Prompt Delay*

Felix Klein!' and Martin Zimmermann?

1 Reactive Systems Group, Saarland University, Saarbriicken, Germany
klein@react.uni-saarland.de

2 Reactive Systems Group, Saarland University, Saarbriicken, Germany
zimmermann@react.uni-saarland.de

—— Abstract

Delay games are two-player games of infinite duration in which one player may delay her moves
to obtain a lookahead on her opponent’s moves. Recently, such games with quantitative winning
conditions in weak MSO with the unbounding quantifier were studied, but their properties turned
out to be unsatisfactory. In particular, unbounded lookahead is in general necessary.

Here, we study delay games with winning conditions given by PROMPT-LTL, Linear Temporal
Logic equipped with a parameterized eventually operator whose scope is bounded. Our main
result shows that solving PROMPT-LTL delay games is complete for triply-exponential time.
Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the
scope of the parameterized eventually operator. Thus, we identify PROMPT-LTL as the first
known class of well-behaved quantitative winning conditions for delay games.

Finally, we show that applying our techniques to delay games with w-regular winning con-
ditions answers open questions in the cases where the winning conditions are given by non-
deterministic, universal, or alternating automata.

1998 ACM Subject Classification D.2.4 Software/Program Verification
Keywords and phrases Infinite Games, Delay Games, Prompt-LTL, LTL

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2016.43

1 Introduction

The synthesis of reactive systems concerns the automatic construction of an implementation
satisfying a given specification against every behavior of its possibly antagonistic environment.
A prominent specification language is Linear Temporal Logic (LTL), describing the temporal
behavior of an implementation [21]. The LTL synthesis problem has been intensively studied
since the seminal work of Pnueli and Rosner [22, 23], theoretical foundations have been
established [2, 19], and several tools have been developed [4, 7, 8.

However, LTL is not able to express quantitative properties. As an example, consider the
classical request-response condition [13], where every request ¢ has to be answered eventually
by some response . This property is expressible in LTL via the formula G (¢ — F), but the
property cannot guarantee any bound on the waiting times between a request and its earliest
response. To specify such a behaviour, parameterized logics have been introduced [1, 6, 18, 26],
which extend LTL by quantitative operators.

The simplest of these logics is PROMPT-LTL [18], which extends LTL by the prompt
eventually operator Fp. The scope of this operator is bounded by some arbitrary but

* The first author was supported by an IMPRS-CS PhD Scholarship, the second by the project “TriCS”
(Z1 1516/1-1) of the German Research Foundation (DFG).

© Felix Klein and Martin Zimmermann;
37 licensed under Creative Commons License CC-BY
36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 43; pp. 43:1-43:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2

Prompt Delay

fixed number k. With this extension, we can express the aforementioned property by the
PROMPT-LTL formula G (¢ — Fp r), expressing that every request is answered within k steps.
To show that the PROMPT-LTL synthesis problem is as hard as the LTL synthesis problem,
i.e., 2EXPTIME-complete, Kupferman et al. introduced the alternating-color technique to
reduce the former problem to the latter [18]. Additionally, similar reductions have been
proven to exist in other settings too, where PROMPT-LTL can be reduced to L'TL using the
alternating-color technique, e.g., for (assume-guarantee) model-checking [18]. Finally, the
technique is also applicable to more expressive extensions of LTL, e.g., parametric LTL [25],
parametric LDL [6], and their variants with costs [26].

Nevertheless, all these considerations assume that the specified implementation immedi-
ately reacts to inputs of the environment. However, this assumption might be too restrictive,
e.g., in a buffered network, where the implementation may delay its outputs by several
time steps. Delay games have been introduced by Hosch and Landweber [14] to overcome
this restriction. In the setting of infinite games, the synthesis problem is viewed as a game
between two players, the input player “Player I”, representing the environment, and the
output player “Player O”, representing the implementation. The goal of Player O is to
satisfy the specification, while Player [tries to violate it. Usually, the players move in strict
alternation. On the contrary, in a delay game, Player O can delay her moves to obtain
a lookahead on her opponent’s moves. This way, she gains additional information on her
opponent’s strategy, which she can use to achieve her goal. Hence, many specifications are
realizable, when allowing lookahead, which are unrealizable otherwise.

For delay games with w-regular winning conditions (given by deterministic parity au-
tomata) exponential lookahead is always sufficient and in general necessary, and determining
the winner is EXPTIME-complete [16]. As LTL formulas can be translated into equivalent de-
terministic parity automata of doubly-exponential size, these results imply a triply-exponential
upper bound on the necessary lookahead in delay games with LTL winning condition and
yield an algorithm solving such games with triply-exponential running time. However, no
matching lower bounds are known.

Recently, based on the techniques developed for the w-regular case, the investigation
of delay games with quantitative winning conditions was initiated by studying games with
winning conditions specified in weak monadic second order logic with the unbounding
quantifier (WMSO+U) [3]. This logic extends the weak variant of monadic second order logic
(WMSO), where only quantification over finite sets is allowed, with an additional unbounding
quantifier that allows to express (un)boundedness properties. The resulting logic subsumes
all parameterized logics mentioned above. The winner of a WMSO+U delay game with
respect to bounded lookahead is effectively computable [27]. However, in general, Player O
needs unbounded lookahead to win such games and the decidability of such games with
respect to arbitrary lookahead remains an open problem. In the former aspect, delay games
with WMSO+U winning conditions behave worse than those with w-regular ones.

Our Contribution. The results on WMSO+U delay games show the relevance of exploring
more restricted classes of quantitative winning conditions which are better-behaved. In
particular, bounded lookahead should always suffice and the winner should be effectively
computable. To this end, we investigate delay games with PROMPT-LTL winning conditions.
Formally, we consider the following synthesis problem: given some PROMPT-LTL formula ¢,
does there exist some lookahead and some bound k such that Player O has a strategy
producing only outcomes that satisfy ¢ with respect to the bound k (and, if yes, compute
such a strategy)?

F. Klein and M. Zimmermann

We present the first results for delay games with PROMPT-LTL winning conditions.

First, we show that the synthesis problem is in 3EXPTIME by tailoring the alternating-color
technique to delay games and integrating it into the algorithm developed for the w-regular
case. In the end, we obtain a reduction from delay games with PROMPT-LTL winning
conditions to delay-free parity games of triply-exponential size.

Second, from this construction, we derive triply-exponential upper bounds on the necessary
lookahead for Player O, i.e., bounded lookahead always suffices, as well as a triply-exponential
upper bound on the necessary scope of the prompt eventually operator. Thus, we obtain the
same upper bounds as for LTL.

Third, we complement all three upper bounds by matching lower bounds, e.g., the problem
is 3ExXpPTIME-complete and there are triply-exponential lower bounds on the necessary
lookahead and on the scope of the prompt eventually operator. The former two lower bounds
already hold for the special case of LTL delay games. Thereby, we settle the case of delay
games with LTL winning conditions as well as the case of delay games with PRoMPT-LTL
winning conditions and show that they are of equal complexity and that the same bounds
on the necessary lookahead hold. Thus, we prove that delay games with PROMPT-LTL
winning conditions are not harder than those with LTL winning conditions. The complexity
of solving LTL games increases exponentially when adding lookahead, which is in line with
the results in the w-regular case [16], where one also observes an exponential blowup.

Fourth, our proofs are all applicable to the stronger extensions of LTL like parametric
LTL [25], parametric LDL [6], and their variants with costs [26], as the alternating-color
technique is applicable to them as well and as their formulas can be compiled into equivalent
exponential Biichi automata.

Fifth, we show that our lower bounds also answer open questions in the w-regular case
mentioned in [16], e.g., on the influence of the branching mode of the specification automaton
on the complexity. Recall that the tight exponential bounds on the complexity and the
necessary lookahead for w-regular delay games were shown for winning conditions given
by deterministic automata. Our lower bounds proven here can be adapted to show that
both these bounds are doubly-exponential for non-deterministic and universal automata
and triply-exponential for alternating automata. Hence, the lower bounds match the trivial
upper bounds obtained by determinizing the automata and applying the results from [16].
Thus, we complete the picture in the w-regular case with regard to the branching mode of
the specification automaton.

Related Work. Delay games with w-regular winning conditions have been introduced
by Hosch and Landweber, who proved that the winner w.r.t. bounded lookahead can be
determined effectively [14]. Later, they were revisited by Holtmann et al. who showed
that bounded lookahead is always sufficient and who gave a streamlined algorithm with
doubly-exponential running time and a doubly-exponential upper bound on the necessary
lookahead [12]. Recently, the tight exponential bounds on the running time and on the
lookahead mentioned above were proven [16]. Delay games with context-free winning
conditions turned out to be undecidable for very small fragments [9]. The results of going
beyond the w-regular case by considering WMSO+U winning conditions are mentioned above.
Furthermore, all delay games with Borel winning conditions are determined [15]. Finally,
from a more theoretical point of view, Holtman et al. also showed that delay games are a
suitable representation of uniformization problems for relations by continuous functions [12].

All proofs omitted due to space constraints can be found in the full version [17].

43:3

FSTTCS 2016

43:4

Prompt Delay

2 Preliminaries

The set of non-negative (positive) integers is denoted by N (N,). An alphabet ¥ is a non-
empty finite set of letters, ©* is the set of finite words over X, ¥ the set of words of length i,
and X“ the set of infinite words. The empty word is denoted by € and the length of a finite
word w by |w|. For w € ¥* UX* we write w(i) for the i-th letter of w. Given two infinite
words o € £Y and § € X¥ we write (g) for the word (ggg;) (gEB) (ggg) e (B xXo)v.
Analogously, we write (5) for finite words = and y, provided they are of equal length.

Parity Games. An arena A is a tuple (V,V;, Vo, E), where (V| E) is a finite directed graph
without terminal vertices and {Vr,Vp} is a partition of V into the positions of Player I
and Player O. A parity game G = (A4, 2) consists of an arena A with vertex set V and of
a priority function Q: V' — N. A play p is an infinite sequence vgvivs - - - of vertices such
that (v;,v;41) € E for all i. A strategy for Player O is a map o: V*Vp — V such that
(vi,o(vg---v;)) € E for all v; € V. The strategy o is positional, if o(wv) = o(v) for all
wv € V*V. Hence, we denote it as mapping from Vp to V. A play vguvyvs - -+ is consistent
with o, if v;41 = o(vg---v;) for every ¢ with v; € Vip. The strategy o is winning from a
vertex v € V, if every play vgvivs - - - with vy = v that is consistent with o satisfies the parity
condition, i.e., the maximal priority appearing infinitely often in Q(vg)2(v1)2(v2) - - - is even.
The definition of (winning) strategies for Player I is dual. Parity games are positionally
determined [5, 20], i.e., from every vertex one of the players has a positional winning strategy.

Delay Games. A delay function is a mapping f: N — N, , which is said to be constant, if
f(i) = 1 for every i > 0. Given a winning condition L C (X; x Xp)“ and a delay function f,
the game I'y(L) is played by two players, Player I and Player O, in rounds i =0,1,2,... as
follows: in round i, Player I picks a word u; € Z}t(i), then Player O picks one letter v; € Xg.
We refer to the sequence (ug,vo), (u1, v1), (u2,v2), ... as a play of I'y(L). Player O wins the
play if the outcome (Zg’;igj

Given a delay function f, a strategy for Player I is a mapping 7;: ¥7, — X7 where
|71 (w)| = f(Jw|), and a strategy for Player O is a mapping 7o: ¥} — Xo. Consider a play
(uo, vo), (u1,v1), (u2,v2), ... of Ty(L). Such a play is consistent with 77, if u; = 77(vo - - v;—1)
for every ¢ € N. It is consistent with 7o, if v; = 7o (ug - - - u;) for every i € N. A strategy 7 for
Player P € {I,O} is winning, if every play that is consistent with 7 is winning for Player P.
We say that a player wins I'y(L), if she has a winning strategy.

) is in L, otherwise Player I wins.

Prompt LTL. Fix a set AP of atomic propositions. PROMPT-LTL formulas are given by

pu=p|lplenpleVe | Xe|Fo|Ge|eUp|oRe|Fpo,

where p € AP. We use ¢ — 1 as shorthand for —¢ V 9, where we require ¢ to be a Fp -free
formula (for which the negation can be pushed to the atomic propositions using the dualities
of the classical temporal operators). The size || of ¢ is the number of subformulas of ¢.

The satisfaction relation is defined for an w-word w € (2AP)w, a position ¢ of w, a bound k&
for the prompt eventually operators, and a PROMPT-LTL formula. The definition is standard
for the classical operators and defined as follows for the prompt eventually:

(w,i,k) = Fp @ if, and only if, there exists a j with 0 < j < k such that (w,i + j, k) = .

For the sake of brevity, we write (w, k) = ¢ instead of (w,0, k) = ¢. Note that ¢ is an LTL
formula [21], if it does not contain the prompt eventually operator. Then, we write w |= .

F. Klein and M. Zimmermann

The Alternating-color Technique. Let p ¢ AP be a fixed fresh proposition. An w-word w’ €
(2Apu{p})w is a p-coloring of w € (2AF)“ if w/(i) N AP = w(i) for all i.

A position i of a word in (2APU{”})UJ is a change point, if ¢ = 0 or if the truth value of p
at positions i — 1 and ¢ differs. A p-block is an infix w’(7) - - - w'(i + j) of w’ such that ¢ and
1+ 7 +1 are adjacent change points. Let k > 1: we say that w’ is k-spaced, if w has infinitely
many changepoints and each p-block has length at least k; we say that w’ is k-bounded, if
each p-block has length at most k& (which implies that w’ has infinitely many change points).

Given a PROMPT-LTL formula ¢, let rel’(¢) denote the formula obtained by inductively
replacing every subformula Fp ¢ by

(p—= (U (=pUrel'(¥)))) A (—p = (—-pU (pUrel'(v))))

and let rel(p) = rel’(9) AG FpA G F —p, i.e., we additionally require infinitely many change
points. Intuitively, instead of requiring 1 to be satisfied within a bounded number of steps,
rel() requires it to be satisfied within at most one change point. The relativization rel(y) is
an LTL formula of size O(|¢|). Kupferman et al. showed that ¢ and rel(y) are “equivalent”
on w-words which are bounded and spaced.

» Lemma 1 ([18]). Let ¢ be a PROMPT-LTL formula and k € N.
1. If (w, k) E ¢, then w' = rel(p) for every k-spaced p-coloring w' of w.
2. Ifw' is a k-bounded p-coloring of w such that w' |= rel(p), then (w,2k) = ¢.

3 Delay Games with Prompt-LTL Winning Conditions

In this section, we study delay games with PROMPT-LTL winning conditions. Player O’s
goal in such games is to satisfy the winning condition ¢ with respect to a bound k which is
uniform among all plays consistent with the strategy. We show that such games are reducible
to delay games with LTL winning conditions by tailoring the alternating-color technique to
delay games and integrating it into the algorithm for solving w-regular delay games [16].

Throughout this section, we fix a partition AP = I U O of the set of atomic propositions
into input propositions I under Player I's control and output propositions O under Player O’s
control. Let ¥; = 27 and ¥p = 29. Given (g) € (X x Xp)¥, we write ((g),k‘) = ¢ for
((«(0) U B(0)) (a(1) U B(1)) (a(2) U B(2)) -+ - , k) = . Given ¢ and a bound k, we define
L(p, k) = {(g) € (X x Xo)¥ | ((g),k‘) E ¢}. If ¢ is an LTL formula, then this language is
independent of k and will be denoted by L(¢).

A PrROMPT-LTL delay game I't () consists of a delay function f and a PROMPT-LTL
formula . We say that Player P € {I,0} wins I't(¢) for the bound &, if she wins I't (L(y, k)).
If we are not interested in the bound itself, but only in the existence of some bound, then we
also say that Player O wins I'r(¢), if there is some k such that she wins Iy (¢) for k. If ¢ is
an LTL formula, then we call T't(¢) an LTL delay game. The winning condition L(y) of
such a game is w-regular and independent of k.

In this section, we solve the following decision problem: given a PROMPT-LTL formula ¢,
does Player O win I't () for some delay function f7 Furthermore, we obtain upper bounds
on the necessary lookahead and the necessary bound k, which are complemented by matching
lower bounds in the next section.

With all definitions at hand, we state our main theorem of this section.

» Theorem 2. The following problem is in 3EXPTIME: given a PROMPT-LTL formula ¢,
does Player O win I'y(p) for some delay function f?

43:5

FSTTCS 2016

43:6

Prompt Delay

Proof. We reduce PROMPT-LTL to LTL delay games using the alternating-color technique.
To this end, we add the proposition p, which induces the coloring, to O, i.e., in a game with
winning condition rel(p) Player O’s alphabet is 20YU{P} In Lemma 4, we prove that Player O
wins I'¢(¢) for some delay function f if, and only if, Player O wins I't(rel(y)) for some delay
function f. This equivalence proves our claim: Determining whether Player O wins a delay
game (for some f) whose winning condition is given by a deterministic parity automaton is
EXPTIME-complete [16]. We obtain an algorithm with triply-exponential running time by
constructing a doubly-exponential deterministic parity automaton recognizing L(rel(¢)) and
then running the exponential-time algorithm on it. <

Thus, it remains to prove the equivalence between the delay games with winning con-
ditions ¢ and rel(¢). The harder implication is the one from the LTL delay game to the
PrROMPT-LTL delay game. There is a straightforward extension of the solution to the
delay-free case. There, one proves that a finite-state strategy for the LTL game with winning
condition rel(¢) (which always exists, if Player O wins the game) only produces k-bounded
outcomes, for some k that only depends on the size of the strategy. Hence, by projecting
away the additional proposition p inducing the coloring, we obtain a winning strategy for
the PROMPT-LTL game with winning condition ¢ with bound 2k by applying Lemma 1.2.

Now, consider the case with lookahead: if Player O wins I't(rel(y)), which has an w-
regular winning condition, then also I'y/(rel(y)) for some triply-exponential constant f [16].
We can model Iy (rel(p)) as a delay-free parity game of quadruply-exponential size by storing
the lookahead explicitly in the state space of the parity game. A positional winning strategy
in this parity game only produces k-bounded plays, where k is the size of the delay-free
game, as the color has to change infinitely often. Hence, such a strategy can be turned into a
winning strategy for Player O in I't(¢) with respect to some quadruply-exponential bound k.
However, this naive approach is not optimal: we present a more involved construction that
achieves a triply-exponential bound k. The problem with the aforementioned approach is that
the decision to produce a change point depends on the complete lookahead. We show how to
base this decision on an exponentially smaller abstraction of the lookaheads, which yields an
asymptotically optimal bound k. To this end, we extend the construction underlying the
algorithm for w-regular delay games [16] by integrating the alternating-color technique.

Intuitively, we assign to each w € X7, i.e., to each potential additional information
Player O has access to due to the lookahead, the behavior w induces in a deterministic
automaton A accepting L(rel(y)), namely the state changes induced by w and the most
important color on these runs. We construct A such that it keeps track of change points in its
state space, which implies that they are part of the behavior of w. Then, we construct a parity
game in which Player I picks such behaviors instead of concrete words over 3; and Player O
constructs a run on suitable representatives. The resulting game is of triply-exponential size
and a positional winning strategy for this game can be turned back into a winning strategy
for Ty () satisfying asymptotically optimal bounds on the initial lookahead and the bound k.
Thus, we save one exponent by not explicitly considering the lookahead, but only its effects.

We first extend the construction of a delay-free parity game G that has the same winner as
Ty (rel(y)) from [16]. The extension is necessary to obtain a “small” bound k& when applying
the alternating-color technique, which turns a positional winning strategy for G into a winning
strategy for Player O in I'y/(y) for some f'.

To this end, let A = (Q,%; x X0,qr,6,8) be a deterministic max-parity automaton®

I Recall that Q: Q —» N is a coloring of the states and a run qoqigz - - - is accepting, if the maximal color
occurring infinitely often in Q(qo)Q(q1)2(g2) - -+ is even. See, e.g., [11] for details.

F. Klein and M. Zimmermann

recognizing L(rel(¢)). First, as in the original construction, we add a deterministic monitoring
automaton to keep track of certain information of runs. In the w-regular case [16], this
information is the maximal priority encountered during a run. Here, we additionally need to
remember whether the input word contains a change point. Let Ty = 2{P} and T' = Ty x {0, 1}.
Furthermore, for (¢,s) € T and ¢’ € Ty, we define the update upd((t, s),t') € T of (¢, s) by ¢’
to be (t',s"), where s = 0 if, and only if, s = 0 and ¢ = t. Intuitively, the first component of
a tuple in T stores the last truth value of p and the second component is equal to one if, and
only if, there was a change point.

Now, we define the deterministic parity automaton 7 = (Q71,%; X Yo, qf, o1, Q) with
Qr=QxQQ) xT,q] = (qr,2ar),(¥',0)) for some arbitrary t' € Ty, Q(g,m,t) = m, and
57((g;m, t), (3)) = (¢, max{m,Q(¢')}, upd(t,bN {p})) with ¢’ = d(q, (}))-

First, let us note that 7 does indeed keep track of the information described above.

» Remark 3. Let w € (X7 x Xo)T and let (qo,mo,%0) - (qu|s M|w|, tjw|) De the run of T
on w starting in (qo, Mo, to) such that mg = Q(qo) and tg = (3, 0) for some t{ € Ty. Then,
qoq1 - - - qjw| is the run of A on w starting in qo, M, = max{Q(q;) [0 < j < |w|}, and
tw| = (t?wl, S|w|) such that t?wl is the color of the last letter of w, and such that s,,| = 0 if,
and only if, all letters of w have color t{,. In particular, if w is preceded by a word whose last
letter has color tj, then there is a change point in w if, and only if, s}, = 1.

Next, we classify possible moves w € X7} according to the behavior they induce on 7.

Let 0p: 297 x ¥ — 297 denote the transition function of the power set automaton of the
projection of T to Xy, i.e., 6p(S,a) = {d7(q, (Z)) | g€ Sand be Xp}. As usual, we define
8% 297 x $% — 297 inductively via 65(S,¢) = S and 85 (5, wa) = 6p(65(S, w), a).

Let D C Q7 be non-empty and let w € Z;‘. We define the function 72: D — 297 via

7"5((], m, (ta 5)) = 5;3({ (Qa Q(Q)v (tv O)) }7 w)

for every (q,m,(t,s)) € D. Note that we use Q(q) and (¢,0) as the second and third
component in the input for 6%, not m and (¢,s) from the input to rP. This resets the
tracking components of 7. If we have (¢/,m/,(t',s")) € r2(g,m,(t,s)), then there is a
word w’ over X7 X Yo whose projection to X; is w and such that the run of A processing w’
from ¢ has the maximal priority m/, ¢’ is the color of the last letter of w, and s’ encodes the
existence of change points in w’, as explained in Remark 3. Thus, this function captures the
behavior induced by w on 7. We allow to restrict the domain of such a function, as we do
not have to consider every possible state, only those that are reachable by the play prefix

constructed thus far.
(r)

Let r: Q7 — 297 be a partial function. We say that w is a witness for r, if oot — o

Thus, we can assign a language W, C X7 of witnesses to each such r. Let SR denote the set
of such functions r with infinite witness language W,. If w is a witness of r € R, then r
encodes the state transformations induced by w in the projection of A to X; as well as the
maximal color occurring on these runs and the existence of change points on these. The
latter is determined by the letters projected away, but still stored explicitly in the state space
of the automaton. Furthermore, as we require r» € SR to have infinitely many witnesses, there
are arbitrarily long words with the same behavior. On the other hand, the language W, of
witnesses of 7 is recognizable by a DFA of size 2" [16], where n is the size of 7. Hence,
every 1 also has a witness of length at most 27", This allows to replace long words w € X7
by equivalent ones that are bounded exponentially in n.

Next, we define a delay-free parity game in which Player I picks functions r; € R while
Player O picks states g; such that there is a word w} in (X5 x ¥p)* whose projection to 3
is a witness of r; and such that w} leads 7 from ¢; to g;4+1. By construction, this property is

43:7

FSTTCS 2016

43:8

Prompt Delay

independent of the choice of the witness. Furthermore, to account for the delay, Player [
is always two moves ahead. Thus, instead of picking explicit words over their respective
alphabets, the players pick abstractions, Player I explicitly and Player O implicitly by
constructing the run.

Formally we define the parity game G = ((V,Vp, V7, E), Q) where V. =V, UV, Vi =
{vr} UR x Q7 with the designated initial vertex vy of the game, and Vo = R. Further, F is
the union of the following sets of edges: initial moves {(v,7) | dom(r) = {q] }} for Player I,
regular moves {((r, q),r") | dom(r’) = r(q)} for Player I, and moves {(r, (r,q)) | ¢ € dom(r)}
for Player O. Finally, Q' (v) = m, if v = (r, (g, m, s)) € R x Q7, and zero otherwise.

This finishes the construction of the game G. The following lemma states the relation
between G and the delay games with winning conditions ¢ and rel(¢) and implies the
equivalence of the delay games with winning conditions ¢ and rel(yp).

» Lemma 4. Let n = |Q7|, where Q1 is the set of states of T as defined above.

1. If Player O wins I't(p) for some delay function f, then also I'y(rel(y)) for the same f.

2. If Player O wins Iy (rel(y)) for some delay function f, then also G.

3. If Player O wins G, then also Ty () for the constant delay function f with f(0) = gn’+1
and some bound k < 227°+2,

The automaton A recognizing L(rel(y)) can be constructed such that |A| € 22207

which implies n € 22OW|), using a standard construction for translating LTL into non-
deterministic Biichi automata and then Schewe’s determinization construction [24]. Applying
all implications of Lemma 4 yields upper bounds on the neccessary constant lookahead and
on the neccessary bound k on the scope of the prompt eventually operator.

» Corollary 5. If Player O wins I't(¢) for some delay function f and some k, then also for
520D 200D

some constant delay function f with f(0) € 2 and some k € 2 simultaneously.

4 Lower Bounds for LTL and Prompt-LTL Delay Games

We complement the upper bounds on the complexity of solving PROMPT-LTL delay games,
on the necessary lookahead, and on the necessary bound k by proving tight lower bounds in
all three cases. The former two bounds already hold for LTL.

All proofs share some similarities which we discuss first. In particular, they all rely on
standard encodings of doubly-exponentially large numbers using small LTL formulas and the
interaction between the players. Assume AP contains the propositions b, ...,b,_1,br, bo
and let w € (2A7)¥ and i € N. We interpret w(i) N {bg,...,b,_1} as binary encoding of a
number in [0, 2™ — 1], which we refer to as the address of position i. There is a formula ¥, of
quadratic size in n such that (w,) | ¥inc if, and only if, m + 1 mod 2™ = m/, where m is the
address of position ¢ and m’ is the address of position 7+ 1. Now, let ¢y = /\;L:_g b A G Yipec.
If w |= 1o, then the b; form a cyclic addressing of the positions starting at zero, i.e., the
address of position 7 is ¢ mod 2". If this is the case, we define a block of w to be an infix that
starts at a position with address zero and ends at the next position with address 2" — 1. We
interpret the 2™ bits by of a block as a number z in R = [0, 22" _ 1]. Similarly, we interpret
the 2™ bits bp of a block as a number y from the same range R. Furthermore, there are
small formulas that are satisfied at the start of the i-th block if, and only if, z; = y; (z; < y;,
respectively). However, we cannot compare numbers from different blocks for equality with
small formulas. Nevertheless, if x; is unequal to x;/, then there is a single bit that witnesses
this, i.e., the bit is one in x; if, and only if, it is zero in x;;. We will check this by letting

F. Klein and M. Zimmermann

one of the players specify the address of such a witness (but not the witness itself). The
correctness of this claim is then verifiable by a small formula.

4.1 Lower Bounds on Lookahead

Our first result concerns a triply-exponential lower bound on the necessary lookahead in LTL
delay games, which matches the upper bound proven in the previous section. The exponential
lower bound 2™ on the necessary lookahead for w-regular delay games is witnessed by winning
conditions over the alphabet 1,...,n. These conditions require to remember letters and to
compare them for equality and order [16]. Here, we show how to adapt the winning condition
to the alphabet R, which yields a triply-exponential lower bound 2%, The main difficulty of
the proof is the inability of small LTL formulas to compare letters from R. To overcome
this, we exploit the interaction between the players of the game.

» Theorem 6. For every n > 0, there is an LTL formula ¢, of size O(n?) such that
Player O wins T'y(py) for some delay function f, but

Player I wins T't(py,) for every delay function f with f(0) < 92*"

Proof. Fix some n > 0. In the following, we measure all formula sizes in n. Furthermore,
let I ={bg,...,bp_1,b5,#} and O = {bp,=, ¢}. Assume (g) € (X1 x Xp)¥ satisfies g from
above. Then, a induces a sequence zoz122 -+ € R of numbers encoded by the bits b; in
each block. Similarly, # induces a sequence yoy1ys2 - -- € R”.

The winning condition is intuitively described as follows: z; and x;; with 7 < ¢/ constitute
a bad j-pair, if x; = z; = j and x;» < j for all i < i < i’. Every sequence zgxixs - -
contains a bad j-pair, e.g., pick j to be the maximal number occurring infinitely often. In
order to win, Player O has to pick yo such that xgxixs--- contains a bad yp-pair. It is
known that this winning condition requires lookahead of length 2™ for Player O to win,
where m is the largest number that can be picked [16].

To specify this condition with a small LTL formula, we have to require Player O to copy
yo ad infinitum, i.e., to pick y; = yo for all 7, and to mark the two positions constituting the
bad yo-pair. Furthermore, the winning condition allows Player I to mark one copy error
introduced by Player O by specifying its address by a # (which may appear anywhere in «).
This forces Player O to implement the copying correctly and thus allows a small formula to
check that Player O indeed marks a bad yg-pair. Consider the following properties:

1. # holds at most once. Player I uses # to specify the address where he claims an error.

2. = holds at exactly one position, which has to be the start of a block. Furthermore, we
require the two numbers encoded by the propositions b; and bo within this block to be
equal. Player O uses = to denote the first component of a claimed bad j-pair.

3. € holds at exactly one position, which has to be the start of a block and has to appear at
a later position than =». Again, we require the two numbers encoded by this block to be
equal. Player O uses € to denote the second component of the claimed bad j-pair.

4. For every block between the two marked blocks, we require the number encoded by the
by to be strictly smaller than the number encoded by the b .

5. If there is a position iy marked by #, then there are no two different positions ¢ # i’ such
that the following two conditions are satisfied: the addresses of 7, i’, and iy are equal and
bo holds at 4 if, and only if, bo does not hold at i’. Such positions witness an error in
the copying process by Player O, which manifests itself in a single bit, whose address is
marked by Player I at any time in the future.

43:9

FSTTCS 2016

43:10

Prompt Delay

Each of these properties i € {1,2,3,4,5} can be specified by an LTL formula 1); of at most
quadratic size. Now, let ¢, = (Yo A1) = (2 A3 Ay A1bs). We show that Player O wins
I't(pn) for some triply-exponential constant delay function, but not for any smaller one.
Fix n’ = 22", We begin by showing that Player O wins I't(p,) for the constant delay
function with f(0) = 2" -2". A simple induction shows that every word w € R* of length

2" contains a bad j-pair for some j € R. Thus, a move E{(O)

made by Player I in round 0
interpreted as sequence xox1 - - T4 _; € R* contains a bad j-pair for some fixed j. Hence,
Player O’s strategy 7o produces the sequence j“ and additionally marks the corresponding
bad j-pair with < and ¢. Every outcome of a play that is consistent with 7o and satisfies ¥
also satisfies 1o A 13 Ahy A5, as Player O correctly marks a bad j-pair and never introduces
a copy-error. Hence, 7o is a winning strategy for Player O. .

It remains to show that Player I wins Ty(,,), if £(0) < 2" (2% —2) > 2" = 22" Let
wy € R* be recursively defined via wg = 0 and w; = w;—1 jw;j—1. A simple induction shows
that w,,, does not contain a bad j-pair, for every j € R, and that |w,/| = on' 1.

Consider the following strategy 7; for Player I in I't(¢,): T ensures that vy is satisfied
by the b;, which fixes them uniquely to implement a cyclic addressing starting at zero.
Furthermore, he picks the b;’s so that the sequence of numbers xgx; ---x, he generates
during the first 2” rounds is a prefix of w,,s. This is possible, as each x; is encoded by 2™ bits
and by the choice of f(0). As a response during the first 2" rounds, Player O determines
some number y € R. During the next rounds, Player I finishes w,, and then picks some
fixed x # y ad infinitum (while still implementing the cyclic addressing). In case Player O
picks both markings < and € in way that is consistent with properties 2, 3, and 4 as above,
let yoy1 -+ - , y; be the sequence of numbers picked by her up to and including the number
marked by €. If they are not all equal, then there is an address that witnesses the difference
between two of these numbers. Player I then marks exactly one position with the same
address using #. If this is not the case, he never marks a position with #.

Consider an outcome of a play that is consistent with 7; and let xgx122--- € R¥ and
Yoy1y2 - - - € R¥ be the sequences of numbers induced by the outcome. By definition of 77,
the antecedent 1y A 1 of ,, is satisfied and zgx122 - -+ = Wy - ¥ for some = # yq.

If Player O never uses her markers = and € in a way that satisfies ¥s A 93 A 14, then
Player I wins the play, as it satisfies the antecedent of ,,, but not the consequent. Thus, it
remains to consider the case where the outcome satisfies 2 A 13 A 1p4. Let yoy1 - - - y; be the
sequence of numbers picked by her up to and including the number marked by €¢. Assume
we have yg = y; = --- = y;. Then, = and € specify a bad yo-pair, as implied by ¥s A 13 A1y
and the equality of the y;. As w,s does not contain a bad yo-pair, we conclude yo = =.
However, 7 ensures yy # =. Hence, our assumption is false, i.e., the y; are not all equal. In
this situation, 77 marks a position whose address witnesses this difference. This implies that
15 is not satisfied, i.e., the play is winning for Player I. Hence, 7; is winning for him. <«

4.2 Lower Bounds on the Bound k

Our next result is a lower bound on the necessary bound £ in a PROMPT-LTL delay game,
which is proven by a small adaption of the game constructed in the previous proof. The
winning condition additionally requires Player O to use the mark € at least once and k
measures the number of rounds before Player O does so. It turns out Player I can enforce a
triply-exponential k, which again matches the upper bound proven in the previous section.

» Theorem 7. For every n > 0, there is a Prompt LTL formula ¢!, of size O(n?) such that
Player O wins Ty(¢),) for some delay function f and some k, but

Player I wins T'y(¢),) for every delay function f and every k < 92°"

F. Klein and M. Zimmermann

Proof. Let ¢!, = (o A1) — (2 A b A by A s A Fp €), where the alphabets and the
formulas 1; are as in the proof of Theorem 6.

Let k = f(0) = 2" - 27" with n/ = 22" as above. Then, the strategy 7o for Player O
described in the proof of Theorem 6 is winning for I't(¢,) with bound k: it places both
markers within the first f(0) = k positions, as it specifies a bad j-pair within this range.

Now, assume we have k < 2" - 2" consider the strategy 77 for Player I as defined in the
proof of Theorem 6, and recall that every outcome that is consistent with 7; starts with
the sequence w,, in the first component. Satisfying s A 13 A 14 A 15 against 77 requires
Player O to mark a bad j-pair and to produce the sequence j*. However, Player I does not
produce a bad j-pair in the first k positions, i.e., the conjunct Fp € is not satisfied with
respect to k. Hence, 77 is winning for Player I in I';(¢,) with bound k. <

4.3 Lower Bounds on Complexity

Our final result settles the complexity of solving PROMPT-LTL delay games. The triply-
exponential algorithm presented in the previous section is complemented by proving the
problem to be 3EXPTIME-complete, which even holds for LTL. The proof is a combination of
techniques developed for the lower bound on the lookahead presented above and of techniques
from the EXPTIME-hardness proof for solving delay games whose winning conditions are
given by deterministic safety automata [16] and is presented in the full version [17].

» Theorem 8. The following problem is 3EXPTIME-complete: given an LTL formula ¢,
does Player O win I't(p) for some delay function f?

5 Delay Games on Non-deterministic, Universal, and Alternating
Automata

Finally, we argue that the lower bounds just proven for LTL delay games can be modified
to solve open problems about w-regular delay games whose winning conditions are given
by non-deterministic, universal, and alternating automata (note that non-determinism and
universality are not dual here, as delay games are asymmetric).

Recall that solving delay games with winning conditions given by deterministic parity
automata is EXPTIME-complete and that exponential constant lookahead is sufficient and
in general necessary. These upper bounds yield doubly-exponential upper bounds on both
complexity and lookahead for non-deterministic and universal parity automata via deter-
minization, which incurs an exponential blowup. Similarly, we obtain triply-exponential upper
bounds on both complexity and lookahead for alternating parity automata, as determinization
incurs a doubly-exponential blowup in this case.

For alternating automata, these upper bounds are tight, as LTL can be translated into
linearly-sized alternating automata (even with very weak acceptance conditions). Hence, the
triply-exponential lower bounds proven in the previous section hold here as well.

To prove doubly-exponential lower bounds for the case of non-deterministic and universal
automata, one has to modify the constructions presented in the previous section. Let us first
consider the case of non-deterministic automata: to obtain a matching doubly-exponential
lower bound on the necessary lookahead, we require Player I to produce an input sequence
in {0, 1}, where we interpret every block of n bits as the binary encoding of a number in
{0,1,...,2™ — 1}. In order to win, Player O also has to pick an encoding of a number j
with her first n moves such that the sequence of numbers picked by Player I contains a bad
j-pair. To allow the automaton to check the correctness of this pick, we require Player O to

43:11

FSTTCS 2016

43:12

Prompt Delay

Automaton type complexity lookahead
deterministic parity ExpTIME-complete exponential
non-deterministic parity 2EXPTIME-complete doubly-exponential
universal parity 2EXPTIME-complete doubly-exponential
alternating parity 3EXPTIME-complete triply-exponential

Figure 1 Overview of results for the w-regular case.

repeat the encoding of the number ad infinitum. Then, the automaton can guess and verify
the two positions comprising the bad j-pair. Finally, to prevent Player O from incorrectly
copying the encoding of j (which manifests itself in a single bit), we use the same marking
construction as in the previous section: Player I can mark one position 7 by a # to claim
an error in some bit at position ¢ mod n. The automaton can guess the value ¢ mod n and
verify that there is no such error (and that the guess was correct). Using similar ideas one
can encode an alternating exponential space Turing machine proving the 2EXPTIME lower
bound on the complexity for non-deterministic automata.

For universal automata, the constructions are even simpler, since we do not need the
marking of Player I. Instead, we use the universality to check that Player O copies her pick j
correctly. Altogether, we obtain the results presented in Figure 1, where careful analysis
shows that the lower bounds already hold for weaker acceptance conditions than parity, e.g.,
safety and weak parity (the case of reachability acceptance is exceptional, as such games are
PSpPACE-complete for non-deterministic automata [16]).

6 Conclusion

We identified PROMPT-LTL as the first quantitative winning condition for delay games that
retains the desirable qualities of w-regular delay games: in particular, bounded lookahead
is sufficient to win PROMPT-LTL delay games and to determine the winner of such games
is 3EXPTIME-complete. This complexity should be contrasted to that of delay-free LTL
and PROMPT-LTL games, which are already 2EXPTIME-complete. We complemented the
complexity result by giving tight triply-exponential bounds on the necessary lookahead and
on the necessary bound k for the prompt eventually operator.

All our lower bounds already hold for LTL and therefore also for (very-weak) alternating
Biichi automata, since LTL can be translated into such automata of linear size [10]. On the
other hand, we obtained tight matching upper bounds: solving delay games on alternating
automata is SEXPTIME-complete and triply-exponential lookahead is in general necessary and
always sufficient. Furthermore, our lower bounds can be modified to complete the picture in
the w-regular case with regard to the branching mode of the specification automaton: solving
delay games with winning conditions given by non-deterministic or universal automata is
2ExPTIME-complete and doubly-exponential lookahead is sufficient and in general necessary.

Finally, as usual for results based on the alternating-color technique, our results on
PROMPT-LTL hold for the stronger logics PLTL [1], PLDL [6], and their variants with
costs [26] as well.

—— References

1 Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Parametric temporal
logic for “model measuring”. ACM Trans. Comput. Log., 2(3):388-407, 2001.

F. Klein and M. Zimmermann

10

11

12

13

14

15

16

17
18

19

20

21
22

23

24

25

Rajeev Alur and Salvatore La Torre. Deterministic generators and games for LTL fragments.
ACM Trans. Comput. Log., 5(1):1-25, 2004.

Mikolaj Bojanczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki,
editors, CSL 2004, volume 3210 of LNCS, pages 41-55. Springer, 2004.

Riidiger Ehlers. Symbolic bounded synthesis. Form. Method. Syst. Des., 40(2):232-262,
2012.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS 1991, pages 368-377. IEEE, 1991.

Peter Faymonville and Martin Zimmermann. Parametric linear dynamic logic. In Adriano
Peron and Carla Piazza, editors, GandALF 201/, volume 161 of EPTCS, pages 60-73, 2014.
Emmanuel Filiot, Naiyong Jin, and Jean-Francois Raskin. Antichains and compositional
algorithms for LTL synthesis. Form. Method. Syst. Des., 39(3):261-296, 2011.

Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-6):519-539, 2013.
Wladimir Fridman, Christof Léding, and Martin Zimmermann. Degrees of lookahead in
context-free infinite games. In Marc Bezem, editor, CSL 2011, volume 12 of LIPIcs, pages
264-276. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2011.

Paul Gastin and Denis Oddoux. Fast LTL to Biichi automata translation. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, CAV 2001, volume 2102 of LNCS, pages 53—65.
Springer, 2001.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
Michael Holtmann, Lukasz Kaiser, and Wolfgang Thomas. Degrees of lookahead in regular
infinite games. LMCS, 8(3), 2012.

Florian Horn, Wolfgang Thomas, Nico Wallmeier, and Martin Zimmermann. Optimal
strategy synthesis for request-response games. RAIRO — Theor. Inf. and Applic., 49(3):179—
203, 2015.

Frederick A. Hosch and Lawrence H. Landweber. Finite delay solutions for sequential
conditions. In ICALP 1972, pages 45—60, 1972.

Felix Klein and Martin Zimmermann. What are strategies in delay games? Borel deter-
minacy for games with lookahead. In Stephan Kreutzer, editor, CSL 2015, volume 41 of
LIPIcs, pages 519-533. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015.

Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
LMCS, 12(3), 2016.

Felix Klein and Martin Zimmermann. Prompt delay. arXiv, 1602.05045, 2016.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Form.
Method. Syst. Des., 34(2):83-103, 2009.

Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In FOCS 2005, pages
531-542. IEEE Computer Society, 2005.

Andrzej Mostowski. Games with forbidden positions. Technical Report 78, University of
Gdansk, 1991.

Amir Pnueli. The temporal logic of programs. In FOCS 1977, pages 46-57. IEEE, 1977.
Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL 1989, pages
179-190. ACM Press, 1989.

Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors,
ICALP 1989, volume 372 of LNCS, pages 652—671. Springer, 1989.

Sven Schewe. Tighter bounds for the determinisation of Biichi automata. In Luca de Alfaro,
editor, FOSSACS 2009, volume 5504 of LNCS, pages 167-181. Springer, 2009.

Martin Zimmermann. Optimal bounds in parametric LTL games. Theor. Comput. Sci.,
493:30-45, 2013.

43:13

FSTTCS 2016

43:14 Prompt Delay

26 Martin Zimmermann. Parameterized linear temporal logics meet costs: Still not costlier
than LTL. In Javier Esparza and Enrico Tronci, editors, GandALF 2015, volume 193 of
EPTCS, pages 144-157, 2015.

27 Martin Zimmermann. Delay games with WMSO+U winning conditions. RAIRO — Theor.
Inf. and Applic., 2016. To appear.

	Introduction
	Preliminaries
	Delay Games with Prompt-LTL Winning Conditions
	Lower Bounds for LTL and Prompt-LTL Delay Games
	Lower Bounds on Lookahead
	Lower Bounds on the Bound k
	Lower Bounds on Complexity

	Delay Games on Non-deterministic, Universal, and Alternating Automata
	Conclusion

