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Abstract

Parameterized linear temporal logics are extensions of Linear Temporal Logic
(LTL) by temporal operators equipped with variables that bound their scope.
In model-checking, such specifications were introduced as “PLTL” by Alur et
al. and as “PROMPT-LTL” by Kupferman et al. We show how to determine
in doubly-exponential time, whether a player wins a game with PLTL winning
condition with respect to some, infinitely many, or all variable valuations.
Hence, these problems are not harder than solving LTL games. Furthermore,
we present an algorithm with triply-exponential running time to determine
optimal variable valuations that allow a player to win a game. Finally, we give
doubly-exponential upper and lower bounds on the values of such optimal
variable valuations.
Keywords: Infinite Games, Parametric Linear Temporal Logic,
PROMPT-LTL, Optimal Winning Strategies
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1. Introduction

A crucial aspect of automated verification and synthesis is the choice of
a specification formalism; a decision which is subject to several conflicting
objectives. On the one hand, the formalism should be expressive enough to
specify desirable properties of reactive systems, but at the same time simple
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enough to be employed by practitioners without formal training in automata
theory or logics. Furthermore, the formalism should have nice algorithmic
properties such as a feasible model-checking problem. In practice, Linear
Temporal Logic (LTL) has emerged as a good compromise: it is expressively
equivalent to first-order logic (with order-relation) over words [1], its model-
checking problem is Pspace-complete [2], and it has a compact, variable-free
syntax and intuitive semantics: for example, the specification “every request q
is answered by a response p” is expressed by the formula G(q → F p).

However, LTL lacks capabilities to express timing constraints, e.g., the
request-response condition is satisfied even if the response time doubles with
each request. Similarly, when synthesizing a controller for a request-response
specification, we prefer an implementation that answers every request as
soon as possible, but there is no guarantee that such an optimal controller is
computed when solving a game with this winning condition.

The simplest way to enrich LTL with timing constraints is to add the
operator F≤k, where k ∈ N is an arbitrary, but fixed constant, with the
expected semantics: the formula F≤k ϕ is satisfied, if ϕ holds at least once
within the next k steps. Koymans [3] and Alur and Henzinger [4] investigated
generalizations of this approach in the form of logics with temporal opera-
tors bounded by constant intervals of natural numbers. This allows to infer
some quantitative information about a system: the formula G(q → F≤k p)
is satisfied if every request is answered within k steps. But finding the right
bound k is not practicable: it is generally not known beforehand and depends
on the granularity of the model of the system. On the other hand, adding
F≤k does not increase the expressiveness of LTL, as it can be expressed by a
disjunction of nested next-operators.

To overcome these shortcomings, several parameterized temporal logics [5,
6, 7] were introduced for the verification of closed systems: here, constant
bounds on the temporal operators are replaced by parametric bounds. In
this formalism, we can ask whether there exists a bound on the response
time, as opposed to asking whether some fixed k is a bound. Furthermore,
we can ask for optimal bounds.

We are mainly concerned with Parametric Linear Temporal Logic (PLTL)
introduced by Alur et al. [5], which adds the operators F≤x and G≤y to LTL.
In PLTL, the request-response specification is expressed by G(q → F≤x p),
stating that every request is answered within the next x steps, where x is
a variable. Hence, satisfaction of a formula is defined with respect to a
variable valuation α mapping variables to natural numbers: F≤x ϕ holds, if

2



ϕ is satisfied at least once within the next α(x) steps, while G≤y ϕ holds, if
ϕ is satisfied for the next α(y) steps.

The model-checking problem for a parameterized temporal logic is typ-
ically no harder than the model-checking problem for the unparameterized
fragment, e.g., Alur et al. showed that deciding whether a transition system
satisfies a PLTL formula with respect to some, infinitely many, or all variable
valuations is Pspace-complete [5], as is LTL model-checking [2]. Also, for
two interesting fragments of PLTL and several notions of optimality, they
showed that optimal variable valuations for which a formula is satisfied by a
given transition system can be determined in polynomial space as well.

In this work, we consider infinite games with winning conditions in PLTL
and lift the results on model-checking parameterized specifications to synthe-
sis from parameterized specifications. We show that determining whether a
player wins a PLTL game with respect to some, infinitely many, or all variable
valuations is 2Exptime-complete, as is determining the winner of an LTL
game [8]. Again, we observe the same phenomenon as in model-checking:
the addition of parameterized operators does not increase the computational
complexity of the decision problems. Afterwards, we give an algorithm with
triply-exponential running time to compute optimal variable valuations (and
winning strategies realizing them) for the two fragments of PLTL already
considered by Alur et al. for model checking. We complement this with
doubly-exponential upper and lower bounds on values of optimal variable
valuations for games in these fragments.

This work is an extended and corrected version of [9]: in the confer-
ence version, we claimed the optimization problems to be solvable in doubly-
exponential time. However, the proof of Lemma 16.1 of [9] contains a mis-
take. In the present work, we fix this error, but this increases the running
time of the algorithm to triply-exponential. The exact complexity of the
optimization problems remains open.

2. Definitions

An arena A = (V, V0, V1, E) consists of a finite directed graph (V,E)
and a partition {V0, V1} of V denoting the positions of Player 0 (drawn as
ellipses) and Player 1 (drawn as rectangles). The size |A| of A is |V |. It
is assumed that every vertex has at least one outgoing edge. A play is an
infinite path ρ = ρ0ρ1ρ2 · · · through A. A strategy for Player i is a mapping
σ : V ∗Vi → V such that (ρn, σ(ρ0 · · · ρn)) ∈ E for all ρ0 · · · ρn ∈ V ∗Vi. A
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play ρ is consistent with σ if ρn+1 = σ(ρ0 · · · ρn) for all n with ρn ∈ Vi. A
parity game G = (A, v0,Ω) consists of an arena A, an initial vertex v0 and a
coloring function Ω: V → N. Player 0 wins a play ρ0ρ1ρ2 · · · if the maximal
color occurring in Ω(ρ0)Ω(ρ1)Ω(ρ2) · · · infinitely often is even. The number
of colors of G is |Ω(V )|. A strategy σ for Player i is winning for her, if every
play that starts in v0 and is consistent with σ is won by her. Then, we say
Player i wins G.

A memory structure M = (M,m0, upd) for an arena (V, V0, V1, E) con-
sists of a finite setM of memory states, an initial memory statem0 ∈M , and
an update function upd: M × V →M , which we extend to upd∗ : V + →M
by upd∗(ρ0) = m0 and upd∗(ρ0 · · · ρnρn+1) = upd(upd∗(ρ0 · · · ρn), ρn+1). A
next-move function for Player i is a function nxt : Vi×M → V that satisfies
(v, nxt(v,m)) ∈ E for all v ∈ Vi and all m ∈M . It induces a strategy σ with
memory M via σ(ρ0 · · · ρn) = nxt(ρn, upd∗(ρ0 · · · ρn)). A strategy is called
finite-state if it can be implemented with a memory structure, and positional
if it can be implemented with a single memory state. The size of M (and,
slightly abusive, σ) is |M |.

An arena A = (V, V0, V1, E) and a memory structureM = (M,m0, upd)
for A induce the expanded arena A×M = (V ×M,V0×M,V1×M,E ′) where
((s,m), (s′,m′)) ∈ E ′ if and only if (s, s′) ∈ E and upd(m, s′) = m′. A game
G with arena A and initial vertex v0 is reducible to G ′ with arena A′ viaM,
written G ≤M G ′, if A′ = A×M and every play (ρ0,m0)(ρ1,m1)(ρ2,m2) · · ·
in G ′ starting in (v0,m0) is won by the player who wins the projected play
ρ0ρ1ρ2 · · · (which starts in v0) in G.

Remark 1. If G ≤M G ′ and Player i has a positional winning strategy for
G ′, then she also has a finite-state winning strategy with memoryM for G.

It is well-known that parity games are determined with positional strate-
gies [10, 11] and the winner can be determined in time O(m(n/d)dd/2e) [12],
where n, m, and d denote the number of vertices, edges, and colors.

Lemma 2. Let G be a game with initial vertex v0 and let A be a deterministic
parity automaton2 recognizing the language of winning plays for Player 0 that

2A run of a parity automaton (Q,Σ, q0, δ,Ω) with coloring function Ω: Q → N is
accepting, if the maximal color that is seen infinitely often by the run is even. See, e.g.,
[13] for a complete definition.
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start in v0. Then, G can be reduced to a parity game via a memory structure
of size |A|.

This can be shown by turning the automaton A = (Q, V, q0, δ,Ω) into
M = (M,m0, upd) withM = Q,m0 = δ(q0, v0) and upd(m, v) = δ(m, v) and
showing G ≤M G ′, where G ′ = (A×M, (v0,m0),Ω

′) with Ω′(v,m) = Ω(m).

3. PLTL and PLTL Games

Let V be an infinite set of variables and let us fix a finite3 set P of atomic
propositions which we use to build our formulae and to label arenas in which
we evaluate them. The formulae of PLTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ϕR ϕ | F≤zϕ | G≤zϕ ,

where p ∈ P and z ∈ V . We use the derived operators tt := p∨¬p and ff := p∧
¬p for some fixed p ∈ P , Fϕ := tt U ϕ, and Gϕ := ff R ϕ. Furthermore, we
use ϕ→ψ as shorthand for ¬ϕ∨ψ, where we have to require the antecedent ϕ
to be a (negated) atomic proposition and identify ¬¬p with p. We assume
negation to bind stronger than every other connective and operator, which
allows us to omit some brackets. In the original work on PLTL [5], the
operators U≤x, F>y, G>x, and U>y are also allowed. However, since they
do not add expressiveness (see Lemma 2.2 of [5]), we treat them as derived
operators instead of adding them as primitive operators.

The set of subformulae of a PLTL formula ϕ is denoted by cl(ϕ) and we
define the size of ϕ to be the cardinality of cl(ϕ). Furthermore, we define
varF(ϕ) = {z ∈ V | F≤z ψ ∈ cl(ϕ)} to be the set of variables parameterizing
eventually operators in ϕ, varG(ϕ) = {z ∈ V | G≤z ψ ∈ cl(ϕ)} to be the set
of variables parameterizing always operators in ϕ, and set var(ϕ) = varF(ϕ)∪
varG(ϕ). From now on, we denote variables in varF(ϕ) by x and variables in
varG(ϕ) by y. A formula ϕ is variable-free, if var(ϕ) = ∅.

In order to evaluate PLTL formulae, we define a variable valuation to be
a mapping α : V → N. Now, we can define the model relation between an
ω-word w ∈

(
2P
)ω, a position n of w, a variable valuation α, and a PLTL

formula as follows:

3We require P to be finite so that its power set is an alphabet. This greatly simplifies
our notation and exposition when we translate formulae into automata, but is not essential.
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• (w, n, α) |= p if and only if p ∈ wn,

• (w, n, α) |= ¬p if and only if p /∈ wn,

• (w, n, α) |= ϕ ∧ ψ if and only if (w, n, α) |= ϕ and (w, n, α) |= ψ,

• (w, n, α) |= ϕ ∨ ψ if and only if (w, n, α) |= ϕ or (w, n, α) |= ψ,

• (w, n, α) |= Xϕ if and only if (w, n+ 1, α) |= ϕ,

• (w, n, α) |= ϕU ψ if and only if there exists a k ≥ 0 such that (w, n+
k, α) |= ψ and (w, n+ j, α) |= ϕ for every j in the range 0 ≤ j < k,

• (w, n, α) |= ϕRψ if and only if for every k ≥ 0: either (w, n+k, α) |= ψ
or there exists a j in the range 0 ≤ j < k such that (w, n+ j, α) |= ϕ,

• (w, n, α) |= F≤x ϕ if and only if there exists a j in the range 0 ≤ j ≤
α(x) such that (w, n+ j, α) |= ϕ, and

• (w, n, α) |= G≤y ϕ if and only if for every j in the range 0 ≤ j ≤ α(y):
(w, n+ j, α) |= ϕ.

For the sake of brevity, we write (w, α) |= ϕ instead of (w, 0, α) |= ϕ and say
that w is a model of ϕ with respect to α.

As usual for parameterized temporal logics, the use of variables has to
be restricted: bounding eventually and always operators by the same vari-
able leads to an undecidable satisfiability problem [5]. Unlike the original
definition – which uses two disjoint sets of variables to bound eventually
and always operators – we prefer to use a single set, which saves us some
notational overhead.

Definition 3. A PLTL formula ϕ is well-formed, if varF(ϕ) ∩ varG(ϕ) = ∅.

We consider the following fragments of PLTL. Let ϕ be a PLTL formula:

• ϕ is an LTL formula, if ϕ is variable-free.

• ϕ is a PROMPT–LTL formula [6], if varG(ϕ) = ∅ and |varF(ϕ)| ≤ 1.

• ϕ is a PLTLF formula, if varG(ϕ) = ∅.

• ϕ is a PLTLG formula, if varF(ϕ) = ∅.
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• ϕ is a unipolar formula, if it is either a PLTLF or a PLTLG formula.

Every LTL, PROMPT–LTL, PLTLF, and every PLTLG formula is well-
formed by definition.

Note that we defined PLTL formulae to be in negation normal form.
Nevertheless, a negation can be pushed to the atomic propositions using the
the duality of the pairs (p,¬p), (∧,∨), (X,X) (U,R), and (F≤z,G≤z). Thus,
we can define the negation of a PLTL formula.

Lemma 4. For every PLTL formula ϕ there exists an efficiently constructible
PLTL formula ¬ϕ such that

1. (w, n, α) |= ϕ if and only if (w, n, α) 6|= ¬ϕ,
2. |¬ϕ| = |ϕ|.
3. If ϕ is well-formed, then so is ¬ϕ.
4. If ϕ is an LTL formula, then so is ¬ϕ.
5. If ϕ is a PLTLF formula, then ¬ϕ is a PLTLG formula and vice versa.

Now, we define games with PLTL winning conditions. To evaluate them
on a play, we have to label the arena with atomic propositions from the set P
we use to build our formulae. A labeled arena A = (V, V0, V1, E, `) consists of
an arena (V, V0, V1, E) as defined in Section 2 and a labeling function ` : V →
2P . In figures, we denote the labeling of a vertex v by a set of propositions
above or below of v, where we omit empty labels. The trace of a play ρ is
tr(ρ) = `(ρ0)`(ρ1)`(ρ2) · · · . To keep things simple, we refer to labeled arenas
as arenas, too, as long as no confusion can arise.

A PLTL game G = (A, v0, ϕ) consists of an arena A = (V, V0, V1, E, `),
an initial vertex v0 ∈ V , and a well-formed PLTL formula ϕ. The size of
G, denoted by |G|, is defined as |G| = |A| + |ϕ|. LTL, PROMPT–LTL,
PLTLF, PLTLG, and unipolar games are defined by restricting the winning
condition to LTL, PROMPT–LTL, PLTLF, PLTLG, and unipolar formulae,
respectively. A play in (A, v0, ϕ) is an infinite path through A starting in
v0. The notions of winning a play and of winning strategies are defined with
respect to a variable valuation which allows the evaluation of ϕ. We say that
Player 0 wins a play ρ with respect to a variable valuation α if (tr(ρ), α) |= ϕ,
otherwise Player 1 wins ρ with respect to α. A strategy σ for Player i is a
winning strategy for her with respect to α if every play that is consistent
with σ is won by Player i with respect to α. If Player i has such a winning
strategy, then we say that she wins G with respect to α. Winning an LTL
game G is independent of α, hence we are justified to say that Player i wins G.
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Definition 5. Let G be a PLTL game. The set Wi(G) of winning variable
valuations for Player i is

Wi(G) = {α | Player i wins G with respect to α} .

If G is an LTL game, then Wi(G) contains either every variable valuation
– which is the case if Player i wins G –, or it is empty – which is the case if
Player 1− i wins G.

Example 6. Consider the arena A depicted in Figure 1. The propositions q0
and q1 represent requests of some resources and p0 and p1 represent the
corresponding responses. At vertex v0, Player 1 can choose to request one or
both of q0 and q1, and at vertex v5, Player 0 can respond to at most one of
the requests.

v0

v1

{q0}

v3

{q1}

v2

{q0, q1}
v4 v5

v6

{p0}

v7

{p1}
v8

Figure 1: The arena for Example 6

Now, consider the formula ϕ =
∧
i∈{0,1}G(qi → F≤xi pi). To win the

PLTLF game G = (A, v0, ϕ) with respect to a variable valuation α, Player 0
has to answer every request qi within α(xi) positions. Let α(xi) = 9 for
both xi. We have α ∈ W0(G), witnessed by the strategy for Player 0 that
alternates at v5 between moving to v6 and v7.

LTL games were – in a more general framework – investigated by Pnueli
and Rosner, who showed them to be 2Exptime-complete. Their results
hold in the setting of graph-based games, too, and serve as the yardstick we
measure our results on PLTL games against.

Theorem 7 ([14, 8, 15]). LTL games are determined with finite-state strate-
gies of size 22O(|ϕ|) and determining the winner is 2Exptime-complete.
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Due to Lemma 4, we can dualize PLTL games: let A = (V, V0, V1, E, `)
be an arena and G = (A, v0, ϕ) be a PLTL game. Then, A = (V, V1, V0, E, `)
is the dual arena of A, and G = (A, v0,¬ϕ) is the dual game of G. Since the
negation of a well-formed formula is well-formed, too, the dual game satisfies
the definition of a PLTL game. Furthermore, the dual of a PLTLF game is
a PLTLG game and vice versa. Hence, we can solve many problems by only
considering one type of unipolar game.

Lemma 8. Let G be a PLTL game.

1. Wi(G) is the complement of W1−i(G).
2. Wi(G) =W1−i(G).

The first statement can be proven by noticing that a PLTL game with
respect to a fixed variable valuation is an ω-regular game (see Theorem 22),
and therefore determined; the second one is a simple consequence of the
definition of the dual game. Hence, every α either is in W0(G) or in W1(G).

A simple, but very useful property of PLTL is the monotonicity of the
parameterized operators. If ϕ is satisfied at least once within the next k
steps, then it is also satisfied at least once within the next k′ steps, provided
we have k′ > k. Dually, if ϕ is satisfied during each of the next k steps, then
also during the next k′ steps, provided k′ < k.

Lemma 9. Let G = (A, v0, ϕ) be a PLTL game and let α and β be variable
valuations satisfying β(x) ≥ α(x) for every x ∈ varF(ϕ) and β(y) ≤ α(y) for
every y ∈ varG(ϕ). If α ∈ W0(G), then β ∈ W0(G).

Hence, W0(G) is upwards-closed for variables parameterizing eventually
operators and downwards-closed for variables parameterizing always opera-
tors. For a unipolar game G, this implies thatWi(G) is semilinear. The exact
descriptional complexity of the set of winning valuations for a non-unipolar
PLTL game is open. This is even the case for PLTL model checking [5]. By
applying the downwards-closure of the parameterized always operator, we
can show that the projection of W0(G) to variables parameterizing eventu-
ally operators is semilinear. Obtaining the dual result is more complicated
(since we cannot rely on upwards-closure of W0(G)), but applying the alter-
nating color technique presented in Subsection 4.1 shows the projection of
W0(G) to variables parameterizing always operators to be semilinear as well.
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4. Solving PLTL Games

In this section, we show how to solve PLTL games. Since we consider
initialized games, solving them only requires to determine the winner from
the initial vertex and a corresponding winning strategy. However, winning
a PLTL game (and being a winning strategy) is defined with respect to a
variable valuation. Hence, solving a PLTL game G refers to properties of the
sets Wi(G). We are interested in the following decision problems.

• Membership: given a PLTL game G, i ∈ {0, 1}, and a variable valua-
tion α, does α ∈ Wi(G) hold?

• Emptiness: given a PLTL game G and i ∈ {0, 1}, is Wi(G) empty?

• Finiteness: given a PLTL game G and i ∈ {0, 1}, is Wi(G) finite?

• Universality: given a PLTL game G and i ∈ {0, 1}, doesWi(G) contain
every variable valuation?

We encode variable valuations in binary (and restrict them to variables
occurring in the winning condition). Hence, we measure the running time
of algorithms for the membership problem in |G|+

∑
z∈var(ϕ)dlog2(α(z) + 1)e

and the running time of algorithms for the latter three problems in |G|.
We obtain an algorithm with doubly-exponential running time for the

membership problem when we compute optimal winning strategies in Sec-
tion 5. For the time being, we just remark that the membership problem is
trivially 2Exptime-hard. Let G be an LTL game: then, W0(G) contains
the empty variable valuation if and only if Player 0 wins G.

In the remainder of this section, we consider the latter three problems.
In Subsection 4.1, we extend the alternating color technique of Kupferman
et al. [6] for PROMPT–LTL to PLTLF. Then, in Subsection 4.2, we apply
this technique to solve the emptiness problem for PLTLF games in doubly-
exponential time by a reduction to solving LTL games. Finally, in Subsec-
tion 4.3, we prove that this result and the monotonicity of PLTL suffice to
solve the latter three problems for full PLTL in doubly-exponential time.

4.1. Digression: The Alternating Color Technique
Kupferman et al. introduced PROMPT–LTL and solved several of its

decision problems – among them model-checking, assume-guarantee model-
checking, and the realizability problem – by using their alternating color
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technique [6]. Intuitively, the alternating color technique allows to replace
a parameterized eventually operator by an LTL formula: the positions of
a trace are colored – either red or green – and a parameterized eventually
F≤x ψ is replaced by the requirement that ψ holds within one color change
(which is expressible in LTL). If there is an upper bound on the distance
between adjacent color changes, then the waiting time for the parameterized
eventually is also bounded. In games, the bound on the distance is obtained
by applying finite-state determinacy.

Although the technique in its original formulation is only applicable to
PROMPT–LTL formulae it is easy to see that the restriction to a single
variable is not essential. Furthermore, it turns out to be useful to abandon
the restriction when we consider the optimization problems for PLTL games
in Section 5. Hence, we state the technique here in a slightly more general
version than the one presented in the original work on PROMPT–LTL.

Let p /∈ P be a fixed fresh proposition. An ω-word w′ ∈
(
2P∪{p}

)ω is
a p-coloring of w ∈

(
2P
)ω if w′n ∩ P = wn, i.e., wn and w′n coincide on all

propositions in P . The additional proposition p can be thought of as the
color of w′n: we say that a position n is green if p ∈ w′n, and say that it is red
if p /∈ w′n. Furthermore, we say that the color changes at position n, if n = 0
or if the colors of w′n−1 and w′n are not equal. In this situation, we say that n
is a change point. A p-block is a maximal monochromatic infix w′m · · ·w′n of
w′, i.e., the color changes at m and n+ 1 but not in between. Let k ≥ 1: we
say that w′ is k-spaced, if the color changes infinitely often and each p-block
has length at least k; we say that w′ is k-bounded, if each p-block has length
at most k (which implies that the color changes infinitely often).

Given a PLTLF formula ϕ and X ⊆ var(ϕ), let ϕX denote the formula
obtained by inductively replacing every subformula F≤x ψ with x /∈ X by

(p→ (pU (¬pU ψX))) ∧ (¬p→ (¬pU (pU ψX))) .

We have var(ϕX) = X (i.e., X denotes the variables that are not replaced)
and |ϕX | ∈ O(|ϕ|). Furthermore, the formula altp = G F p∧G F¬p is satis-
fied if the colors change infinitely often. Finally, consider the formula ϕX ∧
altp, which is satisfied by w with respect to α, if the following holds:

• The color changes infinitely often.

• Every subformula F≤x ψ with x /∈ X is satisfied within one color change.
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• The parameterized eventually operators with variables x ∈ X – which
are not replaced in ϕX – are satisfied within the bounds specified by α.

Next, we show that ϕ and ϕX are “equivalent” on ω-words which are bounded
and spaced. Our correctness lemma (slightly) differs from the original one
presented in [6], since we have not just one variable (as in a PROMPT–LTL
formula) and allow to replace just some parameterized eventually operators.
However, the proof itself is similar to the original one.

Lemma 10 (cf. Lemma 2.1 of [6]). Let ϕ be a PLTLF formula, let X ⊆
var(ϕ), and let w ∈

(
2P
)ω.

1. If (w, α) |= ϕ, then (w′, α) |= ϕX ∧altp for every k-spaced p-coloring w′
of w, where k = maxx∈var(ϕ)\X α(x).

2. Let k ∈ N. If w′ is a k-bounded p-coloring of w with (w′, α) |= ϕX ,

then (w, β) |= ϕ, where β(z) =

{
2k if z ∈ var(ϕ) \X,
α(z) if z ∈ X.

Now, we apply this result to PLTLF games.

4.2. Solving the Emptiness Problem for PLTLF Games
The 2Exptime-membership proof of the PROMPT–LTL realizability

problem by Kupferman et al. can be adapted to solve the emptiness problem
for graph-based PLTLF games.

Theorem 11. The emptiness problem for PLTLF games is in 2Exptime.

The proof presented in the following is similar to the one of Kupferman
et al., but the presentation is more involved, since we consider graph-based
games4. Most importantly, we have to allow Player 0 to produce p-colorings
of plays. Since she has to be able to change the color while it is not her turn,
we have to add choice vertices to the arena that allow her to produce change
points at any time. However, adding the choice vertices requires to ignore
them when evaluating a formula to determine the winner of a play. Thus, we
introduce blinking semantics for infinite games: under this semantics, only
every other vertex contributes to the trace of a play.

4Alternatively, one could transform a graph-based PLTLF game into a realizability
problem.
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We begin by transforming the original arena A into an arena Ab in which
Player 0 produces p-colorings of the plays of the original arena, i.e., Ab will
consist of two disjoint copies of A, one labeled by p, the other one not.
Assume a play is in vertex v in one component. Then, the player whose
turn it is at v chooses a successor v′ of v and Player 0 picks a component.
The play then continues in this component’s vertex v′. We split this into
two sequential moves: first, the player whose turn it is chooses a successor
and then Player 0 chooses the component. Thus, we have to introduce a
new choice vertex for every edge of A which allows Player 0 to choose the
component. Formally, given an arena A = (V, V0, V1, E, `), we define the
extended arena Ab = (V ′, V ′0 , V

′
1 , E

′, `′) by

• V ′ = V × {0, 1} ∪ E,

• V ′0 = V0 × {0, 1} ∪ E and V ′1 = V1 × {0, 1},

• E ′ = {((v, 0), e), ((v, 1), e), (e, (v′, 0)), (e, (v′, 1)) | e = (v, v′) ∈ E}, and

• `′(e) = ∅ for every e ∈ E and `′(v, b) =

{
`(v) ∪ {p} if b = 0,

`(v) if b = 1.

A path through Ab has the form (ρ0, b0)e0(ρ1, b1)e1(ρ2, b2) · · · for some
path ρ0ρ1ρ2 · · · through A, where en = (ρn, ρn+1) and bn ∈ {0, 1}. Also, we
have |Ab| ∈ O(|A|2).

The definition of Ab necessitates a modification of the game’s semantics:
only every other vertex is significant when it comes to determining the winner
of a play in Ab, the choice vertices have to be ignored. This motivates
blinking semantics for PLTL games. Let G = (A, v0, ϕ) be a PLTL game and
let ρ = ρ0ρ1ρ2 · · · be a play. Player 0 wins ρ under blinking semantics with
respect to α, if (tr(ρ0ρ2ρ4 · · · ), α) |= ϕ. Analogously, Player 1 wins ρ under
blinking semantics with respect to α, if (tr(ρ0ρ2ρ4 · · · ), α) 6|= ϕ. The notions
of winning strategies and winning G under blinking semantics with respect
to α are defined as for games with standard semantics.

Finite-state determinacy of LTL games under blinking semantics can be
proven analogously to the case for LTL games under standard semantics.

Lemma 12. LTL games under blinking semantics are determined with finite-
state strategies of size 22O(|ϕ|) and determining the winner is 2Exptime-
complete.
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Corollary 13. PLTL games under blinking semantics with respect to a fixed
variable valuation α are determined with finite-state strategies.

Now, we can state the “equivalence” of a PLTLF game (A, v0, ϕ) and
its counterpart in Ab with blinking semantics obtained by replacing (some)
parameterized eventually operators.

Lemma 14. Let G = (A, v0, ϕ) be a PLTLF game, let X ⊆ var(ϕ), and let
G ′ = (Ab, (v0, 0), ϕX ∧ altp).

1. If Player 0 wins G with respect to a variable valuation α, then she also
wins G ′ under blinking semantics with respect to α.

2. If Player 0 wins G ′ under blinking semantics with respect to a variable
valuation α, then there exists a variable valuation β with β(z) = α(z)
for every z ∈ X such that she wins G with respect to β.

Before we prove the lemma, let us mention that this suffices to prove
Theorem 11: let G = (A, v0, ϕ) be a PLTLF game and consider the case
X = ∅. Then, ϕX is an LTL formula and Player 0 wins G with respect
to some variable valuation α if and only if she wins the LTL game G ′ =
(Ab, (v0, 0), ϕX ∧ altp) under blinking semantics. As G ′ is only polynomially
larger than G and as LTL games under blinking semantics can be solved
in doubly-exponential time, we have shown 2Exptime-membership of the
emptiness problem for W0(G), if G is a PLTLF game.

Now, let us turn to the proof of Lemma 14.

Proof. 1. Let σ be a winning strategy for Player 0 for G with respect to α
and define k = maxx∈var(ϕ)\X α(x). We turn σ into a strategy σ′ for G ′ that
mimics the behavior of σ at vertices (v, b) and colors the play in alternating
p-blocks of length k at the choice vertices. Hence, the trace of the resulting
play (without choice vertices) in Ab is a k-spaced p-coloring of the trace of
a play that is consistent with σ. Thus, Lemma 10.1 is applicable and shows
that σ′ is winning under blinking semantics with respect to α. Formally, let

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn−1, ρn)(ρn, bn)) = (ρn, σ(ρ0 · · · ρn))

if (ρn, bn) ∈ V ′0 , which implies ρn ∈ V0. Thus, at a non-choice vertex, Player 0
mimics the behavior of σ. At choice vertices, she alternates between the two
copies of the arena every k steps, i.e.,

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn, bn)(ρn, ρn+1)) =

{
(ρn+1, 0) if n mod 2k < k,
(ρn+1, 1) if n mod 2k ≥ k.
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Let ρ = ρ0ρ1ρ2 · · · be a play in Ab that is consistent with σ′ and let

ρ′ = ρ0ρ2ρ4 · · · = (v0, b0)(v1, b1)(v2, b2) · · · .

By definition of σ′, the sequence v0v1v2 · · · is a play in A that is con-
sistent with σ and thus winning for Player 0 with respect to α, i.e., we
have (tr(v0v1v2 · · · ), α) |= ϕ. Furthermore, tr(ρ′) is a k-spaced p-coloring of
tr(v0v1v2 · · · ). Hence, (tr(ρ′), α) |= ϕX ∧altp due to Lemma 10.1. Thus, σ′ is
a winning strategy for (Ab, (v0, 0), ϕX ∧ altp) under blinking semantics with
respect to α.

2. Assume that Player 0 wins (Ab, (v0, 0), ϕX ∧ altp) under blinking se-
mantics with respect to α. Then, due to Corollary 13, she also has a finite-
state winning strategy σ′ implemented by some memory structure M′ =
(M ′,m′0, upd′) and some next-move function nxt′. We construct a strategy σ
for G by simulating σ′ such that each play in A that is consistent with σ has
a k-bounded p-coloring in Ab that is consistent with σ′. This suffices to show
that σ is winning with respect to a variable valuation β as required.

Since σ′ is implemented byM′, it suffices to keep track of the last vertex of
the simulated play – which is never a choice vertex – and the memory state for
the simulated play. Hence, we transformM′ into a memory structureM =
(M,m0, upd) for A with M = (V × {0, 1})×M ′, m0 = ((v, 0),m′0), and

upd(((v, b),m), v′) = (nxt′(e,m′), upd′(m′, nxt′(e,m′)))

where e = (v, v′) and m′ = upd′(m, e).
Let w be a play prefix of a play in A. The memory state upd∗(w) =

((v, b),m) encodes the following information: the simulated play w′ in Ab
ends in (v, b), where v is the last vertex of w, and we have upd′∗(w′) = m.
Hence, it contains all information necessary to apply the next-move function
nxt′ to mimic σ′. Finally, we define a next-move function nxt : V0 ×M → V
for Player 0 in A by

nxt(v, ((v′, b),m)) =

{
v′′ if v = v′ and nxt′((v′, b),m) = (v′, v′′),

v otherwise, for some v ∈ V with (v, v) ∈ E.

By definition ofM, the second case of the definition is never invoked, since
upd∗(wv) = ((v′, b),m) always satisfies v = v′.

It remains to show that the strategy σ implemented by M and nxt is
indeed a winning strategy for Player 0 for (A, v0, ϕ) with respect to a variable
valuation β that coincides with α on all variables in X.

15



Let ρ0ρ1ρ2 · · · be a play in A that is consistent with σ. A straightfor-
ward induction shows that there exist bits b0, b1, b2, · · · such that the play
(ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) · · · in Ab is consistent with σ′.

Hence, the trace of ρ′′ = (ρ0, b0)(ρ1, b1)(ρ2, b2) · · · satisfies ϕX ∧ altp with
respect to α. We show that tr(ρ′′) is k-bounded, where k = |V | · |M |+1. This
suffices to finish the proof: let β(x) = 2k for x ∈ var(ϕ) \X and β(z) = α(z)
for z ∈ X. Then, we can apply Lemma 10.2 and obtain (tr(ρ), 0, β) |= ϕ,
as tr(ρ′′) is a k-bounded p-coloring of tr(ρ). Hence, σ is indeed a winning
strategy for Player 0 for (A, v0, ϕ) with respect to β.

Towards a contradiction assume that tr(ρ′′) is not k-bounded. Then, there
exist consecutive change points i and j such that j − i ≥ k + 1. Then, there
also exist i′ and j′ with i ≤ i′ < j′ < j such that ρi′ = ρj′ and

upd′∗((ρ0, b0) · · · (ρi′ , bi′)) = upd′∗((ρ0, b0) · · · (ρj′ , bj′)) ,

i.e., the last vertices of both play prefixes are equal and the memory states
after both play prefixes are equal, too. Hence, the play

ρ∗ = (ρ0, b0) · · · (ρi′−1, bi′−1)
[
(ρi′ , bi′) · · · (ρj′−1, bj′−1)(ρj′−1, ρj′)

]ω
,

obtained by traversing the cycle between (ρi′ , bi′) and (ρj′ , bj′) infinitely often,
is consistent with σ′, since the memory states reached at the beginning and
the end of the loop are the same. Remember that the bits do not change
between i and j. Thus, tr(ρ∗) has only finitely many change points and does
not satisfy altp under blinking semantics. This contradicts the fact that σ′ is
a winning strategy for (Ab, (v0, 0), ϕX ∧ altp) under blinking semantics with
respect to α.

Let G = (A, v0, ϕ) be a PLTLF game. Lemma 12 allows us to bound the
size of a finite-state winning strategy for (Ab, (v0, 0), ϕ∅∧altp), which in turn
bounds the values of a variable valuation that is winning for Player 0 for the
game G.

Corollary 15. Let G be a PLTLF game. If W0(G) 6= ∅, then there exists a
k ∈ 22O(|G|) such that Player 0 wins G with respect to the variable valuation
that maps every variable to k.

To conclude let us note that a further generalization of the alternating
color technique to full PLTL can be applied to construct the projection of
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W0(G) to the variables in varG(ϕ) while still ensuring bounds on the (re-
placed) parameterized eventually operators. This substantiates our claim
made in Section 3: the projection of W0(G) to variables parameterizing al-
ways operators is a semilinear set.

4.3. Solving PLTL Games
The doubly-exponential time algorithm for the emptiness problem for

PLTLF games allows us to solve the emptiness, finiteness, and the universal-
ity problem for games with winning conditions in full PLTL as well.

Theorem 16. The emptiness, the finiteness, and the universality problem
for PLTL games are 2Exptime-complete.

Proof. We begin by showing 2Exptime-membership for all three problems.
Let G = (A, v0, ϕ) be a PLTL game. Due to duality (see Lemma 8. 2), it
suffices to consider i = 0.

Emptiness of W0(G): Let ϕF be the formula obtained from ϕ by in-
ductively replacing every subformula G≤y ψ by ψ, and let GF = (A, v0, ϕF),
which is a PLTLF game. Applying the monotonicity of G≤y, we obtain that
W0(G) is empty if and only if W0(GF) is empty.

The latter problem can be decided in doubly-exponential time by Theo-
rem 11. Hence, the emptiness ofW0(G) can be decided in doubly-exponential
time as well, since we have |ϕF| ≤ |ϕ|.

Universality of W0(G): Applying first complementarity and then du-
ality as stated in Lemma 8, we have that W0(G) is universal if and only if
W1(G) is empty, which is the case if and only if W0(G) is empty. The latter
problem is decidable in doubly-exponential time as shown above.

Finiteness of W0(G): If varF(ϕ) 6= ∅, thenW0(G) is infinite, if and only
if it is non-empty, due to monotonicity of F≤x. The emptiness of W0(G) can
be decided in doubly-exponential time as discussed above.

If varF(ϕ) = ∅, then G is a PLTLG game. We assume that ϕ has at least
one parameterized temporal operator, since the problem is trivial otherwise.
Then, the set W0(G) is infinite if and only if there is a variable y ∈ varG(ϕ)
that is mapped to infinitely many values by the valuations in W0(G). By
downwards-closure, we can assume that all other variables are mapped to
zero. Furthermore, y is mapped to infinitely many values if and only if it
is mapped to all possible values, again by downwards-closure. To combine
this, we define ϕy to be the formula obtained from ϕ by inductively replacing
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every subformula G≤y′ ψ for y′ 6= y by ψ and define Gy = (A, v0, ϕy). Then,
W0(G) is infinite, if and only if there exists some variable y ∈ var(ϕ) such
thatW0(Gy) is universal. So, deciding whetherW0(G) is infinite can be done
in doubly-exponential time by solving |var(ϕ)| many universality problems
for PLTLG games, which were discussed above.

It remains to show 2Exptime-hardness of all three problems. Let G be
an LTL game. The following statements are equivalent. (1) Player 0 wins G;
(2) W0(G) is non-empty; (3) W0(G) is universal; (4) W1(G) is finite. Hence,
all three problems are indeed 2Exptime-hard.

All three problems but the finiteness problem for PLTLG games only
require the solution of a single LTL game under blinking semantics. Further-
more, all these games are only polynomially larger than the original game.

5. Optimal Strategies for Games with PLTL Winning conditions

It is natural to view synthesis of PLTL specifications as optimization
problem: which is the best variable valuation α such that Player 0 can win
G with respect to α? For unipolar games, we consider two quality mea-
sures for a valuation α in a game with winning condition ϕ: the maximal
parameter maxz∈var(ϕ) α(z) and the minimal parameter minz∈var(ϕ) α(z). For
a PLTLF game, Player 0 tries to minimize the waiting times. Hence, we
are interested in minimizing the minimal or maximal parameter. Dually,
for PLTLG games, we are interested in maximizing the quality measures.
The dual problems (e.g., maximizing the waiting times) are trivial due to
upwards- respectively downwards-closure of the set of winning valuations.

The main result of this section states that all optimization problems for
unipolar games can be solved in triply-exponential time. In Section 6, we
complement this with doubly-exponential lower bounds on the value of an
optimal variable valuation in a unipolar PLTL game, thereby showing that
the doubly-exponential upper bounds obtained in Subsection 4.2 are (almost)
tight.

In the following, we assume all winning conditions to contain at least one
variable, since the optimization problems are trivial otherwise.

Theorem 17. Let GF be a PLTLF game with winning condition ϕF and let
GG be a PLTLG game with winning condition ϕG. The following values (and
winning strategies realizing them) can be computed in triply-exponential time.
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1. minα∈W0(GF) minx∈var(ϕF) α(x).
2. minα∈W0(GF) maxx∈var(ϕF) α(x).
3. maxα∈W0(GG) maxy∈var(ϕG) α(y).
4. maxα∈W0(GG) miny∈var(ϕG) α(y).

A special case of the PLTLF optimization problems is the PROMPT–LTL
optimization problem. Due to our non-triviality requirement, the winning
condition in a PROMPT–LTL game has exactly one variable x. Hence, the
inner maximization or minimization becomes trivial and the problem asks to
determine minα∈W0(G) α(x) and a winning strategy for Player 0 realizing this
value. Dually, a PLTLG optimization problem with a single variable y asks
to determine maxα∈W0(G) α(y) and for a winning strategy realizing this value.

Due to duality, there is a tight connection between PROMPT–LTL opti-
mization problems and PLTLG optimization problems with a single variable:
let G be a PLTLG game with winning condition ϕ with var(ϕ) = {y}. Then,

max
α∈W0(G)

α(y) = max
α∈W1(G)

α(y) = min
α∈W0(G)

α(y) + 1 , (1)

due to the closure properties and Lemma 8. Here, G is a PROMPT–LTL
game. Thus, to compute the optimal variable valuation in a PLTLG game
with a single variable valuation, it suffices to solve a PROMPT–LTL op-
timization problem. We defer the computation of strategies realizing the
optimal values in both types of games to the end of this subsection.

We begin by showing that all four problems mentioned in Theorem 17 can
be reduced to optimization problems with a single variable. As we have shown
above how to translate an optimization problem for a PLTLG game with a
single variable into a PROMPT–LTL optimization problem, this implies that
it suffices to solve PROMPT–LTL optimization problems.

min min: For each x ∈ var(ϕF) we apply the alternating color technique
to construct the projection ofW0(GF) to the values of x: let GF = (A, v0, ϕF)
and define Gx = (Ab, (v0, 0), (ϕF){x} ∧ altp) where Ab and (ϕF){x} ∧ altp are
defined as in Subsection 4.1. Applying Lemma 14 yields

min
α∈W0(GF)

min
x∈var(ϕF)

α(x) = min
x∈var(ϕ)

min{α(x) | Player 0 wins Gx

under blinking semantics w.r.t. α} .

Since var((ϕF){x}) = {x}, we have reduced the minimization problem to
|var(ϕF)| many PROMPT–LTL optimization problems, albeit under blinking
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semantics. We discuss the necessary adaptions to our proof, which is for the
non-blinking case, below. Furthermore, a strategy realizing the optimum on
the right-hand side can be turned into a strategy realizing the optimum on the
left-hand side using the construction presented in the proof of Lemma 14.2
which turns a strategy for Ab into a strategy for A.

min max: This problem can directly be reduced to a PROMPT–LTL
optimization problem: let ϕ′F be the PROMPT–LTL formula obtained from
ϕF by renaming each x ∈ var(ϕF) to z and let G ′ = (A, v0, ϕ′F), where A and
v0 are the arena and the initial vertex of GF. Then,

min
α∈W0(GF)

max
x∈var(ϕF)

α(x) = min
α∈W0(G′)

α(z) ,

due to upwards-closure of W0(GF), and a strategy realizing the optimum on
the right-hand side also realizes the optimum on the left-hand side.

max max: For every y ∈ var(ϕG) let ϕy be obtained from ϕG by re-
placing every subformula G≤y′ ψ with y′ 6= y by ψ and let Gy = (A, v0, ϕy),
where A and v0 are the arena and the initial vertex of GG. Then, we have

max
α∈W0(GG)

max
y∈var(ϕG)

α(y) = max
y∈var(ϕG)

max
α∈W0(Gy)

α(y) ,

due to downwards-closure of W0(GG), and a strategy realizing the optimum
on the right-hand side also realizes the optimum on the left-hand side.

max min: Let ϕ′G be obtained from ϕG by renaming every variable in
ϕG to z and let G ′ = (A, v0, ϕ′G), where A and v0 are the arena and the
initial vertex of GG. Then,

max
α∈W0(GG)

min
y∈var(ϕG)

α(y) = max
α∈W0(G′)

α(z) ,

due to downwards-closure of W0(GG) and a strategy realizing the optimum
on the right-hand side also realizes the optimum on the left-hand side.

All reductions increase the size of the arena at most quadratically and
the size of the winning condition at most linearly. Furthermore, to mini-
mize the minimal parameter value in a PLTLF game and to maximize the
maximal parameter value in a PLTLG game, we have to solve |var(ϕ)| many
PROMPT–LTL optimization problems (for the other two problems just one)
to solve the original unipolar optimization problem with winning condition ϕ.
Thus, due to the duality of unipolar optimization problems with a single
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variable shown in Equation (1), it remains to show that a PROMPT–LTL
optimization problem can be solved in triply-exponential time.

So, let G = (A, v0, ϕ) be a PROMPT–LTL game with var(ϕ) = {x}. If
W0(G) 6= ∅ (which can be checked in doubly-exponential time), then Corol-
lary 15 yields a k ∈ 22O(|G|) such that minα∈W0(G) α(x) ≤ k. Hence, we have a
doubly-exponential upper bound on an optimal variable valuation.

In the following, we denote by αn the variable valuation mapping x to n
and every other variable to zero. Since ϕ only contains the variable x, the
smallest n < k such that αn ∈ W0(G) is equal to minα∈W0(G) α(x). As the
number of such valuations αn is doubly-exponential in |G|, it suffices to show
that αn ∈ W0(G) can be decided in triply-exponential time in the size of G,
provided that n < k. This is achieved by a game reduction to a parity game.

Fix a variable valuation αn and assume we have a deterministic parity
automaton Pϕ,αn = (Q, 2P , q0, δ,Ω) recognizing the language

L(Pϕ,αn) = {w ∈
(
2P
)ω | (w, αn) |= ϕ} .

Note that the language is uniquely determined by ϕ and the value n = αn(x),
where x is the variable appearing in ϕ. Consider the parity game Gn =
(A × M, (v0,m0),Ω

′) where M = (Q,m0, upd) with m0 = δ(q0, `(v0)),
upd(m, v) = δ(m, `(v)), and Ω′(v,m) = Ω(m). We have αn ∈ W0(G) if
and only if Player 0 wins Gn as explained below Lemma 2. However, to meet
our time bounds, Pϕ,αn has to be of (at most) triply-exponential size (in
|G|) with (at most) doubly-exponentially many priorities, provided that we
have αn(x) < k. If this is the case, then we can solve the parity game Gn in
triply-exponential time. Furthermore, a winning strategy for the parity game
associated to the minimal n can be turned in triply-exponential time into a
finite-state winning strategy for the PROMPT–LTL game G which realizes
the optimal value. This strategy is implemented by a memory structure
induced by the automaton Pϕ,αn as explained below Lemma 18.

If the PROMPT–LTL game G has blinking semantics, then we have to
adapt the construction slightly: instead of using an automaton Pϕ,αn for the
language {w ∈

(
2P
)ω | (w, αn) |= ϕ} in the reduction, we turn Pϕ,αn into

a deterministic parity automaton P′ϕ,αn
that recognizes the language {w ∈(

2P
)ω | (w0w2w4 · · · , αn) |= ϕ}, which doubles the size, but does not change

the number of priorities. Again, we denote by G ′n the parity game obtained
in the reduction via memory induced by P′ϕ,αn

. Then, Player 0 wins G with
respect to αn under blinking semantics if and only if she wins G ′n, which can
again be determined in triply-exponential time.
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Thus, the main step in the proof of Theorem 17 is to construct an au-
tomaton that has the following properties.

Lemma 18. Let n ≤ k. We can construct in triply-exponential time a de-
terministic parity automaton Pϕ,αn recognizing {w ∈

(
2P
)ω | (w, αn) |= ϕ}

such that |Pϕ,αn| ∈ 222
O(|G|)

and Pϕ,αn has at most 22O(|G|) many priorities.

Before we spend the next subsection proving the existence of an automa-
ton as claimed in Lemma 18, let us show that these automata implement
winning strategies realizing the optimal values. Due to the reductions, which
allow to transfer optimal strategies, we only have to consider games with a
single variable. For a PROMPT–LTL game, we determine the optimal vari-
able valuation αn by reductions to parity games. The automaton Pϕ,αn for
this optimum can be turned into a memory structure which implements a
finite-state winning strategy for Player 0 for G with respect to αn.

Now, consider a PLTLG game G whose winning condition ϕ has a single
variable and remember that we reduced the problem to a PROMPT–LTL
optimization problem via Equation (1). Hence, after we have determined the
optimal variable valuation αn for G, we construct the automaton Pϕ,αn−1 .
This automaton can be turned into a memory structure that implements a
winning strategy for G with respect to the optimal variable valuation αn−1.

5.1. Translating PLTL into “Small” Deterministic Automata
In this subsection we translate a PLTL formula with respect to a fixed

variable valuation into a deterministic parity automaton while satisfying the
requirements formulated in Lemma 18. To this end, we first construct an un-
ambiguous5 generalized Büchi automaton6, which is then determinized into
a parity automaton using a procedure tailored for unambiguous automata.
This procedure constructs a parity automaton, while most other determiniza-
tion procedures only yield Rabin automata, which we would have to translate
into a parity automaton first.

Thus, we begin by constructing a generalized Büchi automaton Aϕ,α rec-
ognizing the language {w ∈

(
2P
)ω | (w, α) |= ϕ} for a given PLTL formula ϕ

and a variable valuation α. The automaton guesses for each position of w

5An automaton is unambiguous, if it has at most one accepting run on every input.
6A run of a generalized Büchi automaton (Q,Σ, Q0,∆,F) with F ⊆ 2Q is accepting, if

it visits every F ∈ F infinitely often. Here, Q0 ⊆ Q is a set of initial states.
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which subformulae of ϕ are satisfied with respect to α at this position and
verifies these guesses while processing w. Since there is only one way to
guess right, the automaton is unambiguous. Our construction for the first
step is the adaption of the tableaux construction for Metric Temporal Logic
(MTL) [3, 4] to PLTL. This logic is defined by adding the operators UI

(and a corresponding past temporal operator) to LTL, where I is an arbi-
trary interval of N whose end-points are integer constants, with the expected
semantics. Since we are in this subsection interested in a PLTL formula with
respect to a fixed variable valuation, our problem refers to constant bounds
as well, and could therefore be expressed in MTL.

The states of the automaton are pairs (B, c) where B is the set of subfor-
mulae guessed to be satisfied at the current position and c is a mapping that
encodes for every parameterized eventually F≤x ψ how many steps it takes
before ψ is satisfied for the first time, and for every parameterized always
G≤y ψ how many steps it takes before ψ is false for the first time.

Formally, let ϕ be a PLTL formula. A set B ⊆ cl(ϕ) is consistent, if the
following conditions7 are satisfied:

(C1) For all p,¬p ∈ cl(ϕ): p ∈ B if and only if ¬p /∈ B.
(C2) For all ψ1 ∧ ψ2 ∈ cl(ϕ): ψ1 ∧ ψ2 ∈ B if and only if ψ1 ∈ B and ψ2 ∈ B.
(C3) For all ψ1 ∨ ψ2 ∈ cl(ϕ): ψ1 ∨ ψ2 ∈ B if and only if ψ1 ∈ B or ψ2 ∈ B.
(C4) For all ψ1 U ψ2 ∈ cl(ϕ): ψ2 ∈ B implies ψ1 U ψ2 ∈ B.
(C5) For all ψ1 R ψ2 ∈ cl(ϕ): ψ1, ψ2 ∈ B implies ψ1 R ψ2 ∈ B.
(C6) For all F≤x ψ1 ∈ cl(ϕ): ψ1 ∈ B implies F≤x ψ1 ∈ B.
(C7) For all G≤y ψ1 ∈ cl(ϕ): G≤y ψ1 ∈ B implies ψ1 ∈ B.

These conditions capture the local properties of the semantics of PLTL. The
non-local properties are captured by the transition relation of the automaton
we are about to define. The set of consistent subsets is denoted by C(ϕ).

Let us denote the set of parameterized subformulae of ϕ by clp(ϕ). The
states of our automaton are pairs (B, c) where B ∈ C(ϕ) and c : clp(ϕ) →
N∪{⊥}. The counter c(F≤x ψ1) is used to verify that every position at which
F≤x ψ1 is guessed to be satisfied, is followed after exactly α(x) steps by a
position at which ψ1 is guessed to be satisfied (and no position in between at
which ψ1 is guessed to be satisfied). Dually, c(G≤y ψ1) is used to verify that

7Note that the set of conditions (C1) - (C11) is not minimal. But, for the sake of
exposition, we prefer to work with these redundant conditions.
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at the next α(y) positions ψ1 is guessed to be satisfied, whenever G≤y ψ1 is
guessed to be satisfied. The value ⊥ denotes that a counter is inactive. A
pair (B, c) is consistent, if the following properties are satisfied:

(C8) For all F≤x ψ1 ∈ cl(ϕ): ψ1 ∈ B if and only if c(F≤x ψ1) = 0.
(C9) For all F≤x ψ1 ∈ cl(ϕ): F≤x ψ1 ∈ B if and only if c(F≤x ψ1) 6= ⊥.
(C10) For all G≤y ψ1 ∈ cl(ϕ): G≤y ψ1 ∈ B if and only if c(G≤y ψ1) = α(y).
(C11) For all G≤y ψ1 ∈ cl(ϕ): ψ1 ∈ B if and only if c(G≤y ψ1) 6= ⊥.

These conditions capture the relation between a parameterized subformula
and its associated counter: (C8) requires the counter for the formula F≤x ψ1

to be zero if and only if the formula ψ1 is guessed to be satisfied while (C9)
requires the counter to be active if and only if the formula F≤x ψ1 is guessed
to be satisfied. In this situation, the counter will be decremented in each
step until it reaches value zero. At such a position, ψ1 has to be guessed to
be satisfied due to the first condition. The requirements on the counters for
parameterized always operator are dual: if G≤y ψ1 is guessed to be satisfied,
then the counter has to have value α(y) and is decremented in each step until
it reaches value zero. Furthermore, the formula ψ1 has to be guessed to be
satisfied at every position at which the counter is active. This ensures that
ψ1 is satisfied for α(y) consecutive positions. Decrementing the counters is
implemented in the transition relation.

Finally, given a variable valuation α, we say that a pair (B, c) is α-
bounded, if we have:

(C12) For all F≤x ψ1 ∈ cl(ϕ): c(F≤x ψ1) 6= ⊥ implies c(F≤x ψ1) ≤ α(x).
(C13) For all G≤y ψ1 ∈ cl(ϕ): c(G≤y ψ1) 6= ⊥ implies c(G≤y ψ1) ≤ α(y).

Construction 19. Given a PLTL formula ϕ and a variable valuation α, we
define the generalized Büchi automaton Aϕ,α = (Q, 2P , Q0,∆,F) with the
following components.

• Q is the set of pairs (B, c), where B ∈ C(ϕ) and c : clp(ϕ)→ N ∪ {⊥},
such that (B, c) satisfies (C1) up to (C13).

• Q0 = {(B, c) ∈ Q | ϕ ∈ B}.

• ((B, c), a, (B′, c′)) ∈ ∆ if and only if

(T1) B ∩ P = a,
(T2) Xψ1 ∈ B if and only if ψ1 ∈ B′,
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(T3) ψ1 U ψ2 ∈ B if and only if ψ2 ∈ B or (ψ1 ∈ B and ψ1 U ψ2 ∈ B′),
(T4) ψ1 R ψ2 ∈ B if and only if ψ2 ∈ B and (ψ1 ∈ B or ψ1 R ψ2 ∈ B′),
(T5) if α(x) > 0 and c(F≤x ψ1) = ⊥, then c′(F≤x ψ1) ∈ {α(x),⊥},
(T6) if α(x) > 0 and c(F≤x ψ1) > 0, then c′(F≤x ψ1) = c(F≤x ψ1)− 1,
(T7) if α(y) > 0 and c(G≤y ψ1) = 0, then c′(G≤y ψ1) = ⊥,
(T8) if α(y) > 0 and 0 < c(G≤y ψ1) < α(y), then c′(G≤y ψ1) =

c(G≤y ψ1)− 1, and
(T9) if α(y) > 0 and c(G≤y ψ1) = α(y), then α(y) − 1 ≤ c′(G≤y ψ1) ≤

α(y).

• F = FU ∪ FR where

– FU = {Fψ1Uψ2 | ψ1 U ψ2 ∈ cl(ϕ)} with Fψ1Uψ2 = {(B, c) ∈ Q |
ψ1 U ψ2 /∈ B or ψ2 ∈ B}, and

– FR = {Fψ1Rψ2 | ψ1 R ψ2 ∈ cl(ϕ)} with Fψ1Rψ2 = {(B, c) ∈ Q |
ψ1 R ψ2 ∈ B or ψ2 /∈ B}.

Let us explain the definition of ∆: the conditions (T1) up to (T4) are
standard for LTL and reflect the semantics of these operators. Hence, we
focus on the latter conditions for the parameterized operators. So, consider
a formula F≤x ψ1 with α(x) > 0. If the counter for this subformula is inactive,
then the counter is either also inactive at the next position, or it is started
with value α(x) (which means F≤x ψ1 is guessed to be satisfied). In the second
case, ψ1 has to be guessed true after exactly α(x) steps. This is captured
by (T5). If the counter is active, but not zero, then it is decremented in the
next step, which is captured by (T6). Finally, if the counter is zero (which
is equivalent to ψ1 is guessed to be satisfied at the current position, due to
(C8)), then it is zero in the next step (ψ1 is guessed to be satisfied in the next
step as well), inactive, or can be restart with any value k (meaning that ψ1 is
guessed to be satisfied for the next time in exactly k) positions. Hence, there
is no requirement on the counter in this case, any value is allowed. Note that
we require a counter to start with value α(x) after it is ⊥ in the previous
step, i.e., F≤x ψ1 has to be guessed to be satisfied as soon as possible. This
property is crucial to obtain an unambiguous automaton.

The conditions for formulae G≤y ψ1 are dual: as long as G≤y ψ1 is guessed
to be satisfied, c(G≤y ψ1) has value α(y) due to (C10). Beginning at the first
position where G≤y ψ1 is no longer guessed to hold, the counter has to be
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decremented in each step (due to (T8) and (T9)) and checks that the next
α(y) positions satisfy ψ1 due to (C11). Since the counter has to be inactive
after it has reached value zero (due to (T7)), the automaton cannot start the
decrement phase too early or too late.

The requirements on c and c′ in the definition are only phrased for pa-
rameterized formulae with variable z such that α(z) > 0. This is because
F≤x ψ1 and G≤y ψ1 are both equivalent to ψ1 if we have α(x) = 0 or α(y) = 0,
respectively. This is modeled by the fact that we have c(F≤x ψ1) ∈ {0,⊥} for
such a formula. Hence, the consistency properties make sure that we have
F≤x ψ1 ∈ B if and only if ψ1 ∈ B and G≤y ψ1 ∈ B if and only if ψ1 ∈ B.

Example 20. Consider the subformulae F≤x p and G≤y q of some formula ϕ
and the variable valuation α with α(x) = 2 and α(y) = 3. Table 2 shows how
the counters evolve during a run of the generalized Büchi automaton Aϕ,α.

w {q} {p, q} ∅ {p, q} {q} {q} {q} {p, q} ∅ω

p ∈ B n y n y n n n y n
F≤x p ∈ B y y y y n y y y n
c(F≤x p) 1 0 1 0 ⊥ 2 1 0 ⊥

q ∈ B y y n y y y y y n
G≤y q ∈ B n n n y y n n n n
c(G≤y q) 1 0 ⊥ 3 3 2 1 0 ⊥

Figure 2: A run of the automaton Aϕ,α

Lemma 21. Let ϕ be a PLTL formula, let α be a variable valuation, and let
Aϕ,α be the automaton obtained in Construction 19. Then,

1. L(Aϕ,α) = {w ∈
(
2P
)ω | (w, α) |= ϕ},

2. Aϕ,α is unambiguous, and
3. |Aϕ,α| ≤ 2|ϕ| ·

(
maxz∈var(ϕ) α(z) + 2

)|ϕ| and |F| < |ϕ|.
Proof. 1.) First, we show L(Aϕ,α) ⊆ {w ∈

(
2P
)ω | (w, α) |= ϕ}. Thus, let

(B0, c0)(B1, c1)(B2, c2) · · · be an accepting run of Aϕ,α on w. A straightfor-
ward structural induction over the construction of ϕ shows that ψ ∈ Bn if
and only if (w, n, α) |= ψ. This suffices to show (w, α) |= ϕ, since we have
ϕ ∈ B0 by definition of Q0.
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Now, let us prove the second inclusion {w ∈
(
2P
)ω | (w, α) |= ϕ} ⊆

L(Aϕ,α). Let (w, α) |= ϕ and define for each n

Bn = {ψ ∈ cl(ϕ) | (w, n, α) |= ψ}

to be the set of subformulae that are satisfied at position n with respect to
α. Now, we define a counter cn for each n: for every F≤x ψ1 ∈ clp(ϕ) let

cn(F≤xψ1) = min{k | 0 ≤ k ≤ α(x) and (w, n+ k, α) |= ψ1} ,

where we set min ∅ = ⊥, be the minimal waiting times for the parameterized
eventually operators at position n. Dually, for every G≤y ψ1 ∈ clp(ϕ) let

cn(G≤yψ1) = max{k |0 ≤ k ≤ α(y) and
(w, n+ j, α) |= ψ1 for every j ≤ k} ,

where we set max ∅ = ⊥, be the maximal satisfaction times for the parame-
terized always operators at position n.

It is again straightforward to show that (B0, c0)(B1, c1)(B2, c2) · · · is an
accepting run of Aϕ,α. The semantics of PLTL guarantees that each set Bn

and each pair (Bn, cn) is consistent and the cn are α-bounded by defini-
tion. Thus, each pair (Bn, cn) is a state and we have (B0, c0) ∈ Q0 due
to (w, 0, α) |= ϕ. The semantics of PLTL also guarantee that we have
((Bn, cn), wn, (Bn+1, cn+1)) ∈ ∆ for every n, i.e., (B0, c0)(B1, c1)(B2, c2) · · ·
is a run of Aϕ,α on w. It is accepting due to the semantics of PLTL, which
guarantee that each Fψ1Uψ2 and each Fψ1Rψ2 is visited infinitely often.

2.) Assume Aϕ,α has two accepting runs (B0, c0)(B1, c1)(B2, c2) · · · and
(B′0, c

′
0)(B

′
1, c
′
1)(B

′
2, c
′
2) · · · on a word w, i.e., there is a position n such that

Bn 6= B′n or cn 6= c′n. We have shown above that we have ψ ∈ Bn if and only
if (w, n, α) |= ψ. Since the same holds true for the sets B′n, we conclude Bn =
B′n for every n. This leaves us with cn 6= c′n. The consistency requirements
(C9) and (C11) and the fact Bn = B′n imply cn(ψ) = ⊥ if and only if
c′n(ψ) = ⊥ for every parameterized formula ψ ∈ clp(ϕ). Hence, we must have
cn(ψ) = k 6= k′ = c′n(ψ) for some ψ ∈ clp(ϕ).

First, we consider the case ψ = F≤x ψ1, which implies 0 ≤ k, k′ ≤ α(x).
We assume without loss of generality k < k′. Then, applying (T6) inductively
yields cn+j(F≤x ψ1) = k − j for every j in the range 0 ≤ j ≤ k and similarly
c′n+j(F≤x ψ1) = k′ − j for every j in the range 0 ≤ j ≤ k′. Hence, we have
cn+k(F≤x ψ1) = 0, which implies ψ1 ∈ Bn+k due to (C8). On the other hand,
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we have c′n+k(F≤x ψ1) = k′ − k > 0, which implies ψ1 /∈ B′n+k, again due to
(C8). This yields the desired contradiction, since we have Bn+k = B′n+k.

Now, we consider the case ψ = G≤y ψ1, which implies 0 ≤ k, k′ ≤ α(y).
Again, we assume without loss of generality k < k′. Then, applying (T6)
inductively yields cn+j(G≤y ψ1) = k − j for every j in the range 0 ≤ j ≤ k,
since we have k < α(y). Hence, we have cn+k(G≤y ψ1) = 0, which implies
cn+k+1(G≤y ψ1) = ⊥ due to (T7). Thus, we have ψ1 /∈ Bn+k+1 due to (C11).

Similarly, we have c′n+j(G≤y ψ1) ≥ k′−j for every j in the range 0 ≤ j ≤ k′

due to (T8) and (T9). Thus, c′n+k(G≤y ψ1) ≥ k′ − k > 0. Condition (T8)
implies c′n+k+1(G≤y ψ1) ≥ 0 , which in turn implies ψ1 ∈ B′n+k+1 due to
(C11). Again, we have derived a contradiction, due to Bn+k+1 = B′n+k+1.

3.) The number of consistent subsets is bounded by 2|ϕ| and we have
c(F≤x ψ1) ∈ {0, . . . , α(x)} ∪ {⊥} and c(G≤y ψ1) ∈ {0, . . . , α(y)} ∪ {⊥}, if
c is α-bounded. This yields the desired upper bound on |Aϕ,α|. Finally,
|F| < |ϕ| = |cl(ϕ)|, as cl(ϕ) contains at least one atomic proposition.

Using a standard construction to turn a generalized Büchi automaton into
a Büchi automaton [16] (which preserves unambiguity) and the determiniza-
tion of Morgenstern and Schneider [17], which is applicable to unambiguous
Büchi automata, we obtain a deterministic parity automaton with the re-
quired properties.

Theorem 22. Let ϕ be a PLTL formula and let α be a variable valuation.
We denote maxz∈var(ϕ) α(z) + 2 by m. There exists a deterministic parity
automaton Pϕ,α of size |Pϕ,α| ≤ 2O(|ϕ|

2·(2m)2|ϕ|) with 2·|ϕ|·(2m)|ϕ|+1 priorities
and L(Pϕ,α) = {w ∈

(
2P
)ω | (w, α) |= ϕ}.

Note that this proves Lemma 18, since we can construct the automa-
ton Pϕ,α in triply-exponential time. Furthermore, we can use the automa-
ton Pϕ,α to solve the membership problem for the set of winning valuations
in doubly-exponential time: Pϕ,α has doubly exponential size and has ex-
ponentially many colors (both measured in |ϕ| + |α|), hence we can apply
Lemma 2 to reduce the membership problem to a parity game which can be
solved in doubly-exponential time.

Corollary 23. The membership problem for PLTL games is 2Exptime-
complete.
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000︸︷︷︸
c0

0′ 001︸︷︷︸
c1

1′ 010︸︷︷︸
c2

1′ 011︸︷︷︸
c3

0′ 100︸︷︷︸
c4

0′ 101︸︷︷︸
c5

1′ 110︸︷︷︸
c6

0′ 111︸︷︷︸
c7

1′

Figure 3: Binary encoding of the counter value 101 with positions in front of each bit

6. Lower Bounds on Optimal Variable Valuations

A consequence of our algorithm for the PLTLF emptiness problem is a
22O(|G|) upper bound on optimal variable valuations which allow Player 0 to
win a PLTLF game G. In this section, we present a 22

√
|G| lower bound.

Theorem 24. For every n ≥ 1, there exists a PROMPT–LTL game Gn
with winning condition ϕn with |Gn| ∈ O(n2) and var(ϕn) = {x} such that
W0(Gn) 6= ∅, but Player 1 wins Gn with respect to every variable valuation α
such that α(x) ≤ 22n.

The proof idea is to encode a binary counter with range {0, . . . , 22n − 1}
and require Player 0 to satisfy some obligation expressed by a parameterized
eventually operator, but only after the counter has reached value 22n − 1.
Player 1 is in charge of maintaining the counter and Player 0 has to check
whether Player 1 increments the counter correctly. If he does not, Player 0
may fulfill her obligation earlier. Hence, by always incrementing correctly,
Player 1 is able to prevent Player 0 from satisfying the parameterized even-
tually operator in less than 22n steps, but not longer than that.

We denote the values the counter assumes by d0, d1, d2, . . . and encode
each of them by 2n bits. To enable a small winning condition to check
the faulty increment claimed by Player 0, Player 1 has to precede every
bit of d` by a binary representation of its position cj ∈ [2n], which is of
length n. Figure 3 shows an example: the primed bits constitute the binary
representation of the counter value d` = 101, and each bit is preceded by its
position (here we have n = 3).

Player 0 can mark the position of a single bit of some d`+1 to claim
d`+1 6= d` + 1. Using the addresses cj, the winning condition can verify
whether the claim is correct or not. This idea is formalized in the following.

We begin the proof of Theorem 24 by fixing an n ≥ 1. The arena An
is depicted in Figure 4. The trace w of a play in An starting in the initial
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vertex d1 has the form

w ={$}{s}{b00} · · · {b0n−1}{b0n}{e}F0D0

{s}{b10} · · · {b1n−1}{b1n}{e}F1D1

{s}{b20} · · · {b2n−1}{b2n}{e}F2D2 · · ·

where each bjm with m in the range 0 ≤ m ≤ n − 1 is either 0 or 1, each bjn
is either 0′ or 1′, each Fj is either {f} or ∅, and each Dj is either {$} or ∅.
Note that the bits bjm and bjn as well as the Dj are determined by Player 1
while Player 0 only picks the Fj. On the other hand, Player 0 claims errors
using the proposition f .

s

{s}
h0

{0}

l0

{1}

h1

{0}

l1

{1}

· · ·

· · ·

· · ·

hn−1

{0}

ln−1

{1}

hn

{0′}

ln

{1′}

e

{e} f0

∅

f1

{f}

d0

∅

d1

{$}

Figure 4: The arena An for Theorem 24

We interpret the sequence bj0 · · · b
j
n−1 as binary encoding of a number cj ∈

{0, . . . , 2n − 1}. Note that we do not use the primed bits bjn to define cj.
These are the bits for the counter d and are discussed below.

We begin by expressing requirements on the bits produced by Player 1
during a play, which can easily be expressed in LTL. If w is a model of
the formula G F $, then there are infinitely many ` such that Dj = {$}. In
this case, we interpret the primed bits between the `-th and the (` + 1)-st
occurrence of {$} as (big endian) binary encoding of a natural number d`.
At the moment, we cannot bound the size of these numbers, since there is
no bound on the distance between the dollars. Such a bound is enforced by
the conjunction of three formulae, which require the numbers cj between two
occurrences of a dollar to implement a binary counter.

1. Initialization: after each dollar, the next number cj is zero.
2. Increment: if a number cj is strictly smaller than 2n − 1, then we have
cj+1 = cj + 1.
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3. Reset: if a number cj is equal to 2n− 1, then it is followed by a dollar.

If w satisfies the conjunction ψ1 of these three requirements and the
formula G F $, then infinitely many dollars occur in w and there are ex-
actly 2n primed bits between each adjacent pair of dollars. Hence, we have
0 ≤ d` ≤ 22n − 1 for every `. Furthermore, we can construct ψ1 such that its
size is quadratic in n.

All previous formulae express requirements on Player 1’s behavior since
he is in charge of producing the cj and d`. Now, we turn our attention to
Player 0. Her only task is to decide whether to move to f0 or to f1, thereby
producing a position at which the proposition f holds or does not hold. The
formula ψf = G(f →X G¬f) expresses that there is at most one position
at which f holds. As last formula, consider ψerr = Fψ′err where8

ψ′err = s ∧ (¬$ U ($ ∧ ¬$ U f))∧

X(
n−1∧
j=0

(
j

X 0↔ F(0 ∧X(n−j)+2f))) ∧ (ψmax ∨ ψfaulty−inc)

where ψmax = ¬$ U ($ ∧ (¬0′ U $)) and

ψfaulty−inc =
[(
¬0′ U $

)
→ F

(
1′ ∧X2f

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
0′ ∧

(
¬0′ U $

)))
→ F

(
0′ ∧X2f

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
0′ ∧

(
¬$ U 0′

)))
→ F

(
1′ ∧X2f

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
1′ ∧

(
¬$ U 0′

)))
→ F

(
0′ ∧X2f

)]
.

Let us dissect the formula ψerr: assume we have (w, α) |= ψerr, i.e., there
exists a position m such that (w,m, α) |= ψ′err. At this position, s holds
true. Hence, the next n positions encode a number cj. Furthermore, after
the next dollar, f holds true at least once before the next dollar occurs. If
we assume ψf to be satisfied by w, then this is the only f occurring in w.
This f is preceded by another sequence of bits which encode a number cj′ .
The next subformula of ψ′err requires the values cj and cj′ to be equal: here,
we use the fact that at these positions either 0 or 1 holds, but not both at
the same time. Hence, the next primed bit after the position n is the cj-th
bit of some number d` and the primed bit two positions before the position

8Here, we use Xk as shorthand for k nested next operators.
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at which f holds is the cj-th bit of d`+1. The final disjunction is satisfied, if
these primed bits witness d`+1 6= d` + 1 (by the disjunct ψfaulty−inc) or if we
have d`+1 = 22n − 1 (by the disjunct ψmax): ψmax is satisfied, if there is no
primed zero between the next two dollars, which implies d`+1 = 22n−1, since
we still assume ψ1 to be satisfied. Now consider the conjuncts of ψfaulty−inc:
the first one is satisfied if the bits right of (including) the cj-th one of d`
are all ones, but the cj-th bit of d`+1 is not flipped to zero. The second one
is satisfied if the bits right of (excluding) the cj-th one of d`, which is zero,
are all ones, but the cj-th bit of d`+1 is not flipped to one. The last two
formulae are symmetric, thus we only explain the third one: it is satisfied, if
the cj-th bit of d` is a zero and is followed by another zero before the next
dollar occurs, and the cj-th bit of d`+1 is flipped. Thus, ψ′err is indeed satisfied
at a position m if the next primed bit and the primed bit before the (only)
occurrence of f witness d`+1 6= d` + 1 or if we have d`+1 = 22n − 1.

Let us wrap things up and prove Theorem 24.

Proof. Consider the game Gn = (An, d1, ϕ) with

ϕ = ψ1→ (ψf ∧ ψerr ∧ F≤xf) .

The arena has 2n+ 8 vertices and the size of ϕn is quadratic in n.
Next, we show that W0(Gn) is non-empty. Let w be the trace of a play

of Gn. If it does not satisfy ψ1, then it is winning for Player 0. So, assume
we have w |= ψ1. Then, w has the form as described above: the cj’s count
from 0 to 2n − 1 and the numbers d` are in the range 0 ≤ d` ≤ 22n − 1.
In this situation, Player 0 has to ensure that f holds exactly once, at a
position as described above: either after d` = 22n − 1 or after a primed bit
that witnesses a faulty increase by Player 1. Player 0 is always able to find
such a position since Player 1 can produce at most 22n numbers d` without
introducing a faulty increment. Hence, Player 0 wins Gn with respect to some
α. On the other hand, by always incrementing the d` correctly until they
reach 22n − 1, Player 1 is able to win Gn with respect to (at least) every α
such that α(x) ≤ n · 2n · 22n , since there are 22n values for d, each having 2n

bits which are encoded by one round through the arena, each of which visits
more than n vertices.

7. Conclusion

We have shown the membership, emptiness, finiteness, and universality
problem for PLTL games to be 2Exptime-complete. Thus, these problems
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are not harder than solving LTL games without parameterized operators.
Furthermore, all but the finiteness problem for PLTLG games can be reduced
to solving a single LTL game.

This has to be contrasted with the status of the PLTL optimization prob-
lems for which we presented an algorithm with triply-exponential running
time. It is open whether the optimization problems for games can also be
solved in doubly-exponential time. We have complemented our algorithm
for these problems by a doubly-exponential lower bound on the value of an
optimal variable valuation for a unipolar game.

A challenging open problem concerns the memory requirements of win-
ning strategies realizing optimal variable valuations: these strategies are
finite-state, but in some cases being optimal requires more memory than
just being winning. The exact tradeoff between quality and size of a winning
strategy remains to be investigated. Note that this question is very general
and can be posed for many other winning conditions with an induced quality
measure as well.

Finally, we propose to investigate the following variant of PLTL games:
according to our definition, the emptiness problem for PLTL games asks
whether there exists a strategy σ and a variable valuation α such that every
play that is consistent with σ is a model of the winning condition with respect
to α, i.e., the order of quantifiers is ∃σ∃α∀ρ. If we change the order to
∃σ∀ρ∃α, we ask whether there is a strategy such that the winning condition
is satisfied on every consistent play, but with a variable valuation that may
depend on the play. Thus, instead of guaranteeing uniform bounds for all
plays consistent with a strategy, Player 0 only has to guarantee some bound
on each play. This non-uniform variant of PLTL games is reminiscent of
finitary objectives [18].
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