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This work considers a finite-duration variant of Muller games, and their connection to

infinite-duration Muller games. In particular, it studies the question of how long a finite-
duration Muller game must be played before the winner of the finite-duration game is

guaranteed to be able to win the corresponding infinite-duration game. Previous work by

McNaughton has shown that this must occur after
∏n

j=1(j!+1) moves, and the reduction
from Muller games to parity games gives a bound of n · n! + 1 moves. We improve upon

both of these results, by giving a bound of 3n moves.
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1. Introduction

In an infinite game, two players move a token through a finite graph, thereby con-

structing an infinite path. The winner is determined by a winning condition, which

partitions the infinite paths of the graph into winning paths for Player 0 and win-

ning paths for Player 1. Many winning conditions depend on the vertices that are

visited infinitely often, i.e., the winner of a play cannot be determined after a finite

number of steps. We study the following question: is it possible to give a criterion

to define a finite duration variant of an infinite game? Such a criterion has to stop
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a play after a finite number of steps and then declare a winner based on the finite

play constructed thus far. It is sound if Player 0 has a winning strategy for the

infinite duration game if and only if Player 0 has a winning strategy for the finite

duration game.

McNaughton considered the problem of playing infinite games in finite time

from a different perspective. His motivation was to make infinite games suitable for

“casual living room recreation” [8]. As human players cannot play infinitely long,

he envisions a referee that stops a play at a certain time and declares a winner. The

justification for declaring a winner is that “if the play were to continue with each

[player] playing forever as he has so far, then the player declared to be the winner

would be the winner of the infinite play of the game” [8].

Besides this recreational aspect of infinite games there are several interesting

theoretical questions that motivate this problem. A sound criterion to stop a play

after at most n steps yields a simple algorithm to determine the winner of the

infinite game: the finite duration game can be seen as a reachability game on a

finite tree of depth at most n that is won by the same player that wins the infinite

duration game. There exist simple and efficient algorithms to determine the winner

in reachability games on trees and thus also to determine the winner of the infinite

duration game. Furthermore, if winning strategies for the reachability game can be

turned into (small) finite-state winning strategies for the infinite duration game,

then this may yield strategies with memory bounds that are better than those

obtained through game reductions. This is because the bounds obtained from game

reductions ignore the structure of the arena. Therefore, we may be able to improve

upon these results in the average case, although the worst case bounds given by

Dziembowski, Jurdziński, and Walukiewicz [3] will continue to hold.

Consider the following criterion: the players move the token through the arena

until a vertex is visited twice. An infinite play can then be obtained by assuming that

the players continue to play the loop that they have constructed, and the winner

of the finite play is declared to be the winner of this infinite continuation. If the

game is determined with positional strategies for both players, then this criterion is

sound: if a player has a positional winning strategy for the infinite game, then this

strategy can be used to win the finite version of the game and vice versa.

Therefore, McNaughton considered games that are not positionally determined.

Here, the first loop does not determine an entire infinite play, as memory allows a

player to make different decisions when a vertex is seen again. Therefore, the players

have to play longer before the play can be stopped and analyzed.

McNaughton considered Muller games, which have the form (G,F0,F1), whereG

is a finite arena and (F0,F1) is a partition of the powerset of the vertices. Player i

wins a play if the set of vertices visited infinitely often is in Fi. Muller winning

conditions allow us to express all other winning conditions that depend only on the

infinity set of a play (e.g., Büchi, co-Büchi, parity, Rabin, and Streett conditions).

To give a sound criterion for Muller games, McNaughton defined for every set of

vertices F a scoring function ScF that keeps track of the number of times the set F
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Fig. 1. An arena G.

was visited entirely since the last visit of a vertex that is not in F . In an infinite

play, the set of vertices seen infinitely often is the unique set F such that ScF tends

to infinity after being reset to 0 only a finite number of times.

Let G be the arena in Figure 1 (Player 0’s vertices are shown as circles

and Player 1’s vertices are shown as squares) and consider the Muller game

G = (G,F0,F1) with F0 = {{0, 1, 2}, {0}, {2}}. In the play 100122121 the score

for the set {1, 2} is 3, as it was seen thrice (i.e., with the infixes 12, 21, and 21).

Note that the order of the visits to the elements of F is irrelevant and that it is not

required to close a loop in the arena. The following winning strategy for Player 0

bounds the scores of Player 1 by 2: arriving from 0 at 1 move to 2 and vice versa.

However, Player 0 cannot avoid a score of 2 for Player 1, as either the play prefix

1001 or 1221 is consistent with every winning strategy.

McNaughton proved the following criterion to be sound [8]: stop a play after

a score of |F |! + 1 for some set F is reached for the first time, and declare the

winner to be the Player i such that F ∈ Fi. However it can take a large number

of steps for a play to reach a score of |F |! + 1, as scores may increase slowly or be

reset to 0. It can be shown that a play must be stopped by this criterion after at

most
∏|G|
j=1(j! + 1) steps. Furthermore, there are examples in which it takes at least

1
2

∏|G|
j=1(j! + 1) steps before the criterion declares a winner.

The reduction from Muller games to parity games [5, 7] provides another sound

criterion. The reduction constructs a parity game of size |G| · |G|!, and since par-

ity games are positionally determined, a winner can be declared after the players

construct a loop in the parity game. This gives a sound criterion that stops a play

after at most |G| · |G|! + 1 steps.

Our contribution. Our goal is to improve the stopping criterion given by

McNaughton. While he showed that stopping the play after a score of |F |! + 1 has

been reached for some set F yields a sound criterion, we will show that stopping the

play after a score of 3 has been reached for some set still yields a sound criterion.

This is somewhat surprising, since the threshold is independent of the size of the

arena and the complexity of the partition (F0,F1). This result is obtained by using

the internal structure of the winning regions computed by Zielonka’s algorithm [10]

to carefully define a winning strategy that bounds the scores of the opponent by 2.

This suffices, since the score of some set must be unbounded in every infinite play.

In the example above, we have shown that Player 0 cannot avoid a score of 2 for

some set in F1. However, this does not rule out that using the threshold of 2 still

yields a sound criterion. This is because in the example there is always some set

in F0 that reaches a score of 2 before a set in F1 does. In contrast to this, we will

provide an example upon which the threshold of 2 does not yield a sound criterion.
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Hence, the threshold of 3 in our main theorem is optimal.

We complement this by proving that a score of 3 must be reached after at

most 3|G| steps. Hence, we obtain a better bound than |G| · |G|! + 1 steps and∏|G|
j=1(j! + 1) steps, which were derived from waiting for a repetition of memory

states or McNaughton’s criterion, respectively.

Related work. Usually, the quality of a strategy is measured in terms of mem-

ory needed to implement it. However, there are other quality measures of winning

strategies. Chatterjee, Henzinger, and Horn have studied a strengthening of parity

objectives, where a bound between the occurrences of even colors is required [2].

Another quality measure appears in work on request-response games [6, 11], where

waiting times between requests and their responses are used to define the value of

a play. There it is shown that time-optimal winning strategies can be computed

effectively. The maximal score achieved by the opponent is a quality measure for

winning strategies in a Muller game. Player 0 prefers plays with small scores for

Player 1, which corresponds to not spending a long time in a set of the opponent.

Bernet, Janin, and Walukiewicz used a reduction from parity games to safety

games in order to compute the most permissive multi-strategy in a parity game [1].

Such a strategy encompasses the behaviors of all positional winning strategies. Fur-

thermore, the reduction also allows us to compute the winning regions in the parity

game by computing the winning regions in the safety game.

This paper is structured as follows. Section 2 contains basic definitions and

fixes our notation. In Section 3, we introduce the scoring functions, prove some

properties about scoring, and define finite-time Muller games. In Section 4, we

present Zielonka’s algorithm which is used in Section 5 to prove the main result.

Section 6 ends the paper with a conclusion and some pointers to further research.

2. Definitions

The power set of a set S is denoted by 2S and N denotes the non-negative integers.

The prefix relation on words is denoted by v, its strict version by @. Given a word

w = xy, define x−1w = y and wy−1 = x.

An arena G = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a

partition (V0, V1) of V denoting the positions of Player 0 (drawn as circles) and

Player 1 (drawn as squares). We require that every vertex has at least one outgoing

edge. A set X ⊆ V induces the subarena G[X] = (V ∩X,V0∩X,V1∩X,E∩(X×X)),

if every vertex in X has at least one successor in X. A Muller game G = (G,F0,F1)

consists of an arena G and a partition (F0,F1) of 2V .

A play in G starting in v ∈ V is an infinite sequence ρ = ρ0ρ1ρ2 . . . such that

ρ0 = v and (ρn, ρn+1) ∈ E for all n ∈ N. The occurrence set Occ(ρ) and infinity

set Inf(ρ) of ρ are given by Occ(ρ) = {v ∈ V | ∃n ∈ N such that ρn = v} and

Inf(ρ) = {v ∈ V | ∃ωn ∈ N such that ρn = v}. We also use the occurrence set of a

finite play w. A play ρ in a Muller game is winning for Player i if Inf(ρ) ∈ Fi.
A strategy for Player i is a function σ : V ∗Vi → V satisfying (v, σ(wv)) ∈ E for
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all w ∈ V ∗ and all v ∈ Vi. The play ρ is consistent with σ if ρn+1 = σ(ρ0 . . . ρn)

for every n ∈ N with ρn ∈ Vi. The set of strategies for Player i is denoted by Πi.

The unique play starting at v ∈ V that is consistent with σ ∈ Πi and τ ∈ Π1−i is

denoted by Play(v, σ, τ). A strategy σ for Player i is positional, if σ(wv) = σ(v) for

every w ∈ V ∗ and every v ∈ Vi. Hence, we denote a such a strategy by σ : Vi → V .

A strategy σ for Player i is a winning strategy from a vertex v ∈ V , if every

play that starts in v and is consistent with σ is won by Player i. The strategy σ is

a winning strategy for a set of vertices W ⊆ V , if every play that starts in some

v ∈W and is consistent with σ is won by Player i. The winning region Wi contains

all vertices from which Player i has a winning strategy. A game is determined if W0

and W1 form a partition of V .

Theorem 1 ([5]) Muller games are determined.

Let G = (V, V0, V1, E) be an arena and let X ⊆ V be a set that induces a

subarena. The attractor for Player i of a set F ⊆ V in X is AttrXi (F ) =
⋃|V |
n=0An

where A0 = F ∩X and

An+1 = An ∪{v ∈ Vi ∩X | ∃v′ ∈ An such that (v, v′) ∈ E}
∪ {v ∈ V1−i ∩X | ∀v′ ∈ X with (v, v′) ∈ E : v′ ∈ An} .

A set X ⊆ V is a trap for Player i, if all outgoing edges of the vertices in Vi ∩X
lead to X and at least one successor of every vertex in V1−i ∩X is in X.

Lemma 2. Let G be an arena with vertex set V and F,X ⊆ V such that X induces

a subarena.

(1) Player i has a positional strategy to bring the play from every v ∈ AttrXi (F )

into F .

(2) The set V \AttrXi (F ) induces a subarena and is a trap for Player i in G.

A strategy as in (1) is called attractor strategy.

3. The Scoring Functions and Finite-time Muller Games

This section introduces the notions that are required to formally define finite-time

Muller games. In his study of these games, McNaughton introduced the concept of

a score. For every set of vertices F the score of a finite play w is the number of

times that F has been visited entirely since w last visited a vertex in V \ F .

Definition 3 (Score) For every F ⊆ V we define ScF : V + → N as

ScF (w) = max{k ∈ N |∃x1, . . . , xk ∈ V + such that

Occ(xi) = F for all i and x1 · · ·xk is a suffix of w} .

We extend this notion by introducing the concept of an accumulator. For every

set F , the accumulator measures the progress that has been made towards the next

score increase of F .
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Definition 4 (Accumulator) For every F ⊆ V we define AccF : V + → 2F by

AccF (w) = Occ(x), where x is the longest suffix of w such that ScF (w) = ScF (wy−1)

for every suffix y of x, and Occ(x) ⊆ F .

A simple consequence of these definitions is that sets with non-zero score and

the accumulators of all sets are all pairwise comparable.

Lemma 5 (cf. Theorem 4.2 of [8]) Let w ∈ V +. The sets F with ScF (w) ≥ 1

together with the sets AccF (w) for some F form a chain in the subset relation.

Proof. It suffices to show that all such sets are pairwise comparable: let F and

F ′ be two sets such that either ScF (w) ≥ 1 or F = AccH(w) for some H ⊆ V

and either ScF ′(w) ≥ 1 or F ′ = AccH′(w) for some H ′ ⊆ V . Then, there exist two

decompositions w = w0w1 and w = w′0w
′
1 with Occ(w1) = F and Occ(w′1) = F ′.

Now, either w1 is a suffix of w′1 or vice versa. In the first case, we have F ⊆ F ′ and

in the second case F ′ ⊆ F .

Note that Lemma 5 implies that there can be at most |V | sets that have a

non-zero score at the same time.

Finally, we define the maximum score function. This function maps a subset

F ⊆ 2V and a play ρ to the highest score that is reached during ρ for a set in F .

Definition 6 (MaxScore) For every F ⊆ 2V we define MaxScF : V + ∪ V ω →
N ∪ {∞} by MaxScF (ρ) = maxF∈F maxwvρ ScF (w).

To illustrate these definitions, consider the play w = 12210122 in the arena G

shown in Figure 1, and the set F = {1, 2}. We have that ScF (w) = 1, because 122 is

the longest suffix of w that is contained in F , and the entire set {1, 2} is seen once

during this suffix. We have AccF (w) = {2}, because only vertex 2 has been seen

since the score of F increased to 1. On the other hand, we have MaxSc{F}(w) = 2

because the prefix w′ = 1221 of w has ScF (w′) = 2.

McNaughton proposed that scores should be used to decide the winner in a finite-

time Muller game. As soon as a threshold score of k for some set F is reached, the

play is stopped and if F ∈ Fi then Player i is declared the winner. The next lemma

shows that this is sufficient to ensure that the game always terminates.

Lemma 7. Let k ∈ N. Every w ∈ V ∗ with |w| ≥ k|V | satisfies MaxSc2V (w) ≥ k.

Proof. We show by induction over |V | that every word w ∈ V ∗ with |w| ≥ k|V |

contains an infix x that can be decomposed as x = x1 · · ·xk where every xi is a

non-empty word with Occ(xi) = Occ(x). This implies MaxSc2V (w) ≥ k.

The claim holds trivially for |V | = 1 by choosing x to be the prefix of w of

length k and xi = s for the single vertex s ∈ V . For the induction step, consider a

set V with n + 1 vertices. If w contains an infix x of length kn which contains at

most n distinct vertices, then we can apply the inductive hypothesis and obtain a
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decomposition of an infix of v with the desired properties. Otherwise, every infix x

of w of length kn contains every vertex of V at least once. Let x be the prefix of

length kn+1 of w and let x = x1 · · ·xk be the decomposition of x such that each

xi is of length kn. Then, we have Occ(xi) = Occ(x) = V for all i. Therefore, the

decomposition has the desired properties.

Lemma 7 implies that a finite-time Muller game with threshold k must end

after at most k|V | steps. We show that this bound is tight. For every k > 0 we

inductively define a word over the alphabet Σn = {1, . . . , n} by w(k,1) = 1k−1 and

w(k,n) = (w(k,n−1)n)k−1w(k,n−1). The word w(k,n) has length kn−1, and it can also

be shown that MaxSc2Σn (w(k,n)) = k − 1. This can easily be turned into a game

where Player 1 loses, but can produce w(k,n) to avoid losing for as long as possible.

Finally, to declare a unique winner in every play of a finite-time Muller game

we must exclude the case where two sets hit score k at the same time. McNaughton

observed that this cannot happen.

Lemma 8 ([8]) Let k, l ≥ 2, let F, F ′ ⊆ V , let w ∈ V ∗ and v ∈ V such that

ScF (w) < k and ScF ′(w) < l. If ScF (wv) = k and ScF ′(wv) = l, then F = F ′.

We can now define a finite-time Muller game. Such a game G = (G,F0,F1, k)

consists of an arena G = (V, V0, V1, E), a partition (F0,F1) of 2V , and a threshold

k ≥ 2. By Lemma 7 we have that every infinite play must reach score k for some

set F after a bounded number of steps. Therefore, we define a play for the finite-

time Muller game to be a finite path w = w0 · · ·wn with MaxSc2V (w0 · · ·wn) = k,

but MaxSc2V (w0 · · ·wn−1) < k. Due to Lemma 8, there is a unique F ⊆ V such

that ScF (w) = k. Player 0 wins the play w if F ∈ F0 and Player 1 wins otherwise.

The notions of strategies and winning regions can all be redefined for finite games.

Applying a result of Zermelo to finite-time Muller games yields the following lemma.

Lemma 9 ([9]) Finite-time Muller games are determined.

In fact, McNaughton considered a slightly different definition of a finite-time

Muller game. Rather than stopping the play when the score of a set reaches the

global threshold k, in his version the play is stopped when the score of a set F

reaches |F |! + 1. He obtained the following result.

Theorem 10 ([8]) If Wi is the winning region of Player i in a Muller game

(G,F0,F1), and W ′i is the winning region of Player i in McNaughton’s finite-time

Muller game, then Wi = W ′i .

Adapting the proof of Lemma 7 one can show that a play in this version is

stopped after at most
∏|G|
j=1(j! + 1) steps. Furthermore, adapting the construction

of the lower bounds w(k,n) above, one can also show that there are words wn ∈ Σ∗n
such that |wn| ≥ 1

2

∏|G|
j=1(j! + 1) and MaxSc{F}(wn) < |F |! + 1 for every F ⊆ Σn.

The threshold in McNaughton’s game grows factorially in the size of the arena.

Our goal is to find the smallest value of k for which a Muller game and the corre-
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0 1 2 3

Fig. 2. The arena G.

sponding finite-time Muller game with threshold k have the same winning regions.

As the singleton set {v} has a score of 1 as soon as a play starts in v, the thresh-

old 1 is obviously too small. We finish this section by proving that 3 is the smallest

possible threshold for which this equivalence can hold. The rest of this paper is

dedicated to showing that it does indeed hold for threshold 3.

Theorem 11. There is a Muller game (G,F0,F1) with winning region W0 and

corresponding finite-time Muller game (G,F0,F1, 2) with winning region W ′0 such

that W0 6= W ′0.

Proof. Consider the arena G in Figure 2 with F1 = {{0, 1, 2}, {0, 2, 3}}. The fol-

lowing strategy σ is winning for Player 0 from every vertex: at vertex 2 alternate

between moving to 1 and to 3. Every play ρ consistent with σ either ends up in the

loop between 0 and 1 or visits every vertex infinitely often. In both cases, ρ is won

by Player 0.

On the other hand, Player 1 has a winning strategy from vertex 3 in

(G,F0,F1, 2): starting at 3, Player 1 moves to 0 and then 2. Now, if Player 0

moves to 3, Player 1 answers by moving to 0 and 2. The resulting play 302302 is

won by Player 1, as the set {0, 2, 3} ∈ F1 has reached a score of 2 and no set of

Player 0 has reached a score of 2. If Player 0 moves to 1, then Player 1 answers by

moving to 0, 1, and then to 2, which gives the play 3021012 that is also won by

Player 1.

4. Zielonka’s Algorithm For Muller Games

This section presents Zielonka’s algorithm for Muller games [10], a reinterpretation

of an earlier algorithm due to McNaughton [7]. Our notation mostly follows [3, 4].

The internal structure of the winning regions computed by the algorithm is used in

Section 5 to define a strategy that bounds the scores of the losing player by 2.

As we consider uncolored arenas, we have to deal with Muller games where

(F0,F1) is a partition of 2V
′

for some finite set V ′ ⊇ V , as the algorithm makes

recursive calls for such games. This does not change the semantics of Muller games,

as we have Inf(ρ) ⊆ V for every infinite play ρ.

We begin by introducing Zielonka trees, a representation of winning conditions

(F0,F1). Given a family of sets F ⊆ 2V
′

and X ⊆ V ′, we define F � X = {F ∈ F |
F ⊆ X}. Given a partition (F0,F1) of 2V

′
, we define (F0,F1) � X = (F0 � X,F1 �

X). Note that F � X ⊆ F .
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Definition 12 (Zielonka tree [3]) For a winning condition (F0,F1) defined over

a set V ′, its Zielonka tree ZF0,F1
is defined as follows: suppose that V ′ ∈ Fi

and let V ′0 , V
′
1 , . . . , V

′
k−1 be the ⊆-maximal sets in F1−i. The tree ZF0,F1

con-

sists of a root vertex labelled by V ′ with k children which are defined by the trees

Z(F0,F1)�V ′0
, . . . ,Z(F0,F1)�V ′k−1

.

For every Zielonka tree T , we define RtLbl(T ) to be the label of the root in T ,

we define BrnchFctr(T ) to be the number of children of the root, and we define

Chld(T, j) for 0 ≤ j < BrnchFctr(T ) to be the j-th child of the root. Here, we

assume that the children of every vertex are ordered by some fixed linear order.

The input of Zielonka’s algorithm (see Algorithm 1) is a finite arena G with

vertex set V and the Zielonka tree of a partition (F0,F1) of 2V
′

for some finite set

V ′ ⊇ V . For the sake of exposition, we assume that RtLbl(ZF0,F1
) ∈ F1 in the

subsequent paragraphs, which implies that Zielonka’s algorithm chooses i to be 1.

If this is not the case then the roles of the two players can be swapped. The same

assumption is made in Section 5. The algorithm computes the winning regions of

the players by successively removing parts of Player 0’s winning region (the sets

U0, U1, U2, . . .). By doing this, the algorithm computes an internal structure of the

winning regions that is crucial to proving our results in the next section.

Algorithm 1 Zielonka(G,ZF0,F1
).

i := The index j such that RtLbl(ZF0,F1
) ∈ Fj

k := BrnchFctr(ZF0,F1
)

if The root of ZF0,F1
has no children then

Wi = V ; W1−i = ∅
return(W0,W1)

end if

U0 := ∅; n := 0

repeat

n := n+ 1

An := AttrV1−i(Un−1)

Xn := V \An
Tn := Chld(ZF0,F1 , n mod k)

Yn := Xn \AttrXn
i (V \ RtLbl(Tn))

(Wn
0 ,W

n
1 ) := Zielonka(G[Yn], Tn)

Un := An ∪Wn
1−i

until Un = Un−1 = · · · = Un−k
Wi = V \ Un; W1−i = Un
return (W0,W1)

Figure 3 depicts the situation in the n-th iteration of the algorithm. The vertices

in Un−1 have already been removed and belong to W0. Thus, all vertices in the 0-
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Un−1

AttrV0 (Un−1)

V \ RtLbl(Tn)

AttrXn
1 (V \ RtLbl(Tn))

Wn
0 Wn

1

Fig. 3. The sets computed by Zielonka’s algorithm.

attractor of Un−1 also belong to W0. After removing these vertices from the arena,

the algorithm also removes the vertices in the 1-attractor of V \ RtLbl(Tn). The

remaining vertices form a subarena whose vertex set is a subset of RtLbl(Tn). Hence,

the algorithm can recursively compute the winning regions Wn
i in this subarena with

Zielonka tree Tn. By construction, the winning region Wn
0 is also a subset of the

winning region W0, and so the algorithm can move into the next iteration with

Un = An ∪Wn
0 . The algorithm only terminates when the size of the set Un does

not increase for k = BrnchFctr(ZF0,F1) consecutive iterations.

The execution of Zielonka’s algorithm gives us a structure for W0 and W1

that we use in Section 5. The set W0 is partitioned into the attractors given by

the sets An \ Un−1, and the recursively computed winning regions given by the

sets Wn
0 . On the other hand, the structure of W1 is given by the final k iterations

of the algorithm. In each of these iterations, the algorithm computes an attractor

AttrXn
1 (V \ RtLbl(Tn)), where Xn = W1, and it recursively computes a winning

region Wn
1 . The attractor and the winning region are a partition of the set W1.

Since we have Tn = Chld(ZF0,F1
, n mod k), the final k iterations of the algorithm

give k distinct partitions, one for each child of the root of the Zielonka tree.

Theorem 13 ([10]) Algorithm 1 terminates with a partition (W0,W1), where

Player 0 has a winning strategy for W0 and Player 1 has a winning strategy for W1.

Zielonka’s winning strategies are defined inductively: Player 0 plays the attractor

strategy to Un−1 on each set An \ Un−1, and the recursively computed winning

strategy on each set Wn
0 . Every play consistent with this strategy must eventually

be contained within one of the sets Wn
0 , hence the strategy is winning for Player 0.

Player 1 plays using a cyclic counter c ranging over 0, . . . , k − 1: suppose c = j

and let n be the index at which the algorithm terminated. In Wn−j
1 , the strategy

plays according to the recursively computed winning strategy. If Player 0 chooses

to leave Wn−j
1 , then the strategy starts playing an attractor strategy to reach V \

RtLbl(Tn−j). Once this set has been reached, the counter c is incremented modulo k,

and the strategy begins again. There are two possibilities for a play consistent with

this strategy: if it stays from some point onwards in some Wn−j
1 , then it is winning

by the inductive hypothesis. Otherwise, it visits infinitely many vertices in V \
RtLbl(Chld(ZF0,F1

, j)) for every j in the range 0 ≤ j < BrnchFctr(ZF0,F1
), which
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0 1 2 3 · · · n

Fig. 4. The arena Gn for Lemma 14.

implies that the infinity set of the play is not a subset of any RtLbl(Chld(ZF0,F1
, j)).

Hence, it is in F1 and the play is indeed winning for Player 1.

We continue by showing that these winning strategies do not bound the score

of the opponent by a constant.

Lemma 14. There exists a family of Muller games Gn = (Gn,Fn0 ,Fn1 ) with |Gn| =
n+ 1 and |Fn0 | = 1 such that W0 = V , but MaxScFn

1
(Play(v, σ, τ)) = n, where σ is

Zielonka’s strategy, v ∈ V , and τ ∈ Π1.

Proof. Let Gn = (Vn, Vn, ∅, En) with Vn = {0, . . . , n}, En = {(i + 1, i) | i <
n}∪{(0, n), (1, n)} (see Figure 4), and Fn0 = {Vn}. The Zielonka tree for the winning

condition (Fn0 ,Fn1 ) has a root labeled by Vn and n+ 1 children that are leaves and

are labeled by Vn \ {i} for every i ∈ Vn. Assume the children are ordered as follows:

Vn \{0} < · · · < Vn \{n}. Zielonka’s strategy for Gn, which depends on the ordering

of the children, can be described as follows. Initialize a counter c := 0 and repeat:

(1) Use an attractor strategy to move to vertex c.

(2) Increment c modulo n+ 1.

(3) Go to 1.

This strategy is winning from every vertex. Now assume a play consistent with

this strategy has just visited 0. Then, it visits all vertices 1, . . . , n in this order

by cycling through the loop n, . . . , 1 exactly n times. Hence, the score for the set

{1, . . . , n} ∈ F1 is infinitely often n.

By contrast, Player 0 has a positional winning strategy for Gn that bounds the

opponents scores by 2 (and even 1). The reason the strategy described above fails

to do this is that it ignores the fact that all other vertices are visited while moving

to the vertex 0. In the next section we construct a strategy that recognizes such

visits, and it turns out that this is sufficient to bound the opponent’s scores by 2.

5. Bounding the Scores in a Muller Game

In this section, we prove our main result: the finite-time Muller game with thresh-

old 3 is equivalent to the corresponding Muller game.

Theorem 15. If Wi is the winning region of Player i in a Muller game (G,F0,F1),

and W ′i is the winning region of Player i in the finite-time Muller game

(G,F0,F1, 3), then Wi = W ′i .
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To prove Theorem 15, we show that if a player has a winning strategy for the

Muller game, then this player also has a winning strategy for the Muller game that

bounds the scores of the opponent by 2. Since the player could use this strategy in

order to win the finite Muller game with threshold 3, this implies that for i ∈ {0, 1}
we have Wi ⊆ W ′i . Since W0 and W1 partition the set of vertices, this fact is

sufficient to prove Theorem 15. Note that this actually proves a stronger statement:

for every threshold k ≥ 3 the finite-time Muller game (G,F0,F1, k) is equivalent to

the Muller game (G,F0,F1).

The rest of this section is dedicated to proving the following lemma.

Lemma 16. Player i has a winning strategy σ for her winning region Wi in a

Muller game G = (G,F0,F1) such that MaxScF1−i
(Play(v, σ, τ)) ≤ 2 for every

vertex v ∈Wi and every τ ∈ Π1−i.

In Lemma 14 we saw that the strategies computed by Zielonka’s algorithm do

not necessarily satisfy the property required by Lemma 16. Our task is to produce

strategies that do bound the opponent’s scores by 2. Our strategies are similar in

structure to those that are produced by Zielonka’s algorithm, but we must take

much more care to ensure that the properties required by Lemma 16 are satisfied.

The winning strategies produced by Zielonka’s algorithm have a recursive struc-

ture, which means that a winning strategy σ for a set of vertices W often proceeds

by playing a recursively computed winning strategy σ′ for a set of vertices W ′ ⊂W .

For example, the two players could construct a path v0 . . . vn, where vn ∈ W ′, and

then σ could start executing σ′ with the starting vertex vn. However, the vertex vn
may not be the first point at which the play entered the set W ′, and there could be

a suffix vmvm+1 . . . vn of the play such that each vertex in the suffix is contained in

W ′. The strategies produced by Zielonka’s algorithm ignore this suffix, because it

is not relevant when we only want to construct a winning strategy.

By contrast, when we want to construct a winning strategy that satisfies the

properties given by Lemma 16, this suffix turns out to be vitally important. We

now give some definitions that allow us to work with such suffixes. Firstly, we

redefine the notion of a play. Previously we had that a play begins at a starting

vertex, but now we allow a play to begin with a finite initial path over which the

players have no control. This new definition is useful, because it allows strategies

to base their decisions on the properties of the finite initial path.

Definition 17 (Play) For a non-empty finite path w = w0 · · ·wm and strategies

σ ∈ Πi, τ ∈ Π1−i, we define the infinite play Play(w, σ, τ) = ρ0ρ1ρ2 · · · inductively

by ρn = wn for 0 ≤ n ≤ m and for n > m by

ρn =

{
σ(ρ0 · · · ρn−1) if ρn−1 ∈ Vi,
τ(ρ0 · · · ρn−1) if ρn−1 ∈ V1−i.

In fact, the finite paths that are passed to our strategies are not totally arbitrary.

As described previously, these paths arise out of decisions made before the strategy
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was recursively applied. Therefore, we have some control over the form that these

paths take. We construct our strategy so that every path passed to a recursive

strategy has the following property.

Definition 18 (Burden) Let F ⊆ 2V
′
. A finite path w is an F-burden if

MaxScF (w) ≤ 2 and for every F ∈ F either ScF (w) = 0 or ScF (w) = 1 and

AccF (w) = ∅.

A path w satisfies the criteria of a burden if it has the following two properties.

Firstly, the requirement that MaxScF (w) ≤ 2 means that the score of every set

F ∈ F must be bounded by 2 at every point along the path w. Secondly, the score

of each set F ∈ F at the end of the path must either be 0 or 1. Additionally, if the

score is 1, then the accumulator of this set must be empty. In other words, while

the scores are allowed to reach 2 during the path, we insist that they satisfy a more

restricted condition at the end of the path.

Before we begin proving Lemma 16, we state a useful property of burdens that

is applied when we pass burdens to recursively computed strategies.

Remark 19. Let F ′ ⊆ F . Every suffix of an F-burden is an F ′-burden.

We are now ready to prove Lemma 16. We assume that RtLbl(ZF0,F1
) ∈ F1. If

this is not the case then the roles of the two players can be swapped. The proof is an

induction over the structure of the Zielonka tree. The inductive hypothesis is that,

if Zielonka’s algorithm computes the partition into winning regions as (W0,W1),

then Player i has a winning strategy for the set Wi that bounds the scores of every

set in F1−i by 2, even if the play starts with an F1−i- burden.

We begin with the base case of the induction, which occurs when the Zielonka

tree is a leaf. Since we assume RtLbl(ZF0,F1
) ∈ F1, we must have that W1 = V .

Therefore, Player 0 can be ignored in this proof.

Lemma 20. Let (G,F0,F1) be a Muller game with vertex set V such that ZF0,F1

is a leaf. Then, Player 1 has a strategy τ such that MaxScF0
(Play(wv, σ, τ)) ≤ 2

for every strategy σ ∈ Π0 and every F0-burden wv with v ∈ V .

Proof. As ZF0,F1
is a leaf and RtLbl(ZF0,F1

) ∈ F1 by assumption, we have F0 = ∅.
Hence, any strategy τ for Player 1 guarantees MaxScF0(Play(wv, σ, τ)) ≤ 2.

For the inductive step, we give two proofs: one for the set W0, and the other

for the set W1. We begin with the proof for the set W0. The structure of W0, as

computed by Zielonka’s algorithm, is shown in Figure 5. Recall that the set W0

consists of a number of sets Wn
0 , which are winning subregions of W0 that have

been recursively computed by the algorithm. We denote the recursively computed

winning strategy for Wn
0 as σR

n . This strategy satisfies the inductive hypothesis, so

we know that MaxScF1�Wn
0

(Play(wv, σR
n , τ)) ≤ 2 for every strategy τ of Player 1

in G[Wn
0 ] and every F1 � Wn

0 -burden wv with v ∈ Wn
0 . The sets An \ Un−1 are

attractors, and for each set An \ Un−1 we denote the attractor strategy as σA
n .
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W 1
0 A2 \ U1 W 2

0 A3 \ U2 W 3
0

Fig. 5. The structure of W0. The dashed line shows an example play according to σ∗.

We can now construct our proposed winning strategy. This strategy is similar

to the one that is constructed by Zielonka’s algorithm, but our strategy is careful

to pass the appropriate finite path to the recursively computed strategy σR
n . For

every path w and every vertex v, we define:

σ∗(wv) =


σR
n (w′v) if v ∈Wn

0 and w′ is the longest suffix of w with

Occ(w′) ⊆Wn
0 ,

σA
n (v) if v ∈ An \ Un−1.

Note that σ∗ passes the complete suffix of wv that is contained in Wn
0 to σR

n .

Applying Remark 19 yields, that if wv is an F1 � Wn
0 -burden, then w′v is also

an F1 � Wn
0 -burden. This allows us to apply the inductive hypothesis for σR

n in

the following proof, which shows that σ∗ has the property required by Lemma 16.

Therefore, the next lemma proves the part of the inductive step that deals with W0.

Lemma 21. For every F1 �W0-burden wv with v ∈W0 and every strategy τ ∈ Π1

we have MaxScF1�W0
(Play(wv, σ∗, τ)) ≤ 2.

Proof. The sets U1 ⊆ U2 ⊆ · · · ⊆ Un form a sequence of hierarchical traps

for Player 1. This means that once Play(wv, σ∗, τ) enters a set Uj , it may never

again visit a vertex in V \ Uj . Therefore, we can represent Play(wv, σ∗, τ) as

wanwnan−1wn−1 . . . akwk, where w is the burden without its last vertex, aj is the

portion of the play after w that is contained in Aj \ Uj−1, and wj is the portion

of the play after w that is contained in W j
0 . One or both of these infixes could be

empty, and the portion wk contains the infinite suffix of the play. We prove the

claim by induction over this decomposition. The base case follows from the fact

that wv is an F1 �W0 burden, and therefore MaxScF1�W0
(w) ≤ 2.

We have two cases to consider. Firstly we must prove that if we have

MaxScF1�W0
(wanwn . . . aj) ≤ 2, then we have MaxScF1�W0

(wanwn . . . ajwj) ≤ 2.

Here we assume that wj is nonempty, as the claim trivially holds if wj = ε. Let s

be the first vertex of wj and let F ∈ F1 � W0. If F contains at least one vertex in

W0 \W j
0 , then the score of F can increase by at most one during the portion wj ,

because the play is confined to the set W j
0 . Since wv is a burden, we must have

ScF (wv) ≤ 1. Since anwn . . . aj does not visit the set W j
0 , and since AccF (wv) = ∅ in

case ScF (wv) = 1, we must therefore have ScF (wanwn . . . aj) ≤ 1. Thus, even if the

score of F is increased by 1 during wj , it cannot increase to more than 2 throughout
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W j
1

AttrW1
1 (W1 \ RtLbl(Tj))

W1 \ RtLbl(Tj)

Fig. 6. The structure of W1 with respect to Tj . The dashed line indicates a part of a play according
to τ∗ between two change points.

wj . Finally, we consider the sets F ⊆ W j
0 . In this case the claim follows from the

inductive hypothesis given by Lemma 16 for the recursively computed strategy σR
j .

However, to invoke the inductive hypothesis, we must have that wanwn . . . ajs is

an F1 � W
j
0 -burden. If anwn . . . aj is non-empty, then this holds, because then we

have ScF (wanwn . . . aj) = 0 for every set F ⊆W j
0 . This implies that wanwn . . . ajs

is indeed an F1 � W
j
0 -burden. On the other hand, if anwn . . . aj is empty, then we

have s = v. Thus, as wanwn . . . ajs = wv is an F1 � W0-burden by assumption, it

is also an F1 �W
j
0 -burden.

Secondly, we must prove that if MaxScF1�W0
(wanwn . . . wj+1) ≤ 2, then

MaxScF1�W0
(wanwn . . . wj+1aj) ≤ 2. Let F ∈ F1 � W0. If F contains a vertex

in W0 \ (Aj \ Uj−1), then the score of F must remain below 2 for exactly the same

reasons as in the previous case. Otherwise, if F ⊆ Aj \ Uj−1, then we claim that

the score of F can rise to at most 2 during the portion aj . By construction of the

decomposition we have that the score of F is at most 1 at the start of the portion aj .

It is easy to show that if an attractor strategy is played, then every vertex in the

attractor can be seen at most once. This implies that the score of F can increase

to at most 2 during aj .

We now turn our attention to the set W1. Let k = BrnchFctr(ZF0,F1
). The last

k iterations of Zielonka’s algorithm produce for each child Tj = Chld(ZF0,F1 , j)

with 0 ≤ j ≤ k − 1 an instance of the situation depicted in Figure 6. The set

AttrW1
1 (W1 \ RtLbl(Tj)) has an associated attractor strategy τAj , and the set W j

1

has a recursively computed winning strategy τRj . This strategy satisfies the inductive

hypothesis, so we know that MaxScF0�W
j
1
(Play(wv, σ, τRj )) ≤ 2 for every strategy σ

of Player 0 in G[W j
1 ] and every F0 �W

j
1 -burden wv with v ∈W j

1 .

Figure 6 shows the outcome when Player 1 plays τRj and τAj . The play remains in

the set W j
1 until Player 0 chooses to leave, at which point the play is forced to visit

some vertex in W1 \ RtLbl(Tj). Once the play enters W1 \ RtLbl(Tj), a new index

j′ 6= j is selected, and τRj′ and τAj′ is played. The strategy produced by Zielonka’s

algorithm chooses j′ to be j+1 mod k, and Lemma 14 shows that this method does

not bound the scores of the losing Player by 2. Our goal is to provide a method for

choosing a new index that does bound the scores of the opponent by 2.

Recall that Lemma 5 implies that the sets that have non-zero score and the

non-empty accumulators form a chain with respect to the subset relation. Note
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that this property still holds even if we restrict ourselves to sets in F0. We define

the indicator function of a play to be the function that selects the maximal element

of this chain, when it is restricted to sets in F0. For every play w we define:

Ind(w) =
⋃

F∈F0 :
ScF (w)>0

F ∪
⋃
F∈F0

AccF (w) .

The next lemma gives an important property that is used in our index selection

method: there is always some child whose label contains the indicator.

Lemma 22. For every play w, there is some j in the range 0 ≤ j ≤ k − 1 such

that Ind(w) ⊆ RtLbl(Tj).

Proof. Lemma 5 implies that there is a maximal set C such that Ind(w) = C,

with either ScC(w) > 0 or AccF (w) = C for some F ∈ F0 with C ⊆ F . Hence,

Ind(w) ⊆ F for some F ∈ F0, and, by definition of ZF0,F1 , there is some child of

the root labeled by RtLbl(Tj) such that F ⊆ RtLbl(Tj).

When a new child must be chosen, our strategy chooses one whose label contains

the value of the indicator function for the play up to that point. Lemma 22 implies

that such a child must always exist. It is also critically important that this condition

is used when picking the child in the first step, which is why we had to introduce

the concept of a burden.

We can now formally define this strategy. The strategy uses an auxiliary function

c : W ∗1 → {0, 1, . . . , k − 1,⊥} that specifies which child the strategy is currently

considering. For each play w, if c(w) = j then the strategy follows τAj and τRj . If

c(w) = ⊥ then the strategy moves arbitrarily.

We begin by defining the function c. This definition encompasses the idea that

the strategy should always choose a child that contains the indicator. Therefore, we

define c(ε) = ⊥, and for every play w and every vertex v we define:

c(wv) =


c(w) if v ∈ RtLbl(Tc(w)),

j if v /∈ RtLbl(Tc(w)), Ind(wv) 6= ∅ and j minimal with

Ind(wv) ⊆ RtLbl(Tj),

⊥ if v 6∈
⋃

0≤j≤k−1 RtLbl(Tj).

Note that c is defined for every wv, as Ind(wv) = ∅ implies v 6∈
⋃

0≤j≤k−1 RtLbl(Tj).

We can now define τ∗ for W1 as:

τ∗(wv) =


τRj (w′v) if c(wv) = j, v ∈W j

1 and w′ is the longest suffix of w with

Occ(w′) ⊆W j
1 ,

τAj (v) if c(wv) = j, v ∈ RtLbl(Tj) \W j
1 ,

x if c(wv) = ⊥ where x ∈W1 with (v, x) ∈ E.

Note that τ∗ passes the complete suffix of wv that is contained in W j
1 to τRj .

Applying Remark 19 yields, that if wv is an F0 � W1-burden, then w′v is an F0 �
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ρ
p1 p2 p3 p4

W j
1︷ ︸︸ ︷ Attr

W1
1 (W1\RtLbl(Tj))︷ ︸︸ ︷

Fig. 7. The decomposition of a play for Lemma 24. The first vertex of p4 is not in RtLbl(Tj).

W j
1 -burden. This allows us to apply the inductive hypothesis for τRj in the part of

the inductive step that deals with the set W1.

We now prove that τ∗ has the required properties. Our proof uses change points,

which are positions in a play where the c function changes its value.

Definition 23 (Change Point) Let ρ0ρ1ρ2 . . . be a play. We say that n ∈ N is a

change point in ρ if c(ρ0ρ1 . . . ρn−1) 6= c(ρ0ρ1 . . . ρn−1ρn).

In the next Lemma, we prove that if Player 1 plays according to τ∗ starting

from a burden, then the play up to the next change point n is also a burden. Our

intention is to use this as part of an inductive proof that every play bounds the

scores of the opponent’s sets by 2.

Lemma 24. Let ρ = ρ0ρ1ρ2 . . . be a play, and let ρ0 . . . ρm be an F0 � W1-burden

such that ρ is consistent with τ∗ from at least m onwards. If n is the smallest change

point in ρ satisfying m < n, then ρ0 . . . ρn is an F0 �W1-burden.

Proof. Let j = c(ρ0 . . . ρm) be the index of the child that is chosen at the point ρm.

We first provide a proof for the case where j = ⊥. By definition this implies that

ρn′ /∈ RtLbl(Tl) for all n′ in the range m ≤ n′ < n and all l in the range 0 ≤
l ≤ k − 1. Therefore, for every F ∈ F0 we must have ScF (ρ0 . . . ρn′) = 0 and

AccF (ρ0 . . . ρn′) = ∅ for all n′ in the range m ≤ n′ < n. From this, it is easy to see

that ρ0 . . . ρn is an F0 �W1-burden.

For the case j 6= ⊥ we split the play ρ into four pieces, as depicted in Figure 7.

The piece p1 contains the portion of ρ up to and including the point ρm and the

piece p4 contains the portion of ρ after and including the change point ρn. The

piece p2 contains the portion of ρ between the points ρm and ρn that is contained in

the set W j
1 , and the piece p3 contains the portion of ρ between the points ρm and ρn

that is contained in the set AttrW1
1 (W1 \RtLbl(Tj)). Clearly, we have ρ = p1p2p3p4.

We now prove that MaxScF0(p1p2p3) ≤ 2. The scores at position ρn will be

considered later. For the portion p1 the scores are bounded by 2 by assumption.

Now, consider a set F ∈ F0. During the portion p2, we know that τRj is being played,

and therefore the inductive hypothesis given by Lemma 16 is sufficient to prove the

claim for the case where F ⊆ W j
1 . On the other hand, if there is a vertex s ∈ F

such that s /∈W j
1 , then s cannot be visited during the portion p2. This implies that

the score of F can increase by at most 1 during p2. Since p1 is a burden, we have

that ScF (p1) ≤ 1, which implies that MaxSc{F}(p1p2) ≤ 2.
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During the portion p3 we know that the attractor strategy τAj is being played,

which implies that each vertex in AttrW1
1 (W1 \RtLbl(Tj)) can be seen at most once

during this portion. Consider a set F ∈ F0. If F ∩AttrW1
1 (W1 \RtLbl(Tj)) = ∅ then

the score of F is 0 during the portion p3. Therefore, we only need to consider the

case where F ∩ AttrW1
1 (W1 \ RtLbl(Tj)) 6= ∅. The assumption that p1 is a burden

implies that ScF (p1) ≤ 1. If F ∩ W j
1 = ∅ then the score of F cannot increase

during p2, and since p3 never sees the same vertex twice, we have that the score

of F can increase by at most 1 during p3.

If F ∩W j
1 6= ∅, then we consider two cases. If ScF (p1) = 0, then the score of F

can increase only once during p2, as the vertex in AttrW1
1 (W1\RtLbl(Tj)) cannot be

visited in p2. Similarly, the score of F can increase only once during p3, as the vertex

in W j
1 cannot be visited in p3. Hence, it can only increase to 2 during p3. Otherwise,

if ScF (p1) = 1 and AccF (p1) = ∅, then the score of F cannot increase during p2, as

the vertex in AttrW1
1 (W1 \RtLbl(Tj)) cannot be visited. Furthermore, the score can

only be increased once during p3, as no vertex in AttrW1
1 (W1 \RtLbl(Tj)) is visited

twice by p3. Therefore, we have shown that MaxScF0
(p1p2p3) ≤ 2.

To complete the proof, we must show that for every set F ∈ F0, either we have

ScF (p1p2p3ρn) = 0, or we have ScF (p1p2p3ρn) = 1 and AccF (p1p2p3ρn) = ∅. We

split this proof into two cases. Firstly, we consider sets F ∈ F0 such that ScF (p1) = 1

and AccF (p1) = ∅. By definition of c we have F ⊆ Ind(p1), and therefore by

definition of our strategy, we must have F ⊆ RtLbl(Tj). Since ρn ∈W1 \RtLbl(Tj),

we must have ρn /∈ F . This implies that ScF (p1p2p3ρn) = 0.

We now consider the case where ScF (p1) = 0. If ρn ∈ F , then ρn /∈ AccF (p1),

as we have AccF (p1) ⊆ RtLbl(Tj) and ρn /∈ RtLbl(Tj). Hence, we must have

ScF (p1p2p3) = 0, as p2p3 is confined to RtLbl(Tj). Therefore, if ScF (p1p2p3ρn) = 1

then we must have AccF (p1p2p3ρn) = ∅. On the other hand, if ρn /∈ F then we

must have ScF (p1p2p3ρn) = 0.

Lemma 24 explains why burdens must be passed between recursive strategies.

We use Lemma 24 inductively to show that the strategy τ∗ bounds the scores of

Player 0 by 2. However, for the base case of this inductive proof to hold, the finite

path that was passed to the strategy must satisfy the burden property. The next

lemma shows that τ∗ satisfies the properties required by Lemma 16.

Lemma 25. We have MaxScF0�W1(Play(wv, σ, τ∗)) ≤ 2 for every strategy σ ∈ Π0

and every F0 �W1-burden wv with v ∈W1.

Proof. Let ρ = Play(wv, σ, τ∗). Since wv is a burden, we can use Lemma 24 in-

ductively to show that, if n ≥ |wv| is a change point in ρ, then ρ0ρ1 . . . ρn is a

burden. If ρ contains infinitely many change points, then the proof is complete.

This is because if the play up to every change point is a burden and there is an

infinite number of change points, then MaxScF0�W1
(ρ) ≤ 2.
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On the other hand, if there is only a finite number of change points, then

let n be the final change point in ρ. Since ρ0 . . . ρn is a burden, we have that

MaxScF0�W1
(ρ0 · · · ρn) ≤ 2. If c(ρ0 · · · ρn) = j for some j in the range 0 ≤ j ≤ k−1,

then we must have ρm ∈W j
1 for every m ≥ n. This implies that τ∗ follows σR

j from

the point n onwards. Since ρ0 . . . ρn is also an F1 � W
j
1 -burden, we can apply the

inductive hypothesis given by Lemma 16 to obtain MaxScF0�W1
(ρ) ≤ 2.

If c(ρ0 · · · ρn) = ⊥, then also c(ρ0 · · · ρm) = ⊥ for every m > n. This implies

ρm 6∈ RtLbl(Tj) for every j in the range 0 ≤ j ≤ k−1, and hence ScF (ρ0 · · · ρm) = 0

for every m > n and every F ∈ F0. Therefore, MaxScF0�W1
(ρ) ≤ 2.

Finally, we can prove Lemma 16, which also completes the proof of Theorem 15.

Proof. Theorem 13 yields that Algorithm 1 is correct, which means that the setsWi

returned are indeed the winning regions of the players. We prove the following

stronger statement by induction over the height of ZF0,F1 : Player i has a winning

strategy σ for her winning region Wi such that MaxScF1−i
(wv, σ, τ) ≤ 2 for every

strategy τ ∈ Π1−i and every F1−i � Wi-burden wv with v ∈ Wi. This implies

Lemma 16, as the finite play v for every v ∈Wi is an F1−i �Wi-burden.

For the induction start, apply Lemma 20. In the induction step, use the strategies

obtained from the inductive hypothesis to define σ∗ and τ∗ as above. Lemma 21

guarantees MaxScF1�W0
(Play(wv, σ∗, τ)) ≤ 2 for every τ ∈ Π1 and every F1 �

W0-burden wv with v ∈ W0. As Play(wv, σ∗, τ) is confined to W0, we also have

MaxScF1
(Play(wv, σ∗, τ)) ≤ 2 for every τ ∈ Π1 and every F1 �W0-burden wv with

v ∈W0. The reasoning for W1 is analogous and applies Lemma 25. Both σ∗ and τ∗

are winning, as they bound the scores of the opponent by 2.

6. Conclusion

We have presented a criterion to stop plays in a Muller game after a finite amount of

time that preserves winning regions. Our bound 3|G| on the length of a play improves

the bound |G| · |G|! + 1 obtained by a reduction to parity games. Furthermore, our

techniques show that the winning player can bound the scores of the opponent by

2 and that this bound is tight.

A finite-time Muller game with threshold k can be viewed as a reachability game

defined over the unraveling of the original arena up to depth at most k|G|, which

is of doubly-exponential size in |G|. Simple algorithms can be applied to solve this

game. Our results also allow us to reduce Muller games to safety games: for each

Muller game we can produce a safety game in which Player i wins if and only if

Player i is able to avoid a score value of 3 for all sets of the opponent.

Another interesting direction is to find a construction which turns a winning

strategy for a finite-time Muller game with threshold 3 into a finite-state strategy

for the original Muller game. It is conceivable that such a construction would yield

memory structures that are optimized for a given arena, something which does not

hold for the LAR respectively Zielonka tree structures.
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