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We consider the optimization variant of the realizabilitpiplem for Prompt Linear Temporal Logic,
an extension of Linear Temporal Logic (LTL) by the prompt mvelly operator whose scope is
bounded by some parameter. In the realizability optimarggtiroblem, one is interested in computing
the minimal such bound that allows to realize a given spetiba. It is known that this problem is
solvable in triply-exponential time, but not whether it daadone in doubly-exponential time, i.e.,
whether it is just as hard as solving LTL realizability.

We take a step towards resolving this problem by showing tthetptimum can be approxi-
mated within a factor of two in doubly-exponential time. @éJlsve report on a proof-of-concept
implementation of the algorithm based on bounded LTL sysithevhich computes the smallest im-
plementation of a given specification. In our experiments,oliserve a tradeoff between the size
of the implementation and the bound it realizes. We invastighis tradeoff in the general case and
prove upper bounds, which reduce the search space for thetatg, and matching lower bounds.

1 Introduction

The realizability problem for PROMPT-LTL, Linear Tempotaigic (LTL) enriched with an eventually
operator of bounded scope, should be treated as an opfiomzabblem: determine the smallest bound
on the bounded eventually such that the specification iszedaé with respect to that bound. The best ex-
act algorithms for this problem have triply-exponentiahming times, i.e., they are exponentially slower
than algorithms for the decision variant (“does there extsbund?”), which is 2EPTIME-complete. We
take a step towards resolving the complexity of the optitiozgproblem by presenting an approximation
algorithm with doubly-exponential running time returniadpound that is at most twice the optimum.

In general, the realizability problem asks to determinewiirner in an infinite-duration two-player
game played between an input and an output player in ronrd$,1,2,...: in each round, first the
input player picks a subsgtof a fixed set of input propositions, then the output player picks a subset
of a fixed setO of output propositions. The output player wins, if the sewggio U 0p)(ix U01)(io U
02)--- of picks satisfies the winning condition, typically a forragl in some logic. A strategy for the
output player is a function mapping sequenags-i, € (2')* of inputs to an outpub, € 2°. Such a
strategy is winning, if every outcome that is consistenhwiite strategy satisfies the winning condition.
Formally, the realizability problem asks, given a formglawhether the output player has a winning
strategy for the realizability game with winning conditign For winning conditions in LTL (and many
extensions), finite-state strategies suffice, i.e., giasethat are implemented by finite automata with
outputs.

LTL [15] is the most prominent logic for specifying reactiggstems and the foundations of the
LTL realizability problem are well-understood| [1,]112,] 14, IL7]. Recently, the first tools solving the
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problem were developed![4] 5| [8,[9.] 11], which show promigiegformance despite the prohibitive
worst-case complexity. However, LTL lacks the ability tgeass time-bounds, e.g., the form@dq —
F p) expresses that every requgdtas to be responded to by a respopsélowever, it doesiot require
a bound on the waiting times between requests and resporsgeisis even satisfied if the waiting times
diverge. Several parameterized logics where introduceavéocome this shortcomingl[2] [7,113,]20].
Here, we focus on the smallest such logic: PROMPT-LTL, wiextends LTL by the prompt eventually
operatorFp, whose semantics are defined with respect to a given bkurtr example, the formula
G (g — Fpp) is satisfied with respect th, if every request is responded to within at méssteps.
In decision problems for this logic the bound is typicallyagtified existentially, e.g., the realizability
problem asks for a given formulé whether there exists a boutdsuch that the output player has a
winning strategy for the realizability game where the wimgnconditiong is evaluated with respect to
Kupferman et al. showed that PROMPT-LTL has the same désieddporithmic properties as LTL.
In particular, model checking issPACEcomplete and realizability is 282 TIME-complete([[13]. Hence,
one can add the prompt eventually operator to LTL for freewelger, as already noticed by Alur et al. in
their work on Parametric LTL_]2] (which also contains the ldolthe prompt eventually and allows for
multiple bounds), one can view decision problems for patarieed logics as optimization problems:
instead of asking for the existence of some bound, one semafohan optimal one. They showed that the
model checking optimization problem for unipolar PLTL sifieations, which includes PROMPT-LTL,
can be solved in polynomial space [2]. Thus, even findingnogitibounds is not harder than solving
the LTL model checking problem. However, for PROMPT-LT Llizability, or equivalently, for infinite
games, the situation is different. while the decision peabis known to be 2EPTIME-complete [[13],
the best algorithm for the optimization problem has tripiponential running time [19].

1.1 Our Contributions

We show that relaxing the optimality requirement on the libalows to recover doubly-exponential
running times: an approximately optimal bound can be ddterdhusing the alternating color technique,
which was introduced by Kupferman et al. to solve the degigimoblems for PROMPT-LTL. To this
end, we present an approximation algorithm with doublyemgmtial running time with an approxima-
tion ratio of two. The algorithm has to solve at most doubtpanentially many LTL realizability prob-
lems, each solvable in doubly-exponential time. We preenglgorithm for PROMPT-LTL, but it is
applicable to stronger parameterized extensions of LTe piirametric LTLI[2] and parametric LDLI[7].

In many situations, approximating the optimal bound is sigfit, since the exact optimum depends
on the granularity of the realizability problem at hand. sTisieven more true if the optimization problem
indeed turns out to be harder than the decision variant, ieigis 3ExXPTIME-hard. Then, the loss in
quality is made up for by significant savings in running tira the other hand, if the optimal bound is
at most exponential in the size of the formula, then it canXaeity determined in doubly-exponential
time [19]: the bound can be hardwired into a non-determmetitomaton capturing the specification,
which has to be determinized to solve the realizability peob This involves an exponential blow-up,
which implies that this approach only yields a doubly-exgural time algorithm, if the bound is at most
exponential.

Furthermore, we report on a proof-of-concept implemeotatif our algorithm. To handle the so-
lution of the LTL realizability problems, we rely on the framork of bounded synthesis]|[9], which
searches for a minimal-size finite-state winning strategyafgiven specification. The evaluation of this
implementation shows that, while it suffers from a significecrease in running time compared to LTL
realizability, synthesis of prompt arbiters for a small ragnof clients is feasible.
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In our experiments, a tradeoff between size and quality ¢éoreal in the bound on the prompt even-
tually operators) of winning strategies becomes apparamt: can trade size of the strategy for quality
and vice versa. We conclude by studying this tradeoff in llepirst, we show that fixing the size of
the strategy ta (as it is done during bounded synthesis) implies an expaiarmper bound (im) on
the sufficient boundt on the prompt eventually operators. This upper bound regiieesearch space of
our algorithm. The upper bound is then matched by a tight tdveind. Secondly, we present a family
of formulas exhibiting a continuous tradeoff between sizé quality with exponential extremal values,
i.e., the specifications are realizable with exponentiz sind a linear bound or with constant size and
an exponential bound and the tradeoff between these twaspsinontinuous. Thirdly, by giving up the
continuity, one can show even stronger tradeoffs: therddamdy of specifications that is realizable with
doubly-exponential size and bound zero or with size one arekponential bound.

2 Definitions

Throughout this work, fix a finite s€& of atomic propositions and denote the non-negative intsigeN.

2.1 Prompt-LTL
The formulas of PROMPT-LTL are given by the grammar

¢:=p|-Pl¢ AP [dVP|XP[9UP PR |Fpo,

wherep € P represents an atomic proposition. Also, we use the starstamdhands-¢ = ttU ¢ and
G¢ =ffR ¢ with tt = pv —p andff = pA —p, wherep is a fixed atomic proposition. Furthermore, we
use¢ —  as shorthand for¢ Vv , if the antecedend is a (negated) atomic proposition (where we
identify ——a with a). We define the sizgp| of ¢ to be the number of subformulas ¢f

In order to evaluate PROMPT-LTL formulas, we need to fix a lobkg N to evaluate the prompt
eventually operator. Hence, the satisfaction relatiorefined for anw-wordw € (2°) ® a positionn of
w, a boundk, and a PROMPT-LTL formula. The definition is standard for ¢lessical operators and
defined as follows for the prompt eventually:

e (w,n,k) = Fp¢ if and only if there exists @ in the range & j < k such thatw,n+ j,k) = ¢.

For the sake of brevity, we writew,k) = ¢ instead of(w,0,k) = ¢ and say thatvis a model of¢ with
respect tk. If (w,k) = ¢, we say thatv models¢ with respect tk. Note thatp is an LTL formula [15],
if it does not contain the prompt eventually. In this case wiite w |= ¢.

2.2 Prompt-LTL Realizability

Throughout this subsection, we fix a partitidnO) of P. An instance of the PROMPT—LTL realizability
problem over(l,O) consists of an PROMPT—-LTL formulka overP =1 UO and asks to determine the
winner in the following game, played between Plalyand Playe©O in roundsn=0,1,2,...: in roundn,
Player| picksi, C | and afterwards Playe pickso, C O. The resulting play i$io U0g) (i1 U01)(i2U
0p)--- € (2P)%,

A strategy for PlayeiO is a mappingo: (2')* — 20. A play as above is consistent with, if
on, =0 (ip---in) for everyn. We say that realizesp with respect tk € N, if every play that is consistent
with o satisfiesg with respect tdk. Formally, the PROMPT-LTL realizability problem asks, gjiva
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PROMPT-LTL formulag, whether there is a strategyand ak such thato realizesg with respect tdk.
In this case, we say is realizable.

A memory structure# = (M, my,upd) consists of a finite set of statd4, an initial statemy € M,
and an update function upd x 2' — M. We extend the update function to finite input sequences as
usual, i.e., we define upd (2')* — M inductively as uptl(e) = mp and upd(wi) = upd(upd‘(w),i)
for we (2)* andi € 2'. A memory structure# together with a next-move function nxt x 2! —

20 induces a strategy defined asu(ip---in) = nxt(upd‘(ip---in_1),in). We say that such a memory
structure implements the strategy We call any strategy that can be implemented by some memory
structure a finite-state strategy. The size of a finite-stti@tegy is the size of the smallest memory
structure implementing it.

The LTL realizability problem is defined by restricting theesificationsg to LTL formulas and is
2ExpTIME-complete[[17]. Kupferman et al. showed that PROMPT—LTLizaaility is not harder.

Theorem 1 ([13]). ThePROMPTLTL realizability problem is2EXPTIME-complete. Furthermore, if
¢ is realizable with respect to some k, then also with respesbime ke 0(22“”‘) by some finite-state

strategy of size?(22*).

Furthermore, the doubly-exponential upper bounds on tkhessaryk and on the memory require-
ments are tight. Also, ip is realizable with respect to sorkethen also with respect to eveky> k.

2.3 The Alternating Color Technique

Our algorithm presented in the next section is based on dicafipn of Kupferman et al.’s alternating
color technique [13] to PROMPT-LTL realizability. We relce technique in this subsection.

Let p ¢ P be a fixed fresh proposition. A@-wordw € (ZPU{p})w is a p-coloring ofw € (27)® if
w, NP = wy, i.e.,wn andw, coincide on all propositions iR. We say that a position is a change point,
if n= 0 or if the truth value ofp at positionsn— 1 andn differs. A p-block is an infixw/,---wi, of w
such thamandn+ 1 are adjacent change points. ket 1: we say thatv is k-spaced, if the truth value
of p changes infinitely often and eaghblock has length at leakt we say thatV is k-bounded, if each
p-block has length at mo&t(which implies that the truth value @f changes infinitely often).

Given a PROMPT-LTL formulap, rel(¢) denotes the formula obtained by inductively replacing
every subformuldep @ by

(p— (PU(=pUrel(y)))) A (=p— (=pU(pUrel(y)))).

Intuitively, instead of requiringp to be satisfied within a bounded number of stepggretequires it to
be satisfied within at most one change point. The relatianatel(¢) is an LTL formula of sizeZ'(|¢|).
Kupferman et al. showed tha@tand re(¢) are “equivalent” orw-words which are bounded and spaced.

Lemma 1([13]). Let¢ be aPROMPTLTL formula.
1. If (wk) = ¢, then W [=rel(¢) for every k-spaced p-coloring’wf w.
2. Letke N. If w' is a k-bounded p-coloring of w such thatp rel(¢), then(w,2k) = ¢.

3 Approximating Optimal Bounds in Doubly-Exponential Time

Determining whether a PROMPT-LTL formugais realizable with respect to sorkénduces a natural
optimization problem: determine the smallest slichThe optimum (and a strategy realiziggwith
respect to the optimum) can be computed in triply-expoaétitne [19].
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However, itis an open problem whether the optimization fgwobcan be solved in doubly-exponential
time, i.e., whether optimal PROMPT-LTL realizability is harder than LTL realizability. We take a
step towards resolving the problem by showing that the aptinaan be approximated within a factor of
two in doubly-exponential time.

The alternating color technique is applied to the PROMP THtdalizability problem by replacing
by its relativization rel¢ ) and by letting Playe® determine the truth value of the distinguished proposi-
tion p for every position by adding it to the output propositiddsThe full details are explained i [13],
where the following statements are shown to prove the aiic of the alternating color technique to
be correct. Hereyy is an LTL formula of linear size ik that characterizels-boundedness, i.ew' = i
if, and only if, w is ak-boundedp-coloring.

Lemma 2([13]). Let¢ be aPROMPTLTL formula and let ke N.
1. A strategy realizingd with respect to k can be turned into a strategy realiziatj¢ ) A Y.
2. A strategy realizingel(¢ ) A g can be turned into a strategy realiziggwith respect tck.
Also, if kis nottoo large we can check the realizability of gl) A  in doubly-exponential time.

Lemma 3. The following problem is iREXPTIME: Given aPROMPTLTL formula ¢ and a natural
number k that is at most doubly-exponential|qr], is rel(¢) A i realizable? Furthermore, one can
compute a strategy realizing the formula (if one exists)dnldy-exponential time.

Proof. As usual, we reduce the problem to a parity game (s€e [10]dokdround). First, we construct
a deterministic parity automaton recognizing the langugge (2P°{PH)® | p = rel(¢)} and intersect
it with a deterministic safety automaton that recognigese (2°V1PH)® | p = yi}. It is known that the
first automaton is of doubly-exponential size and has expialy many colors (both ing|) while the
second one is of linear size ka Thus, the deterministic parity automatirrecognizing the intersection
is of doubly-exponential size ig| and linear size ik and has exponentially many colors|i|.

Next, we split a transition dil labeled byA C PU {p} into two, the first one labeled BN and the
second one b\ |. By declaring the original states @fto be Playell states and the new intermediate
states obtained by splitting the transitions to be Pl&ystates, we obtain a parity game that is won by
PlayerO from the initial state ol if, and only if, rel¢) A yx is realizable. Additionally, a winning
strategy for PlayeO in the parity game can be turned into a strategy realizingdel gx. This parity
game is of doubly-exponential size with exponentially maojors, both in|¢|. The winner and a
winning strategy for her in such a game can be computed inlgaxponential time[[18]. O

Now, we are able to present the algorithm for approximatiptineal bounds for PROMPT-LTL
realizability. Given an inpud, the algorithm first checks whethéris realizable with respect to sorke
If not, then the optimum iso by convention. Otherwise, Theorém 1 yields a doubly-exptiakupper
boundu on the optimum. Now, the algorithm determines the smallestki< u such that relg) A i
is realizable and returnk2 The emptiness test and determining the realizability HireA g can be
executed in doubly-exponential time as shown in ThedremdlLamma 8. As the latter problem has to
be solved at most doubly-exponentially oﬁethe overall running time is doubly-exponential as well.
Furthermore, due to Lemn& 3 and Leminid 2.2, we even obtaiategyrrealizingp with respect to R.

It remains to argue that the algorithm approximates themapt kot < u within a factor of two: let
2k be the output of the approximation algorithm, ileis minimal such that réi) A Yk is realizable.

1with binary search, this can be improved to exponentiallgraf However, the running time of the realizability check
depends ok, which is typically small. Thus, traversing the search gp@ad, ..., u in the natural order is more beneficial. We
discuss the search strategy in more detail in Se€lion 4.
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Thus, Lemmal2]2 impliekope < 2k. Conversely,¢ being realizable with respect tqp: implies that
rel(¢) A Yk, is realizable due to Lemnid2.1, i.&.< Kopt due to minimality ofk.

Altogether, we obtairk < kot < 2k. Recall that the algorithm returnk2.e., ¢ is realizable with
respect to the returned value due to monotonicity. Alsoathroximation ratidk/2k—k is bounded by
K/ 2k—kope < 2K/2k—k = 2, i.€., the bound found by our algorithm is at most twice tpenoal bound.

Theorem 2. The optimization problem foPROMPTLTL realizability can be approximated within a
factor of two in doubly-exponential time. As a byproduck obtains a strategy witnessing the approxi-
matively optimal bound.

4 Empirical Evaluation

In the previous section we have described an algorithm tiatn some PROMPT-LTL specification
¢, approximates the optimal boutdfor which the formula can be realized. The algorithm uses LTL
realizability checking as a black-box to determine theizadility of the formulas relg ) A gk, wherek

is a parameter from a doubly-exponential set. The searategir heavily influences the running time of
the algorithm (but not the worst-case complexity). Towamdsmplementation, we rely on bounded LTL
synthesis[[9] for checking the realizability of (él) A gi. In addition to computing the smallest strategy
that realizes rélp) A gi, bounded synthesis also allows us to search for stratefissnoe fixed size

n. Thus, we obtain a sub-procedure that takes as input som&PRELTL formula, as well as some
valuesn andk, which checks whether or not there exists a finite-stateegjyaof sizen that realizesp
with respect to R.

To this end, it first constructs the LTL formuld = rel(¢) A gi from ¢, which is then given to the
tool BoSy [6] together with the desired sizeof the strategyBoSy then checksp’ for realizability and
returns a strategy of sizg if there exists one. In order to do so, it first translapéso a universal co-
Blichi automaton that accepts the language ofBased on this automaton, it constructs a QBF query
that is satisfiable if, and only if, there exists a strategginén which is then solved by a combination of
a QBF preprocessor and a solver. Due to Leriina 2, we know thatitiategy returned BoSy realizes
¢ with respect to Rwhen restricted t®.

We evaluate our implementation on a family of arbiters. Eadiiter manages some numbeof
resources. Playdrposes requestg for some resource £ i <r, while PlayerO has to grant them by
playing p; for 1 <i <r. Moreover, Playe© can only grant a single resource at a time. In addition to
the usual requirement that each request has to be answenediaily, we require that a request for one
of the firstr, resources is answered promptly, fo@, <r. Thus, for some parametersandr,, we
construct the PROMPT-LTL specification

$ripi= N\ Ga—Fep)A A Gla—=Fp)AAG(=pV-p).

1<i<rp rp<i<r i#]

Note that, for each € N, the specification, o is an LTL formula.

For our experiments we used machines equipped with Inteh>¢aswell processors running at
3.6 GHz with 32 GB of memory. The complete dataset we reporihdhis evaluation is available at
https://arxiv.org/abs/1511.09450.

We first compare the running time of LTL synthesis with thening time of our implementation on
the PROMPT-LTL formulas in order to quantify the slowdownurred by performing PROMPT-LTL
synthesis instead of LTL synthesis. Since, as previoughfa@xed, a naive search strategy that simply
performs bounded synthesis on(ge) A Yk for increasingk is infeasible, we instead search for a realizing
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Figure 1: The search strategy for some realizing implentiemta@n the left-hand side and the slowdown
of PROMPT-LTL synthesis on the right-hand side.

implementation along the diagonals of the search spacdyoasin the left-hand side of Figuré 1. We
run our implementation with this search strategydpp, for eachr € [1;10 and eachr, € [0;r] and
compared the running time to that®Sy on ¢; o

The results are shown in the right-hand side of Figure 1. Bohe&omparison, the number of re-
sourcesr is denoted by the line-color, while the number of prioritizeesources is displayed on the
x-axis. The slowdown is shown on the y-axis, which is logpmically scaled. Note that there does not
exist a data point for each péir,rp) with 1 <r <10 and 0<r, <, since, forr > 9, BoSy timed out
after 100 minutes and, for all other values not shown, outempntation timed out after 100 minutes.

We see that, when given an LTL formufgg, in general our implementation is slower thgsBy by
a factor on the order of magnitude of*1(his results from our tool callingoSy multiple times even for
LTL formulas, as, in order to find a strategy of siz¢hat realizesp, our implementation first searches
for strategies of sizes — b that realizep, o with respect to b for n < nand 0< b < 1/ (cf. the search
strategy shown in Figuié€ 1). Fgg o, however, our implementation finds a realizing strateggraft299
seconds, whil®oSy takes 1914 seconds for the same task. This discrepancylyg tike to differences
in the generated automaton that lead to different QBF foasiahd result in different solving times.

When asked to realiz¢, with r, > 0, however, prioritizing around half of the available resms
incurs the greatest penalty in terms of running time. Rekatleactp @/ in ¢ is first rewritten to(p —
(pU (=pUrel(y)))) A (—p— (-pU(pUrel(y)))) before being given tBoSy, while the traditionaF ¢
operator is a shorthand for the significantly smaller formttll) (. Thus, for increasing,, the automaton
and consequently the formula given to the QBF solver becdangsr. We noticed that determining that
no realization ofp,, with some parametersandk exists was faster for increasimg, in particular for
r =5 andr = 6. Hence, the search terminates earlier despite an increaseber of solved QBF queries,
resulting in an overall smaller slowdown.

After having evaluated the running time of our tool agaitstt tof that of the underlying bounded
synthesis tool, we now evaluate the feasibility of our apptofor the search for a strategy of a given size
realizing a formula with respect to some given bound. Iniotherds, we are given song@g,, some size

°Note that it is not possible to riBbSy on 1, forrp > 0, asBoSy performs LTL synthesis, whilgy  is a PROMPT-LTL
formula forrp > 0.
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Figure 2: Running times and results #y; on the left-hand side angs > on the right-hand side. Green
circles denote realizable parameters, while red squarestelenrealizable parameters. Yellow triangles
denote that the tool encountered a time-out after 20 minutes

nand a bound and want to decide whether or not a strategy of size at meststs that realizeg;
with respect to R.

In order to satisfy the requirement that every request istenadly granted, at least— 1 states are
required. Also, the smallest possible strategy is a rowtdarstrategy, which simply grants each resource
in order. This strategy realizes the formula with respedh®mboundr. These two propositions yield
upper bounds om andk for a givenr. Hence, for each € [1,10] and eachr, € [1,r] we search for
implementations oy, of sizen € [r —1,2r] and with respect to the bourkde [1,r] on the block-size.

We show the results fops 1 and ¢s > in Figure[2. Green circles, red squares, and yellow triamgle
denote realizable parameter combinations, unrealizatés,cand those for which our implementation
timed out after 20 minutes, respectively. Note that in thechenark ofge > there are four invocations
that ran longer than 20 seconds and are thus not shown indlgeadi. The searches for strategies of
size 7 that realizgg > with respect to the bounds 2 and 4, respectively, as welleasdhrch for a strategy
of size 8 that realizegg » with respect to the bound 2 were eventually unsuccesstel 2& seconds, 833
seconds, and 1009 seconds, respectively. There existgvigva strategy of size 12 that realizgs
with respect to 2, which was found after 72 seconds.

Note that both evaluations shown in Figlte 2 exhibit a tréfdebhere exist strategies that realize
¢s.2 With respect to the bounds 6, 4, and 2. These strategies lza@, 8, and 12, respectively. We show
the minimal strategiess 3 and 0121 realizing ¢s > With respect to the bounds 6 and 2, respectively, in
Figure[3. The strateggs 3 proceeds in a round-robin fashion using only 6 states whilg grantsp;
every second step using 12 states to ensure that all requestsentually granted.

We also see that, in general, unsuccessful searches foatagstrwith given size and bound take
longer than successful searches for larger strategies etredegies with a larger bound. Intuitively, this
is due to the fact that the resulting QBF formula is satiséiahland only if, there exists a strategy with
the given parameters and that refuting all possible stiedenf sizen is, in general, harder than showing
that such a strategy exists. Hence, it is of interest to tedtigate the border between the realizable and
the unrealizable parameters. We do so in the next section.
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Figure 3: Two strategiegs 3 and g1, realizing ¢s > with respect to the bounds 6 and 2, respectively. A

transition of the formm '/—°> m denotes that upon readimng 2' in statem, PlayerO outputso € 2° and
updates her memory 1 (cf. Subsection 2]2).

5 Trading Memory for Quality and Vice Versa

We have seen in the previous section that there exist PROMRTtermulas ¢ that exhibit a tradeoff,
i.e., for somek < K/, the minimal strategy realizing with respect to R may be larger than the minimal
strategy realizingd with respect to R. In this section, we investigate the Pareto frontier of trasleoff,
i.e., those positions in the search space shown in the p®\ection, at which it is not possible to
decrease either the size of the strategy or the bound izesalvithout increasing the other value. To this
end, we define the set of realizable parame#fg ) C N x N of ¢ such thain,k) € Z(¢) if and only if
there exists a strategy with |o| = nthat satisfieg with respect tk. Note thatZ(¢) is upwards-closed,
i.e., if (n,k) € Z(¢), then alsan+1,k) € Z(¢) and(n,k+1) € Z(9).

A Pareto position of a formula is a pair of realizable
parametergn, k) € Z(¢) such that it is not possible to real-
ize the bound with a strategy of size— 1, and no strategy
of sizen realizes a smaller bound th&n Formally, a pair b -
of realizable parametefs, k) € Z(¢) is a Pareto position if s R(P) 7
both(n—1,k) ¢ Z(¢) and(n,k—1) ¢ Z(¢). When consid-
ering the setZ(¢) geometrically, the Pareto positions @f /
are the corner points of the area defined®p ), as shown /

in Figure[4.
By a simple geometrical argument over the spiceN

that combines Theorem 1 with the upwards-closur&Z6p ) /

we obtain a doubly-exponential bound|i on the number

of Pareto positions of.

Lemma 4. Let ¢ be aPROMPTLTL formula. There exist ‘
at mostﬁ(ZZW) Pareto positions o.

Pareto ~
positions

n

Proof. If ¢ is not realizable with respect to any boukd Figure 4: The geometrical interpretation
then we haveZ(¢) = 0 and thus, the statement holds tru8f #(¢) and the Pareto positions ¢t
Thus, assume is realizable with respect to sonke Due
to Theoreni L, we obtain that is realizable with respect to
somek’ € ¢(22*), which is witnessed by a strategy of sizec (22", i.e.,(,K) € Z(9).

Clearly, there are at mokt Pareto positiongn, k) with k < K, since otherwise, upwards-closure of
Z(¢) would be violated. For the same reason, there are at m&&reto positiongn, k) with n <n'.
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Finally, there can exist no Pareto positignsk) with eithern > n’ ork > k', again due to upwards-closure
of Z(¢). Thus, there exist at most+k € 6(22“”‘) Pareto positions of. O

Having shown that the number of Pareto positions has an igmperd, we now investigate the Pareto
frontier in general. We show that fixing one parameter yiekisonential and doubly-exponential upper
bounds on the other parameter, respectively. For a fixetthis upper bound ok is obtained by a
reduction to the model checking problem for PROMPT-LTL. Rdixedk, however, we obtain the
upper bound om by turning ¢ into a parity game of doubly-exponential size and solvirig tfame.

Lemma 5. Let¢ be aPROMPTLTL formula.
1. Leto be a strategy that realizegs with |a| = n. Then(n,k) € Z(¢) for some ke &(n-2/91).

2. Let¢ be realizable w.r.t. k. Thefn k) € () for some ne ¢/(21¢1(2k+1)?

Proof. [1l.) Fixing a strategys of size n simplifies the realizability problem to the problem of model
checking PROMPT-LTL. The upper bound kfn the model checking problem for PLTL, which in-
cludes PROMPT-LTL, is known to be linearirand exponential ing | [2].

2.) Given a bount, we can translate to a parity game? of size &(2¢/*2k+1)**') that is winning
for player 0 if, and only if,¢ is realizable with bound [19]. As a positional winning strategy for player
0 in & can be translated into a realizing strategyor ¢ with respect tk, with |o| € 0(]2?]). This
proves our upper bound on the size of a realizing strategy. O

The previous two lemmas each presented upper bounds on ithigenwf Pareto positions. These
bounds permit us to restrict the search space when lookirgyriealizing strategy: Instead of fixing some
n or k and checking doubly-exponentially many possibilitiestfor respective other parameter, we only
need to consider exponentially many possible values for it.

We now turn our attention to the respective lower bounds,we provide a family of formulagy,
that exhibit such a Pareto frontier. More precisely, forredg, there exists a family of strategies, j
such thatay, j is of size exponential irj and realizespy, with respect to somé that is exponential in
b— j. Each of thes@y, j is minimal for its respective bound.

Intuitively, ¢, describes a game in which Play@rdecides at the beginning how much memory she
wants to use by playing some numijeiPlayerl then plays some number j@;2!), which PlayelO has
to repeat afterwards, thus requiring her to use exponengahory inj. Afterwards, Playel implements
a binary counter using— j bits. The game ends once Playédras counted up to®2) — 1. Moreover gy,
requires that this end is reached promptly, i.e., the bddisdn ¢/(2°~1), while every strategy realizing
¢y, With respect to that bourkihas at least sizel 2

Theorem 3. For each be N there exists #ROMPTLTL formula ¢, with |¢p| € &'(b) such that for
each0 < j < b, there exists an & ¢(2/) and a ke ¢(2°~1), such that(n,k) is a Pareto position.

Proof. We construct an LTL formulay that specifies the following gani, for a givenb with P=1U0O,
wherel = {i,#} andO = {o,#,}.

The game begins with Playér playing some number € j < b in unary encoding, i.e., she plays
times her propositioro and ends this encoding by playing.#After this first #, Playerl plays the
binary encoding of some number<0On < 2I using j positions, and finishes with g.#After Player|
has issued his;#PlayerO must repeat his sequence and finish witgh ¥/hen PlayelO has finished
repeating Playelr's sequence, Playémust implement a binary counter with- j bits, starting with the
binary encoding of 0. Two consecutive values of the countestroe delimited by #and after encoding
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j positions b— j positions b — j positions
—_— —_— —_—
P|ayer| —_— P 0P 0 —— 000
PlayerO 0 --- 0 #f, ——— 0 Q0 --- 0 D #,
— S ~—
J imes ] positions (b—j+1)-(2°71) positions

Figure 5: A play of the gam&,. Sequences of 0 are denoted by black lines for readability.

2°-1 —1, Player must play ##. During the respective other player’s turn, both playevsagk have to
play the empty set. If either player does not conform to thesrof this game, she loses. A play of this
game is illustrated in Figuig 5.

Towards a formal definition oy, fix somej with 0 < j <b. We construct formulagg’™, ¢} ;

and ¢€j that encode the fact that Play@rstarts by announcing the numbgin unary encoding, and
assumptions about the behavior of both playersgiinrespectively, if PlayeO starts by announcing
The formulaqbg’ 'jCk is trivial to construct in linear size if using nesteX -operators, as it just argues

about a prefix of length) + 1 of the resulting play. The formulﬁt').j encodes the following assumptions
about the behavior of Playér

1. Atany time, Playel picks either or #, or neither, but never both,
2. Playerl plays 0 until PlayeO plays #, for the first time,

3. immediately after the first position where Plageplays #, Playerl does not pick #for j posi-
tions, but does pick it aftey turns,

4. after Playet has played #or the first time, he plays 0 until Play€r has played #again,

5. immediately after PlayeD has played #for the second time, Playérplays 0 forb— j turns,
followed by #,

6. whenever Playerplays # after the first time he has done so, if the- j positions preceding that
# encode somé ¢ [0,2°71 — 1) in binary using the proposition theb — j positions succeeding
that # encodef + 1 and are followed directly by another, #ind

7. if and when Playef encodes 21 — 1 at some point after he has played his firstiis encoding
is directly followed by ##.

These properties can be specified using polynomial-lengithfarmulas in bothb and j. In particular,
the correct behavior of théb — j)-bit counter can be specified using a formula of polynomiaé sh
(b— j) using standard constructions. Thus, we obtain the fomp[,”aof polynomial size irb andj.

Similarly, the formulacpgj encodes the following guarantees that Plagehas to ensure, if the
assumptions regarding the play of Play@re met:

1. Atany time, Playe© plays either or #,, or neither, but never both,
2. after playing # for the first time, Playe© only plays 0, until Playel plays a #,

3. if Playerl has played some womd € ({i} 4 0)/ directly preceding his firsti#then PlayeO must
play w with everyi replaced by a immediately after Playdrhas played his firsti#and

4. after her secondy#PlayerO exclusively plays 0.
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Again, all these properties only argue about infixes of lirgze in j and can all be specified using for-
mulas of polynomial size ib and j. Hence, we obtain a formul:ia{)?j that specifies all these guarantees,
which is again of size polynomial inandj.

Using the formulaspi’™, ¢, ., and ¢, we then defingo = Vo< j<p ®f A (¢ ; — & A Fp (# A
X#)), which formally denotes the requirement that Pla@estarts by playing somgin unary encoding,
and, if Player satisfies the assumptions about his behavior in this sitwathen Playe© fulfills the
requirements to her part of the play, and that Playmomptly plays ##, i.e., promptly finishes counting.

We now show that for eachin [0;b], there exist am € ¢(2]) and ak € ¢(2°~}) such that(n,k)
is a Pareto position. To this end, fix some&vith 0 < j <b. Clearly, PlayeiO has a strategyy, j with
|obj| € €(2)) that realizesp with respect to som& € ¢(2°71). Intuitively, PlayerO first usesj + 1
memory states as a unary counter upjtoShe playso until this counter reacheg which happens
after 0(j) steps. Once the counter has reacheBlayerO plays # and stores the number encoded by
Playerl using?(2}) memory states, which again tak€$]) steps. After Playelr has played # PlayerO
repeats the encoding of the number played by Playagain using”(2!) memory states and( ) steps.
Afterwards, PlayeO plays a single #followed by 0 ad infinitum. Player then implements a binary
counter withb — j bits and has to play;# after that counter has reached its maximal value. This sccur
after o((b— j)-2°-1) steps. Hence, this strategy requie@sj + 2/ + 21) = ¢(21) memory states and
realizesgy, with respect to somk € &(3j + (b— j)-20~1) = g(2071).

It remains to show tha#’(2)) is a lower bound on the size of any strategy that realizes smued
ke 0(2°1) and thate’(2°~1) is a lower bound on the parametewith respect to which a strategy with
size in@'(21) can realizapy. First, assume that there exists a stratefywith |y ;| € 0(2)) that realizes
¢ with respect to somk € ¢/(2°~1). Then, there must exist two numbers:@ < ¢’ < 2! such thaioy ;
ends up in the same state after the two playBIN j(¢)# andol#,BIN | (¢')#, whereBIN(¢) denotes
the encoding of in binary usingj bits (encoded by). Hence, Playe© cannot differentiate betweeh
and/’ and does not ensure her guarantees in one of the two casess.o‘tgrjmdoes not realizey,.

Moreover, itis clear that, due to the strict structure ofghene, Playe® cannot force the occurrence
of ## in o(2°~1) steps using a memory structure of siz€2!). The only way for her to force Playér
to play ## after less tharg(2°~1) steps is to play some numbgr> | at the beginning of the game.
Doing so, however, would give Playerj’ bits to encode some number at the beginning of the second
part of the game, which in turn would require Plageto useﬁ(zj/) memory states to store and repeat
this number, as argued before. O

We observe that eaah, has linearly many Pareto positionstinwhere the extremal values #(¢p)
are(n,k) for nc (1), k€ ¢(2°) and(n',K) for n' € 6(2°) andk’' € &(b). In order to show that the
distance between andk may even become doubly-exponential, we move from the cootis tradeoff
exhibited by the previous theorem to a discrete tradedf, for eactb we provide a formulap, such
that there are two ways to realizig; Either, PlayerO realizes this formula with respect to some con-
stant bound, but requires doubly-exponential memory toajms she realizes it with respect to some
exponential bound, but can do so by using only constant mgmor

These bounds are obtained by letting Plagashoose between one of two games, in which Player
has to implement either a doubly- or singly-exponentialyuided counter. In the former case, this
realization is formalized by an LTL formula, hence the speation is trivially realized with respect
to k= 0. PlayerO does, however, require doubly-exponential memory to deraotors in Playet’s
implementation of the counter [16]. In the latter case, &i& does not require any memory, but the
specification requires that Playefinishes counting promptly. Hence, the specification is dualijlled
with respect to an exponential bound.



314 Approximating Optimal Bounds in Prompt-LTL Realizability Doubly-exponential Time

Theorem 4. For each be N there exists #ROMPTLTL formula ¢y, with |@p| € &'(b) such that there
exist ne 0(22°), ' € 0(1), and K € ¢(2°), such that bott{n,0) and (', k') are Pareto positions ofy,.

Proof. Letb € N. We give a realizable PROMPT-LTL formula, that exhibits the stated tradeoff. Let
Y be a realizable LTL formula withy| € ¢'(b) where each strategy realizing has at least doubly-
exponentially many states m Let ' be a PROMPT-LTL formula withy/| € &'(b) that is realizable
with respect tk € O(2/') and constant strategy size. We constritb be (0 — X ) A (=0 — X (/)
whereo is a fresh atomic proposition controlled by PlagrPlayerO decides in the first step whether
she wants to satisfy the LTL formulg or the PROMPT-LTL formulay’. Giveny andy/, it is trivial

to verify that the stated properties hold.

It remains to show that such formulas and ¢/’ exist. It is known that a LTL formulapy with
the required properties exists [16]. Intuitively, requires Playel to implement a binary counter with
exponentially many bits ib, which counts up to3. The task of Playe® is to mark errors in Playdrs
implementation of the counter, for which she requires dpwxponential memory ib.

The PROMPT-LTL formulay’ requires Playet to implement a binary counter, similarly to the
latter phase of the ganié, constructed in the proof of Theordrh 3. After Playéras counted up to°2
he plays some delimiter #. Then the formulais of the formgount — Fp#, whereycount Specifies the
assumption that Playéimplements the binary counter correctly and finishes with @lgarly, PlayeO
can realize this formula with a strategy of size one, but stmeot enforce a realization with respect to
some boundk € o(2). O

6 Conclusion

In this work, we presented an approximation algorithm far BFROMPT-LTL realizability problem
with doubly-exponential running time with an approximatifactor of two. This is an exponential im-
provement over the fastest known exact algorithms. Theritthgo relies on repeated calls to an LTL
realizability solver. We have implemented the algorithring8o0Sy as LTL realizability solver, which
implements the bounded synthesis approach. In our precbutept experiments, a tradeoff between
the size and the quality of a strategy becomes apparenthwlgdnvestigated: we proved upper bounds
on the tradeoff, which reduces the search space of our Higarand proved matching lower bounds.

Although we presented our results only for PROMPT-LTL, théso hold for the more expressive
logics PLTL [2] and PLDL[[7], as they can be compiled into Bilabtomata of exponential size and as
the alternating color technique is applicable to them as wel

There are several open problems to consider in future workstMnportantly, the computational
complexity of the exact optimization problem is still op&imilarly, the exact memory requirements of
optimal strategies are open: triply-exponential memormhigays sufficient[[19], but it is open whether
doubly-exponential memory suffices as well, as it does fat Epecifications. Other open problems
relate to the tradeoffs: we have studied the tradeoff betvsem and quality of strategies. One can also
consider tradeoffs between different parameters in PLTd.RIbDL formulas or take the running time
into account as well. The former problem is tightly relatedte study of the solution space, i.e., the
space of the realizable parameter valuations (see [2] soitseon the model checking).
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