it is defined to be
Check[qin,⊥,Pin,col(qin),col(qin)] wherePin

c = /0 for everyc∈ [n], as the⊥-symbol cannot be deleted
from the stack. The set of verticesV ′

i of the predicting Playeri is defined to consist of allPush-vertices,
as there Playeri has to make a new prediction, and of thoseCheck[p,A,P,c,d] vertices wherep ∈ Qi.
Accordingly, all other vertices belong to Player 1− i. Finally, the coloring function col′ : V ′ → [n+1]
is defined by col′(Check[p,A,P,c,d]) = d and col′(Win j [q]) = j, for j ∈ {0,1}. All other vertices are
colored by the maximal colorn (which does not appear inG), since they are auxiliary vertices and should
have no influence on the minimal color seen infinitely often. This is guaranteed by the structure ofG′, as
there are no loops consisting only of auxiliary vertices. Notice that in the original construction,Jump-
vertices are colored by the minimal color of the skipped partof the play which is chosen by the verifying
player. This is avoided here by shifting the color of aJump-vertex to the successiveCheck-vertex. For
this purpose, the last component of theCheck-vertices is introduced.

Theorem 11([9]). LetG be a pushdown game. Player i winsG if and only if Player i winsG ′
i .

Now, let us describe how a winning strategyσ for Playeri in G can be constructed from a positional
winning strategyσ ′

i for Playeri in G ′
i . The idea is to simulateσ ′

i in G . This works out fine as long as
only skip- and push-transitions are involved. As soon as thefirst pop-transition is used,σ ′

i leads to a sink
Wini-vertex at which the future moves ofσ ′

i are no longer useful for playing in the original gameG . To
overcome this, the strategyσ uses a stack to storeClaim-vertices visited during the simulated play. This
allows us to reset the simulated play and to continue from theappropriate successorJump-vertex of the
Claim-vertex stored on the stack.

Formally, letG′|σ ′
i
= (V ′|σ ′

i
,V ′

0|σ ′
i
,V ′

1|σ ′
i
,E′|σ ′

i
,v′in) be the game graph ofG ′

i restricted to the vertices
and edges visited byσ ′

i . This implies that every vertex fromV ′
i |σ ′

i
has a unique successor inG′|σ ′

i
and that

Win1−i-vertices are not contained inV ′
i |σ ′

i
. The pushdown transducerTσ implementingσ is obtained

from σ ′
i by employingG′|σ ′

i
for its finite control and theClaim-vertices as its stack symbols.

The PDT implementingσ is defined byTσ = (Qσ ,Γσ ,∆σ ,qσ
in,Σ

σ
I ,Σσ

O,λ
σ), whereQσ =V ′|σ ′

i
, Γσ =

{v ∈ V ′|σ ′
i
| v is aClaim-vertex}, qσ

in = v′in, Σσ
I = Σσ

O = ∆. To define∆σ , we first define the labeling
ℓ : E′|σ ′

i
→ ∆∪{ε} which assigns to every edge inE′|σ ′

i
its corresponding transitionδ ∈ ∆ by

ℓ(v,v′) =























(q,A, p,B) if (v,v′) = (Check[q,A,P,c,d],Check[p,B,P,c′,d′]) ,

(q,A, p,BC) if (v,v′) = (Check[q,A,P,c,d],Push[P,c, p,BC]) ,

(q,A, p,ε) if (v,v′) = (Check[q,A,P,c,d],Wini[p]) ,

ε otherwise.

Now, the transition relation∆σ is defined as follows: for every(v,v′) ∈ E′|σ ′
i
, if v is not aClaim-

vertex and v′ is not aWini-vertex, then(v,Z, ℓ(v,v′),v′,Z) ∈ ∆σ , for every Z ∈ Γσ
⊥ . For the other

cases, ifv is aClaim-vertex andv′ is aCheck-vertex, then(v,Z, ℓ(v,v′),v′,vZ) ∈ ∆σ for Z ∈ Γσ
⊥ , i.e.,

10 Playing Pushdown Parity Games in a Hurry

theClaim-vertexv is pushed onto the stack. And finally, if(v,v′) = (Check[q,A,P,c,d],Wini[p]), then
(v,Z, ℓ(v,v′),Jump[p,C,R,e,c],ε) ∈ ∆σ for everyZ ∈ Γσ of the formZ = Claim[R,e,q′,BC,R′], i.e., the
topmost symbolClaim[R,e,q′,BC,R′] is popped from the stack and the pushdown transducer proceeds
to the stateJump[p,C,R,e,c] which would be reached inG′

i|σ ′
i

if Player 1− i would have chosen colorc
and statep∈ Rc to determine the successor ofClaim[R,e,q′,BC,R′]. To complete the definition ofTσ ,
we define the output functionλσ by λσ (v) = ℓ(v,v′) if v∈V ′

i |σ ′
i

is aCheck-vertex and(v,v′) ∈ E′|σ ′
i
, i.e.,

the labeling of the edge chosen byσ ′
i determines the output ofTσ . Lemma 13 shows this construction

to be correct.

5 Main Theorem

In this section, we prove the equivalence between a pushdowngame and the corresponding finite-time
pushdown game for a certain threshold which is exponential in the size of the PDS defining the pushdown
game. For a pushdown gameG = (G,col) induced byP = (Q,Γ,∆,qin) and col :Q → [n], define
kG = |Q| · |Γ| ·2|Q|·n ·n, which is an upper bound on the number ofCheck-vertices inG ′

i of the same color.

Theorem 12. LetG = (G,col) be a pushdown game and letGk = (G,col,k) be the corresponding finite-
time pushdown game with threshold k. For every k> kG , Player i winsG if and only if Player i winsGk.

To prove this theorem, we need the following lemma which establishes a relation between the values
of the scoring functions of plays inG ′

i and the values of the stair-scoring functions of corresponding
plays inG . Let σ ′

i be a positional winning strategy for Playeri in G ′
i andTσ the PDT implementing

the corresponding pushdown winning strategyσ for Player i in G as defined in the previous section.
For a play prefixw(0) · · ·w(r) ∈ V+, define lastStrictBump(w) = w if sh(w(r)) = 0, and otherwise
lastStrictBump(w) = w(l +1) · · ·w(r) wherel is the greatest position such that sh(w(l))< sh(w(r)).

Lemma 13. For every play prefix w inG that is consistent withσ , there is a play prefix w′ in G ′
i that is

consistent withσ ′
i such thatStairScc(w) = Scc(w′) for every c∈ [n].

Proof. By induction over|w|. To prove our claim, we strengthen the induction hypothesisas follows: for
every play prefixw in G that is consistent withσ , there is a play prefixw′ in G ′

i |σ ′
i

(which is consistent
with σ ′

i by construction) such that the following requirements are satisfied: letlast(w) = (q,Aγ).

(i) StairScc(w) = Scc(w′) for everyc∈ [n].

(ii) last(w′) = Check[q,A,P,c,d] for someP∈ Pred, d ∈ [n] andc=MinCol(lastStrictBump(w)).

(iii) Let (v,γσ) be the last configuration of the run ofTσ on the sequence of transitions induced byw.
Furthermore, ifγσ 6=⊥, let γσ (j) =Claim[Pj ,c j , p j ,B jCj ,Rj] for every 0≤ j ≤ |γσ |−2. We require
v= last(w′), C0 · · ·Ck = γ wherek= |γσ |−2, andR0 = P.

For the induction start, we havew= vin =(qin,⊥). Letw′= v′in =Check[qin,⊥,Pin,col(qin),col(qin)].
Since col(vin) = col′(v′in)= col(qin), we haveStairScc(w) = Scc(w′) for everyc∈ [n]. Moreover, require-
ments (ii) and (iii) are satisfied as well.

Now, letw= w(0) · · ·w(r) with r > 0 andw(r −1) = (q,Aγ). Moreover, letreset(w) = w(0) · · ·w(s)
andw(s) = (qs,Asγs). The induction hypothesis yields play prefixesu′ andu′s in G ′

i |σ ′
i

such that we have
StairScc(w(0) · · ·w(r −1)) = Scc(u′) andStairScc(w(0) · · ·w(s)) = Scc(u′s), for everyc∈ [n]. Also, for
someP,Ps∈ Pred andd,ds∈ [n], last(u′) =Check[q,A,P,c,d] andlast(u′s) =Check[qs,As,Ps,cs,ds] with
c = MinCol(lastStrictBump(w(0) · · ·w(r − 1))) andcs = MinCol(lastStrictBump(w(0) · · ·w(s))). We
distinguish three cases, whether the transition fromw(r −1) to w(r) is a skip-, push-, or pop-transition.

W. Fridman & M. Zimmermann 11

In case of a skip-transitionδ = (q,A, p,B), we havew(r) = (p,Bγ). By construction, there is also an
edge fromlast(u′) = Check[q,A,P,c,d] to the vertex

v= Check[p,B,P,min{c,col(p)},col(p)]

in G ′
i |σ ′

i
labeled byℓ(last(u′),v) = δ . Thus, letw′ = u′v. This choice satisfies requirement (ii), as for a

skip-transition fromw(r −1) to w(r) it holds

MinCol(lastStrictBump(w)) =min{MinCol(lastStrictBump(w(0) · · ·w(r −1))),col(w(r))}

=min{c,col(p)} .

Furthermore, requirement (iii) is satisfied, since when processingδ , Tσ changes its statelast(u′) to v
while the stack is left unchanged. To prove the equality of the scores, lete= col(w(r)), which is also the
color ofv in G ′

i |σ ′
i
. Then, we haveStairSce(w) = StairSce(w(0) · · ·w(r−1))+1= Sce(u′)+1= Sce(w′),

and fore′ < e, StairSce′(w) = StairSce′(w(0) · · ·w(r −1)) = Sce′(u′) = Sce′(w′). Finally, for e′ > e, we
haveStairSce′(w) = 0= Sce′(w′).

In case of a push-transitionδ = (q,A, p,BC), we havew(r) = (p,BCγ). Consider the finite path

u′′ = Push[P,c, p,BC]→ Claim[P,c, p,BC,R]→ Check[p,B,R,col(p),col(p)]

in G ′
i |σ ′

i
whereR is the prediction picked byσ ′

i . Notice that there is indeed an edge fromlast(u′) to
Push[P,c, p,BC] in E′|σ ′

i
. We claim thatw′ = u′u′′ has the desired properties. Requirement (ii) is satisfied,

aslastStrictBump(w) =w(r) in this case, andMinCol(w(r)) = col(p). Furthermore,Claim[P,c, p,BC,R]
is pushed onto the stack ofTσ when processingδ . Hence, requirement (iii) is satisfied.

The scores evolve as in the case of a skip-transition explained above, since in both cases we have
lastBump(w) = w(r), andu′′ contains exactly one vertex with color in[n], namely its last vertex, which
has the same color asw(r). The intermediate auxiliary vertices have colornand therefore do not influence
the scores we are interested in.

Finally, the case of a pop-transition is the most involved one, since a play inG ′
i |σ ′

i
ends in a sink

vertex, as soon as a pop-transition is simulated. In this case, Tσ uses the topClaim-vertex stored on
its stack to determine the appropriateCheck-vertex for being able to continue playing according toσ ′

i .
Suppose the transition isδ = (q,A, p,ε), i.e., we havew(r) = (p,γ). Let δs = (qs,As,q′,BC) be the
push-transition (of the PDS underlyingG) which induces the edge(w(s),w(s+ 1)) ∈ E. Note that
Cγs= γ , since the stack contentCγs remains untouched untilδ is executed fromw(r−1) to w(r). Hence,
w(r) = (p,Cγs). By definition of σ , there is an edge fromlast(u′) = Check[q,A,P,c,d] to Wini [p] in
E′|σ ′

i
such thatp∈ Pc.

Now, consider the run ofTσ onw. By construction, the transducer pops the topClaim-vertexv from
its stack while processing the transitionδ . We show thatv = Claim[Ps,cs,q′,BC,P]. First, notice that
v was pushed onto the stack while processing the transition from w(s) to w(s+1) which is induced by
δs. Applying the induction hypothesis shows that the run ofTσ on the sequence of transitions induced
by w(0) · · ·w(s) ends in statelast(u′s) = Check[qs,As,Ps,cs,ds] with some stack contentγσ ∈ (Γσ)+⊥
satisfying the above requirements. Since nowδs is to be processed, the run ofTσ is continued as follows
for someR∈ Pred:

(last(u′s),γσ)
δs7− (Push[Ps,cs,q

′,BC],γσ)
ε
7− (Claim[Ps,cs,q

′,BC,R],γσ)
ε
7− (Check[q′,B,R,col(q′),col(q′)],Claim[Ps,cs,q

′,BC,R] · γσ)

12 Playing Pushdown Parity Games in a Hurry

It remains to show thatR= P, which is done by applying the induction hypothesis to the run of Tσ on
transitions induced byw(0) · · ·w(r −1). The top symbolClaim[Ps,cs,q′,BC,R], which is pushed on the
stack while processing(w(s),w(s+1)), remains untouched untilw(r −1) is reached and is again the top
symbol after processing(w(r − 2),w(r − 1)). However, sincelast(u′) = Check[q,A,P,c,d] is the state
reached byTσ after processingw(0) · · ·w(r −1) it follows from requirement (iii) thatR= P.

Consider the following finite path inG ′
i |σ ′

i
:

u′′ =Push[Ps,cs,q
′,BC]→ v→ Jump[p,C,Ps,cs,c]→Check[p,C,Ps,min{cs,c,col(p)},min{c,col(p)}].

Notice that there is an edge fromlast(u′s) to Push[Ps,cs,q′,BC] in E′|σ ′
i
. So, we can show thatw′ = u′su

′′

satisfies the above requirements. Requirement (ii) is satisfied, since

MinCol(lastStrictBump(w))

=min{MinCol(lastStrictBump(w(0) · · ·w(s))),MinCol(w(s+1) · · ·w(r −1)),col(w(r))}

=min{cs,MinCol(lastStrictBump(w(0) · · ·w(r −1))),col(p)}

=min{cs,c,col(p)} .

Requirement (iii) is satisfied, since after processingδ by Tσ , the top stack symbolv is popped from
the stack and the stateCheck[p,C,Ps,min{cs,c,col(p)},min{c,col(p)}] is reached. By doing so, the
same stack content is reestablished as after the run ofTσ on reset(w). Hence, by applying the induction
hypothesis, we haveC0 · · ·Ck = γs. Since we haveγ =Cγs, this suffices. To show requirement (i), let

e=MinCol(lastBump(w))

=min{MinCol(lastStrictBump(w(0) · · ·w(r −1))),col(w(r))}

=min{c,col(p)} .

Notice thate is also the color oflast(w′) = Check[p,C,R,min{cs,c,col(p)},min{c,col(p)}] in G ′
i |σ ′

i
.

Thus,StairSce(w) = StairSce(w(0) · · ·w(s))+1= Sce(u′s)+1= Sce(w′) and fore′ < e StairSce′(w) =
StairSce′(w(0) · · ·w(s)) = Sce′(u′s) = Sce′(w′). Finally, if e′ > e, StairSce′(w) = 0= Sce′(w′).

Now, the proof of Theorem 12 is straightforward.

Proof of Theorem 12.Assume that Playeri wins G , then he also winsG ′
i due to Theorem 11. For ev-

ery color c ∈ [n], there are at mostkG Check-vertices colored byc. Hence, due to Remark 3 there
is a positional winning strategyσ ′

i in G ′
i for Player i such that for everyc ∈ [n] with Par(c) = 1− i,

MaxScc(ρ ′) ≤ kG , for every playρ ′ which is consistent withσ ′
i . From Lemma 13, it follows that the

pushdown strategyσ which is constructed fromσ ′
i bounds the stair-scores of Player 1− i by kG . Thus,

for every playρ which is consistent withσ and everyk> kG , there existsw⊏ ρ such thatw is winning
for Playeri in Gk. Hence, using the same strategyσ Playeri wins every finite-time gameGk for k> kG .
The other direction follows by determinacy of parity games.

6 Lower Bounds

In the previous section, we proved the equivalence between pushdown games and corresponding finite-
time pushdown games with an exponential threshold. In this section, we present an (almost) matching
lower bound on the threshold that always yields equivalent games. To this end, we construct a pushdown

W. Fridman & M. Zimmermann 13

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

qin

q�

q0
2

q1
2

q0
3

q1
3

q2
3

mod 2

mod 3

Figure 3: Pushdown Game(G2,col2)

game in which the winning player is forced to reach a configuration of high stack height while only
visiting states colored by a bad color for him. Thereby, the opponent is the first player to reachhigh
stair-scores, although he loses the play eventually.

Theorem 14. There are a family of pushdown games(Gn,coln) and thresholds kn exponential in the
cubic root of the size of the underlying PDS such that for every n> 0, Player 0 wins the pushdown
game(Gn,coln), but for every k≤ kn, Player1 wins the finite-time pushdown game(Gn,coln,k).

Proof. We denote thei-th prime number bypi . For n > 0, let kn = ∏n
i=1 pi and define the PDSPn =

(Qn,{A},∆n,qin) as follows:Qn = {qin,q�}∪
⋃n

i=1 Mi, whereMi = {q j
i | 0≤ j < pi}, and∆n consists of

the following transitions:

• (qin,X,qin,AX) and(qin,X,q�,AX) for everyX ∈ {A,⊥},

• (q�,A,q0
i ,A) for every 1≤ i ≤ n,

• (q j
i ,A,q

ℓ
i ,ε), whereℓ= (j +1) mod pi , and

• (q,⊥,q,⊥), for everyq∈ Qn\{qin}.

To specify the partition ofQn, let q� belong to Player 1. All other states are Player 0 states. The coloring
is given by coln(q0

i) = 0 for every 1≤ i ≤ n and coln(q) = 1 for every other stateq. We havekn ≥ 2n and
|Qn| can be bounded from above byO(n2 log(n)). Hence,kn is exponential in the cubic root of|Qn|. The
pushdown game(G2,col2) is depicted in Figure 3. Double-lined vertices are those colored by 0.

A play in the game(Gn,coln) proceeds as follows. Player 0 picks a natural numberx> 0 by moving
the token to the configuration(q�,Ax⊥). If he fails to do so by staying in stateqin ad infinitum he loses,
since coln(qin) = 1. At (q�,Ax⊥), Player 1 picks a moduluspi ∈ {p1, . . . , pn} by moving the token to
(q0

i ,A
x⊥). From this configuration, a single path emanates, i.e., there is only one way to continue the

play. Player 0 wins this play if and only ifx mod pi = 0. Hence, Player 0 has a winning strategy for this
game by moving the token to some non-zero multiple ofkn, i.e., Player 0 wins(Gn,coln).

Now, let k ≤ kn. If Player 0 reaches(qin,Ak−1⊥), then he loses the finite-time pushdown game
(Gn,coln,k), since in this case Player 1 reaches stair-scorek for color 1. On the other hand, if he moves
the token to a configuration(q�,Ax⊥) for somex ≤ k− 1, then there is api ∈ {p1, . . . , pn} such that
x mod pi 6= 0, asx< kn. Hence, assume Player 1 moves the token to(q0

i ,A
x⊥). Then, the play ends in

14 Playing Pushdown Parity Games in a Hurry

a self-loop at a configuration(qm
i ,⊥) for somem 6= 0. The pathw from (qin,⊥) to (qm

i ,⊥) via (q�,Ax)
satisfiesMaxStairSc0(w)≤ x. Sinceqm

i is colored by 1, the scores of Player 0 are never increased while
using the self-loop at(qm

i ,⊥). Thus, his scores never reach the thresholdk. Hence, Player 1 is the first
to reach this threshold, since Lemma 9 guarantees that thereis some color that reaches the threshold
eventually. Thus, Player 1 wins(Gn,coln,k).

7 Conclusion

We have shown how to play parity games on pushdown graphs in finite time. To this end, we adapted
the notions of scoring functions to exploit the intrinsic structure of a pushdown game graph to obtain an
finite-duration game that always has the same winner as the infinite game. Thus, the winner of a parity
game on a pushdown game graph can be determined by solving a finite reachability game.

This work transfers results obtained for games on finite gamegraphs to infinite graphs. In ongoing
work, we investigate if and how a winning strategy for the safety game, in which Player 0 wins if and
only if he prevents his opponent from reaching an exponential stair-score can be turned into a winning
strategy for the original pushdown game. The winner of thesetwo games is equal, due to Lemma 13.

On the other hand, our results could be extended by considering more general classes of infinite
graphs having an intrinsic structure, e.g., configuration graphs of higher-order pushdown systems. Fi-
nally, there is a small gap between the upper and lower bound on the threshold score that always yields
an equivalent finite-duration pushdown game, which remainsto be closed.

References

[1] Julien Bernet, David Janin & Igor Walukiewicz (2002):Permissive strategies: from parity games to safety
games. ITA 36(3), pp. 261–275, doi:10.1051/ita:2002013.

[2] E. Allen Emerson & Charanjit S. Jutla (1991):Tree Automata, Mu-Calculus and Determinacy (Extended
Abstract). In: FOCS, IEEE Computer Society, pp. 368–377, doi:10.1109/SFCS.1991.185392.

[3] John Fearnley & Martin Zimmermann (2012):Playing Muller Games in a Hurry. Int. J. Found. Comput. Sci.
23(3), pp. 649–668, doi:10.1142/S0129054112400321.

[4] Marcin Jurdziński (2000): Small Progress Measures for Solving Parity Games. In Horst Reichel
& Sophie Tison, editors: STACS, Lecture Notes in Computer Science1770, Springer, pp. 290–301,
doi:10.1007/3-540-46541-324.

[5] Christof Löding, P. Madhusudan & Olivier Serre (2004):Visibly Pushdown Games. In Kamal Lodaya
& Meena Mahajan, editors:FSTTCS, Lecture Notes in Computer Science3328, Springer, pp. 408–420,
doi:10.1007/978-3-540-30538-534.

[6] Robert McNaughton (2000):Playing Infinite Games in Finite Time. In Arto Salomaa, Derick Wood & Sheng
Yu, editors:A Half-Century of Automata Theory, World Scientific, pp. 73–91.

[7] Andrzej W. Mostowski (1991):Games with forbidden positions. Technical Report 78, University of Gdansk.

[8] Daniel Neider, Roman Rabinovich & Martin Zimmermann (2012): Down the Borel-Hierarchy: Solving Muller
Games via Safety Games. In Marco Faella & Aniello Murano, editors:GandALF 2012, EPTCS. To appear.

[9] Igor Walukiewicz (1996): Pushdown Processes: Games and Model Checking. In Rajeev Alur &
Thomas A. Henzinger, editors:CAV, Lecture Notes in Computer Science1102, Springer, pp. 62–74,
doi:10.1007/3-540-61474-558.

http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1142/S0129054112400321
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1007/978-3-540-30538-5_34
http://dx.doi.org/10.1007/3-540-61474-5_58

	1 Introduction
	2 Preliminaries
	2.1 Parity Games
	2.2 Pushdown Game Graphs

	3 Finite-Time Pushdown Games
	4 Walukiewicz's Reduction
	5 Main Theorem
	6 Lower Bounds
	7 Conclusion

