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Abstract
HyperLTL, the extension of Linear Temporal Logic by trace quantifiers, is a uniform framework
for expressing information flow policies by relating multiple traces of a security-critical system.
HyperLTL has been successfully applied to express fundamental security policies like noninterference
and observational determinism, but has also found applications beyond security, e.g., distributed
protocols and coding theory. However, HyperLTL satisfiability is undecidable as soon as there
are existential quantifiers in the scope of a universal one. To overcome this severe limitation to
applicability, we investigate here restricted variants of the satisfiability problem to pinpoint the
decidability border.

First, we restrict the space of admissible models and show decidability when restricting the search
space to models of bounded size or to finitely representable ones. Second, we consider formulas with
restricted nesting of temporal operators and show that nesting depth one yields decidability for a
slightly larger class of quantifier prefixes. We provide tight complexity bounds in almost all cases.
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1 Introduction

The introduction of temporal logics for the specification of information flow policies [3] was
a significant milestone in the long and successful history of applying logics in computer
science [16]. Probably the most important representative of these logics is HyperLTL [3],
which extends Linear Temporal Logic (LTL) [23] by trace quantifiers. This addition allows
to express properties that relate multiple execution traces, which is typically necessary
to capture the flow of information [4]. In contrast, LTL, currently the most influential
specification language for reactive systems, is only able to express properties of single traces.

HyperLTL provides a uniform framework for expressing information flow policies in a
formalism with intuitive syntax and semantics, and for the automated verification of these
policies: A wide range of policies from the literature [15, 19, 20, 21, 22, 27] with specialized
verification algorithms is expressible in HyperLTL, i.e., universal HyperLTL verification
algorithms are applicable to all of them.

As an example, consider a system with a set I of inputs, which contains a hidden
input h ∈ I, and an output o. Now, noninterference [15] between h and o requires that no
information about h is leaked via o, i.e., for all execution traces π and π′, if the inputs in
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π and π′ only differ in h, then they have the same output at all times. Formally, this is
captured by the HyperLTL formula

∀π.∀π′.
(

G
∧

i∈I\{h}
(iπ ⇔ iπ′)

)
⇒ G (oπ ⇔ oπ′).

As another example, consider a system with a public output o and a secret output s (we
consider only one of each for simplicity). One may want to express that the behaviour of
the secret output cannot be inferred from the behaviour of the public one. HyperLTL can
express the property that for all executions of the system, there exists another execution
with the same behaviour of o but a different behaviour of s, using the formula

∀π.∃π′.G (oπ ⇔ oπ′) ∧ F¬(sπ ⇔ sπ′).

Today, there are tools for model checking HyperLTL properties [6, 13], for checking
satisfiability of HyperLTL properties [9, 11], for synthesizing reactive systems from HyperLTL
properties [10], and for runtime monitoring of HyperLTL properties [1, 2, 12]. Furthermore,
the extraordinary expressiveness of HyperLTL has been exhibited [14] and connections to
first and second-order predicate logics have been established [5, 14].

The major drawback of HyperLTL is the usual price one has to pay for great expressive-
ness: prohibitively high worst-case complexity. In particular, model checking finite Kripke
structures against HyperLTL formulas is nonelementary [3] and satisfiability is even undecid-
able [8]. These results have to be contrasted with model checking and satisfiability being
PSpace-complete for LTL [25], problems routinely solved in real-life applications [18].

Due to the sobering state of affairs, it is imperative to find fragments of the logic
with (more) tractable complexity. In this work, we focus on the satisfiability problem, the
most fundamental decision problem for a logic. Nevertheless, it has many applications in
verification, e.g., checking the equivalence and implication of specifications can be reduced to
satisfiability. Finally, the question whether a property given by some HyperLTL formula is
realizable by some system is also a satisfiability problem.

A classical attempt to overcome the undecidability of the satisfiability problem is to
restrict the number of quantifier alternations of the formulas under consideration. In fact, the
alternation depth is the measure underlying the nonelementary complexity of the HyperLTL
model checking problem [3]. However, the situation is different for the satisfiability problem:
It is undecidable even when restricted to ∀∃ formulas, i.e., formulas starting with one
universal quantifier followed by a single existential one [8]. All remaining prefix classes are
decidable by reductions to the LTL satisfiability problem, e.g., the satisfiability problem is
PSpace-complete for the alternation-free prefix classes ∃∗ and ∀∗ and ExpSpace-complete
for the class ∃∗∀∗ [8].

However, there are more complexity measures beyond the alternation depth that can
be restricted in order to obtain tractable satisfiability problems, both on formulas and on
models. The latter case is of particular interest, since it is known that not every satisfiable
HyperLTL has a “simple” model, for various formalizations of “simple” [14]. Thus, for those
formulas, such a restriction could make a significant difference. Furthermore, from a more
practical point of view, one is often interested in whether there is a, say, finite model while
the existence of an intricate infinite model may not be useful.

We study the satisfiability problem for formulas with restricted quantifier prefixes and
restricted temporal depth [7], which measures the nesting of temporal operators. Our main
result here shows that satisfiability is even undecidable for formulas of the form ∀2∃∗ϕ,
where ϕ has temporal depth one and only uses eventually F and always G , i.e., it is a
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Boolean combination of formulas Fϕ′ with propositional ϕ′. Thereby, we strengthen the
previous undecidability result for ∀∃ by bounding the temporal depth to one, but at the
price of a second universal quantifier. Moreover, we clarify the border between decidability
and undecidability at temporal depth two: Using only one universally quantified variable,
temporal depth one, and only F , G , and nested applications of next X leads to decidability.
Finally, we show that every HyperLTL formula can be transformed into an equisatisfiable
∀2∃∗ formula of temporal depth two, i.e., this fragment already captures the full complexity
of the satisfiability problem.

Thus, the overall picture is still rather bleak: if one only restricts the formula then the
islands of decidability are very small. Phrased differently, even very simple formulas are
extremely expressive and allow to encode computations of Turing-complete devices in their
models. However, note that such models are necessarily complex, as they need to be able to
encode an unbounded amount of information.

Thus, we also consider satisfiability problems for arbitrary formulas, but with respect to
restricted models which do not allow to encode such computations. In particular, we consider
three variants of increasing complexity: Checking whether a given HyperLTL formula has a
model of a given cardinality k is ExpSpace-complete, whether it has a model containing
only ultimately periodic traces of length at most k is N2ExpTime-complete, and checking
whether it has a model induced by a Kripke structure with k states is Tower-complete. The
last result is even true for a fixed Kripke structure, which therefore has implications for the
complexity of the model checking problem as well. Thus, the situation is more encouraging
when checking for the existence of small models: satisfiability becomes decidable, even with
(relatively) moderate complexity in the first two cases.

However, as argued above, all three approaches are (necessarily) incomplete: There
are satisfiable formulas that have only infinite models, satisfiable formulas that have only
non-ultimately periodic models, and satisfiable formulas that have no ω-regular models [14],
a class of models that includes all those that are induced by a finite Kripke structure.

All in all, our work shows that HyperLTL satisfiability remains a challenging problem,
but we have provided a complete classification of the tractable cases in terms of alternation
depth, temporal depth, and representation of the model (for formulas without until).

2 Definitions

Fix a finite set AP of atomic propositions. A valuation is a subset of AP. A trace over AP
is a map t : N → 2AP, denoted by t(0)t(1)t(2) · · · , i.e., an infinite sequence of valuations.
The set of all traces over AP is denoted by (2AP)ω. The projection of t to AP′ is the
trace (t(0) ∩ AP′)(t(1) ∩ AP′)(t(2) ∩ AP′) · · · over AP′. A trace t is ultimately periodic, if
t = x · yω for some x, y ∈ (2AP)+, i.e., there are s, p > 0 with t(n) = t(n+ p) for all n ≥ s.

The formulas of HyperLTL are given by the grammar

ϕ ::=∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ranges over atomic propositions in AP and where π ranges over a fixed countable
set V of trace variables. Conjunction, implication, equivalence, and exclusive disjunction ⊕,
as well as the temporal operators eventually F and always G are derived as usual. A sentence
is a closed formula, i.e., a formula without free trace variables. The size of a formula ϕ,
denoted by |ϕ|, is its number of distinct subformulas.

CSL 2020



29:4 The Keys to Decidable HyperLTL Satisfiability

The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅. Given a
trace assignment Π, a trace variable π, and a trace t we denote by Π[π → t] the assignment
that coincides with Π everywhere but at π, which is mapped to t. We also use shorthand
notation like [π1 → t1, . . . , πn → tn] and [(πi → ti)1≤i≤n] for Π∅[π1 → t1] . . . [πn → tn], if
the πi are pairwise different. Furthermore, Π[j,∞) denotes the trace assignment mapping
every π in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · .

For sets T of traces and trace assignments Π we define
(T,Π) |= aπ, if a ∈ Π(π)(0),
(T,Π) |= ¬ψ, if (T,Π) 6|= ψ,
(T,Π) |= ψ1 ∨ ψ2, if (T,Π) |= ψ1 or (T,Π) |= ψ2,
(T,Π) |= Xψ, if (T,Π[1,∞)) |= ψ,
(T,Π) |= ψ1 Uψ2, if there is a j ≥ 0 such that (T,Π[j,∞)) |= ψ2 and for all 0 ≤ j′ < j:
(T,Π[j′,∞)) |= ψ1,
(T,Π) |= ∃π.ϕ, if there is a trace t ∈ T such that (T,Π[π → t]) |= ϕ, and
(T,Π) |= ∀π.ϕ, if for all traces t ∈ T : (T,Π[π → t]) |= ϕ.

We say that T satisfies a sentence ϕ if (T,Π∅) |= ϕ. In this case, we write T |= ϕ and say
that T is a model of ϕ. Conversely, satisfaction of quantifier-free formulas does not depend
on T . Hence, we say that Π satisfies a quantifier-free ψ if (∅,Π) |= ψ and write Π |= ψ

(assuming Π is defined on all trace variables that appear in ψ).
The alternation depth of a HyperLTL sentence ϕ, denoted by ad(ϕ), is defined as its

number of quantifier alternations. Its temporal depth, denoted by td(ϕ), is defined as the
maximal depth of the nesting of temporal operators in the sentence. Formally, td and ad are
defined as follows:

td(aπ) = 0
td(¬ψ) = td(ψ)
td(ψ1 ∨ ψ2) = max(td(ψ1), td(ψ2))
td(Xψ) = 1 + td(ψ)
td(ψ1 Uψ2) = 1 + max(td(ψ1), td(ψ2))
td(∃π.ϕ) = td(ϕ)
td(∀π.ϕ) = td(ϕ)

ad(∃π.ψ) = 0 for quantifier-free ψ
ad(∀π.ψ) = 0 for quantifier-free ψ
ad(∃π.∃π′.ϕ) = ad(∃π′.ϕ)
ad(∀π.∀π′.ϕ) = ad(∀π′.ϕ)
ad(∃π.∀π′.ϕ) = 1 + ad(∀π′.ϕ)
ad(∀π.∃π′.ϕ) = 1 + ad(∃π′.ϕ)

Although HyperLTL sentences are required to be in prenex normal form, they are closed
under Boolean combinations, which can easily be seen by transforming such formulas into
prenex normal form. Note that this transformation can be implemented such that it changes
neither the temporal nor alternation depth, and can be performed in polynomial time.

The fragment HyperLTL1(F,G) contains formulas of temporal depth one using only F
and G as temporal operators, and HyperLTL1(F,G,X∗) contains formulas using only F ,
G , and X as temporal operators and of temporal depth one, however we allow iterations of
the X operator. Formally, HyperLTL1(F,G,X∗) formulas are generated by the grammar

ϕ ::=∃π.ϕ | ∀π.ϕ | ψ
ψ ::=¬ψ | ψ ∨ ψ | ψ ∧ ψ | X nψ′ | Fψ′ | Gψ′ | ψ′

ψ′ ::= aπ | ¬ψ′ | ψ′ ∨ ψ′ | ψ′ ∧ ψ′

where n ranges over the natural numbers. The grammar for HyperLTL1(F,G) is obtained
by removing X nψ′ from the grammar above.
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Also, we use standard notation for classes of formulas with restricted quantifier prefixes,
e.g., ∀2∃∗ denotes the set of HyperLTL formulas in prenex normal form with two universal
quantifiers followed by an arbitrary number of existential quantifiers, but no other quantifiers.

Finally, we encounter various complexity classes, classical ones from NP to N2ExpTime,
as well as Tower (see, e.g., [24]). Intuitively, Tower is the set of problems that can be

solved by a Turing machine that, on an input of size n, stops in time 22 ...
2

, with the height
of the tower of exponents bounded by b(n), where b is a fixed elementary function. The
reductions presented in this work are polynomial time reductions unless otherwise stated.

3 Satisfiability for Restricted Classes of Models

The satisfiability problem “Given a HyperLTL sentence ϕ, does ϕ have a nonempty model?”
is undecidable, even when restricted to finite models [8]. Hence, one has to consider simpler
problems to regain decidability. In this section, we simplify the problem by checking only for
the existence of simple models, for the following three formalizations of simplicity, where the
bound k is always part of the input:

Models of cardinality at most k (Theorem 1).
Models containing only ultimately periodic traces xyω with |x|+ |y| ≤ k (Theorem 2).
Models induced by finite-state systems with at most k states (Theorem 3).

In every case, we allow arbitrary HyperLTL formulas as input and encode k in binary.
With the following result, we determine the complexity of checking satisfiability with

respect to models of bounded cardinality. The algorithm uses a technique introduced by
Finkbeiner and Hahn [8, Theorem 3] that allows us to replace existential and universal
quantification by disjunctions and conjunctions, if the model is finite. Similarly, the lower
bound also follows from Finkbeiner and Hahn.

I Theorem 1. The following problem is ExpSpace-complete: Given a HyperLTL sentence ϕ
and k ∈ N (in binary), does ϕ have a model with at most k traces?

Proof. For the ExpSpace upper bound, one can check, given ϕ and k, satisfiability of the
sentence ∃π1 . . . ∃πk.ϕ where ϕ is defined inductively as follows:

ϕ = ϕ if ϕ is quantifier-free.
∀π.ϕ =

∧k
i=1 ϕ[π ← πi].

∃π.ϕ =
∨k
i=1 ϕ[π ← πi].

Here, ϕ[π ← πi] is obtained from ϕ by replacing every occurrence of π by πi. This sentence
states the existence of at most k traces satisfying ϕ by replacing every quantifier by an
explicit conjunction or disjunction over the possible assignments.

The resulting sentence is of size at most |ϕ|k|ϕ| + k, which is exponential in the size of
the input and its satisfiability can be checked in polynomial space in the size of the resulting
formula [8]. As a result, the problem is in ExpSpace as well.

Finkbeiner and Hahn showed that satisfiability is ExpSpace-complete for sentences of
the form ∃∗∀∗ [8]. This implies ExpSpace-hardness of our problem, as if such a sentence,
say with k existential quantifiers, is satisfiable then it has a model with at most k traces. J

As the algorithm proceeds by a reduction to the satisfiability problem for ∃∗ formulas,
which in turn is reduced to LTL satisfiability, one can show that a HyperLTL sentence ϕ has
a model with k traces if and only if it has a model with k ultimately periodic traces.

Next, we consider another variant of the satisfiability problem, where we directly restrict
the space of possible models to ultimately periodic ones of the form xyω with |x|+ |y| ≤ k.

CSL 2020
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As we encode k in binary, the length of those traces is exponential in the input and the
cardinality of the model is bounded doubly-exponentially. This explains the increase in
complexity in the following theorem in comparison to Theorem 1.

I Theorem 2. The following problem is N2ExpTime-complete: Given a HyperLTL sen-
tence ϕ and k ∈ N (in binary), does ϕ have a model whose elements are of the form xyω with
|x|+ |y| ≤ k?

As expected, the complexity of the satisfiability problem increases the more traces one has
at hand to encode computations. In Theorem 1, we have exponentially many; in Theorem 2,
we have doubly-exponentially many. In our last theorem, we consider infinite sets of traces
that are finitely representable by finite-state systems. Here, satisfiability becomes intractable,
yet still decidable, even when restricted to formulas of temporal depth one.

Formally, a Kripke structure K = (Q, δ,Q0, λ) consists of a finite set Q of states, a set Q0 ⊆
Q of initial states, a transition function δ : Q→ 2Q\{∅}, and a labelling function λ : Q→ 2AP.
A run of K is an infinite sequence q0q1q2 · · · of states starting with q0 ∈ Q0 and such that
qj+1 ∈ δ(qj) for all j ∈ N. A trace of K is the sequence of labels λ(q0)λ(q1)λ(q2) · · · associated
to a run q0q1q2 · · · of K. The set of traces of K is denoted by T(K).

I Theorem 3. The following problem is Tower-complete: Given a HyperLTL sentence ϕ
and k ∈ N (in binary), does ϕ have a model T (K) for some Kripke structure K with at most
k states?

Proof. Clarkson et al. presented a model-checking algorithm for HyperCTL∗ (and thus
for HyperLTL, which is a fragment of HyperCTL∗), and showed that its complexity is a
tower of exponentials whose height is the alternation depth of the input sentence [3]. Thus,
one can enumerate all Kripke structures with at most k states (up to isomorphism) and
model-check them one by one in Tower. This yields the desired upper bound, as there are
“only” exponentially many (in k) Kripke structures with k states.

The lower bound is obtained by a reduction from the universality problem for star-free
regular expressions with complementation. The equivalence problem for those expressions
is Tower-complete (under elementary reductions, which is standard for Tower-complete
problems), even for two-letter alphabets [24, 26]. As those expressions are closed by comple-
mentation and union, the universality problem is Tower-complete as well.

Star-free expressions with complementation over {a, b} are generated by the grammar

e ::= a | b | ε | ∅ | e+ e | ee | ¬e

and have the obvious semantics inducing a language over {a, b}∗, denoted by e as well.
Let e be such an expression. We construct a HyperLTL sentence ϕe and a Kripke

structure K such that T (K) is a model of ϕe if and only if e is universal. K does not depend
on e and is shown in Figure 1. As all sets of variables in K are singletons, we indifferently
use the notation a for the letter a and the singleton {a}. The set of traces induced by this
Kripke structure is

T (K) = lω + l∗(a+ b)ω + l∗(a+ b)∗rω + l∗#rω.

Given an expression e and a trace variable π, we inductively define a formula ψe,π which
expresses that when π is mapped by a trace assignment Π to a trace of K of the form lnwrω

with w ∈ {a, b}∗, then w ∈ e if and only if (T (K),Π) |= ψe,π.

ψ∅,π = aπ ∧ ¬aπ: No trace assignment satisfies ψ∅,π, just as the language of ∅ does not
contain any word.
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a

b

l r

#

Figure 1 The Kripke structure K (all states are initial).

ψε,π = G (lπ ∨ rπ): (T (K),Π) with Π(π) = lnwrω satisfies ψε,π if and only if w = ε.
ψa,π = ∃τ.(F #τ ) ∧ F (aπ) ∧G (lτ ⇔ lπ ∧ rτ ⇔ rπ) : The traces of K with an occurrence
of # are the traces of the form l∗#rω. Thus, (T (K),Π) with Π(π) = lnwrω satisfies ψa,π
if and only if lnwrω is a copy of such a trace with # replaced by a, i.e., if and only if
w = a.
ψb,π = ∃τ.(F #τ ) ∧ F (bπ) ∧G (lτ ⇔ lπ ∧ rτ ⇔ rπ): Similarly to ψa,π.
ψe1+e2,π = ψe1,π ∨ ψe2,π.
ψe1e2,π = ∃π1.∃π2.ψ ∧ ψ′ with

ψ = F rπ1 ∧ F rπ2 ∧G (¬#π1 ∧ ¬#π2) ∧ ψe1,π1 ∧ ψe2,π2

expressing that π1 and π2 are of the form ln1w1r
ω and ln2w2r

ω with w1 ∈ e1 and w2 ∈ e2,
and with

ψ′ = G (lπ2 ⇔ ¬rπ1) ∧G (aπ ⇔ (aπ1 ∨ aπ2) ∧ bπ ⇔ (bπ1 ∨ bπ2))

expressing that n2 = n1 + |w1| and that w = w1w2, where Π(π) = lnwrω. Thus, (T (K),Π)
satisfies ψe1e2,π if and only if there exist w1 ∈ e1, w2 ∈ e2 such that w = w1w2.
ψ¬e,π = ¬ψe,π.

Although this inductive definition does not necessarily give a formula in prenex normal
form, one can easily check that no quantifier is in the scope of a temporal operator, thus the
resulting formula can be turned into a HyperLTL formula.

To conclude, consider the sentence ϕe = ∀π.G¬rπ ∨ F #π ∨ ψe,π, which can again be
brought into prenex normal form. Further, note that no temporal operator is in the scope of
another one, thus ϕe has temporal depth one. The set T (K) is a model of ϕe if and only if all
its traces are in {a, b, l}ω, in l∗#rω, or of the form l∗wrω with w ∈ e. This is the case if and
only if all words w ∈ {a, b}∗ are in the language of e, i.e., if and only if e is universal. J

As the Kripke structure K in the lower bound proof above is fixed, we also obtain a novel
hardness result for model-checking.

I Corollary 4. HyperLTL model-checking a fixed Kripke structure with five states is Tower-
complete, even for sentences of temporal depth one.

Note that one could already infer the Tower-completeness of the model-checking problem
by carefully examining the proof of Theorem 5 of [3] concerning HyperCTL∗ model-checking.
The reduction from the satisfiability problem for QPTL presented there also works for
HyperLTL, albeit with temporal depth larger than one.

CSL 2020
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Table 1 Complexity of HyperLTL satisfiability in terms of quantifier prefixes and temporal depth.
An asterisk ∗ denotes that the upper bound only holds for until-free formulas. All lower bounds in
the second column already hold for temporal depth two.

temporal depth one arbitrary temporal depth

∃∗ / ∀∗ NP-complete ([7]+[8]) PSpace-complete ([8]+[25])
∃∗∀∗ NExpTime-complete (Thm. 12) ExpSpace-complete ([8])
∃∗∀∃∗ in N2ExpTime∗ (Thm. 11) undecidable ([8])
∀2∃∗ undecidable (Thm. 9) undecidable

4 Satisfiability for Restricted Classes of Formulas

After studying the HyperLTL satisfiability problem for classes of restricted models, but
arbitrary formulas, we now consider restrictions on formulas, but arbitrary models. Recall
that Finkbeiner and Hahn presented a complete picture in terms of quantifier prefixes:
Satisfiability is PSpace-complete for the alternation-free fragments ∃∗ and ∀∗ as well as
ExpSpace-complete for ∃∗∀∗. In all other cases, the problem is undecidable, i.e., as soon as
there is a universal quantifier in front of an existential one.

In a sense, the decidable fragments are variants of LTL: Both alternation-free fragments
can easily be reduced to LTL satisfiability while the ∃∗∀∗ one is easily reducible to the ∃∗
fragment, with an exponential blowup. Thus, the decidable fragments barely exceed the
realm of LTL.

In this section, we consider another dimension to measure the complexity of formulas,
temporal depth, i.e., we restrict the nesting of temporal operators. The hope is that in
this setting, we can obtain decidability for larger quantifier prefix classes. However, a slight
adaptation of Finkbeiner and Hahn’s undecidability result for ∀∃, along with an application
of Lemma 6 proven below, already shows undecidability for ∀∃ formulas of temporal depth
two and without untils.

Thus, we have to restrict our search to fragments of temporal depth one, which contain
most of the information flow policies expressible in HyperLTL [3]. And indeed, we prove
satisfiability decidable for ∃∗∀∃∗ HyperLTL1(F,G,X∗) formulas. Thus, if the temporal
depth is one and untils are excluded, then one can allow a universal quantifier in front
of existential ones without losing decidability. This fragment includes, for example, the
noninference property [21], as well as the second example presented in the introduction.

However, even allowing the smallest possible extension, i.e., adding a second universal
quantifier, leads again to undecidability: HyperLTL satisfiability is undecidable for ∀2∃∗
formulas of temporal depth one using only F as temporal operator. Thus, satisfiability
remains hard, even when severely restricting the temporal depth of formulas. Our results for
temporal depth one are summarized in Table 1.

We begin this section by showing that every HyperLTL formula can be transformed in
polynomial time into an equisatisfiable one with quantifier prefix ∀2∃∗ with temporal depth
two. Thus, this fragment already captures the full complexity of the satisfiability problem.
This transformation is later used in several proofs.

I Theorem 5. For every HyperLTL sentence one can compute in polynomial time an
equisatisfiable sentence of the form ∀2∃∗ with temporal depth at most two.

We decompose the proof into three steps, formalized by the following three lemmas. We
begin by reducing the temporal depth to at most two by adapting a construction of Demri
and Schnoebelen, which associates to every LTL formula an equisatisfiable formula with
temporal depth at most two [7].
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I Lemma 6. For every HyperLTL sentence Q1π1 . . . Qnπn.ψ with quantifier-free ψ, one can
compute in polynomial time an equisatisfiable sentence Q1π1 . . . Qnπn.∃π.ψ′ with quantifier-
free ψ′ and temporal depth at most two.

The idea is to add atomic propositions to witness the satisfaction of subformulas ψ′ of ψ.
We express the existence, for every n-tuple of traces (t1, . . . , tn) of the model, of a witness
trace. For all j ∈ N, for all subformulas ψ′ of ψ, the valuation [(πi → ti[j,∞))1≤i≤n] satisfies
ψ′ if and only if the associated atomic proposition is satisfied at position j of the witness
trace.

Next, we turn the quantifier prefix into the form ∀∗∃∗ without increasing the temporal
depth.

I Lemma 7. For every HyperLTL sentence ϕ, one can compute in polynomial time an
equisatisfiable sentence ϕ′ of the form ∀∗∃∗ψ with td(ϕ′) = max(td(ϕ), 1).

Here the key idea is to move existential quantifiers in the scope of universal ones after
marking them with fresh atomic propositions: We can replace an ∃∀ by a ∀∃ if we require
that the existentially quantified variable is now uniquely marked by a proposition (and
therefore cannot depend on the universally quantified variable).

The construction presented in the proof of Lemma 7 may increase the number of universally
quantified variables, but we can decrease that number to two without increasing the temporal
or alternation depth. This step also completes the proof of Theorem 5.

I Lemma 8. For every HyperLTL sentence ϕ of the form ∀∗∃∗ψ with quantifier-free ψ, one
can compute in polynomial time an equisatisfiable sentence ϕ′ of the form ∀2∃∗ψ′ where ψ′
is quantifier-free and td(ϕ′) = max(td(ϕ), 1).

This can be achieved by merging several traces into one. To this end, we increase the set of
atomic propositions by considering as new atomic propositions tuples of the previous atomic
propositions, i.e., one trace now encodes a tuple of traces. However we cannot decrease the
number of universal quantifiers below two this way, as we need two universal quantifiers to
ensure that every possible combination of traces is represented in the model, i.e., any model
of the resulting formula is the set of mergings of traces of another model.

Thus, ∀2∃∗ formulas with temporal depth two capture the complete complexity of the
satisfiability problem for HyperLTL. As the latter problem is undecidable and as all reductions
presented above are effective, we immediately obtain that satisfiability for ∀2∃∗ formulas
with temporal depth two is also undecidable.

As alluded to above, an even stronger result can be obtained by strengthening the proof of
Finkbeiner and Hahn for ∀∃ formulas to only use temporal depth two.1 Thus, only formulas
of temporal depth one remain to be considered.

Before we start investigating this class let us quickly comment on why we disregard
temporal depth zero: Every such sentence can easily be turned to an equisatisfiable instance
of QBF, which is known to be solvable in polynomial space.

Thus, it only remains to consider formulas with arbitrary quantifier prefixes, but temporal
depth one. Our main result of this section shows that even this problem is undecidable, even
for HyperLTL1(F,G) formulas with alternation depth one. Due to the restriction on the
temporal depth, our encoding of a Minsky machine is more complicated than it would be
with arbitrary temporal depth.

1 Alternatively, one can also obtain a direct reduction from the Turing machine immortality problem [17]
to satisfiability of ∀∃ sentences of temporal depth two.
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I Theorem 9. The following problem is undecidable: Given a ∀2∃∗ HyperLTL1(F,G)
sentence ϕ, is ϕ satisfiable?

Proof. We reduce from the (non)-halting problem for 2-counter Minsky machines. Recall
that such a machine can be seen as a tupleM = (Q,∆, q0) where Q is a finite set of states,
q0 ∈ Q an initial state, and ∆ ⊆ Q × {1, 2} × OP × Q a set of transition rules, where
OP = {++, --, =0?}. A configuration ofM is an element of Q × N × N. For all n, n′ ∈ N,
op ∈ OP we write n op−→ n′ if:

op is ++ and n′ = n+ 1.
op is -- and n′ = n− 1 (note that this operation is only applicable if n > 0).
op is =0? and n′ = n = 0.

There is a transition from (q, n1, n2) to (q′, n′1, n′2) if and only if there is an i ∈ {1, 2} and
op ∈ OP with (q, i, op, q′) ∈ ∆, n3−i = n′3−i, and ni

op−→ n′i. It is undecidable whether such a
machine has an infinite computation (q0, 0, 0)→ (q1, n

1
1, n

1
2)→ (q2, n

2
1, n

2
2)→ · · · .

LetM = (Q,∆, q0) be a 2-counter Minsky machine. We use AP = Q ∪ {1, 2} as atomic
propositions. Given i ∈ {1, 2}, we denote by i the other proposition. Consider the formula
ψ1 = ∀π.∀π′.G (1π ⇒ 1π′) ∨G (1π′ ⇒ 1π). We define ψ2 with 2 ∈ AP analogously. In the
following, we only consider sets of traces that satisfy ψ1 ∧ ψ2.

For each trace t ∈ (2AP)ω and i ∈ {1, 2}, we define the i-set of t as Si(t) = {j ∈ N | i ∈
t(j)}. Now fix T ⊆ (2AP)ω that satisfies ψ1 ∧ψ2. We define the pre-order ≤i on T as follows:
for all t, t′ ∈ T , t ≤i t′ if and only if Si(t) ⊆ Si(t′). It is straightforward to verify that ≤i
is indeed reflexive and transitive. We write t <i t′ if Si(t) ( Si(t′). As T satisfies ψ1 ∧ ψ2,
the ≤i are total pre-orders on T . We also define for all t ∈ T and i ∈ {1, 2}, the rank of t
with respect to i as rki(t) = |{Si(t′) | t′ ∈ T and t′ <i t}|, which may be infinite. Note that
if Si(t) = ∅ then rki(t) = 0, and that if Si(t) = Si(t′) then rki(t) = rki(t′). Also, note that
the rank depends on the fixed set T of traces under consideration.

Finally, as ≤i is a total pre-order, if we have t <i t′, but there is no t′′ with t <i t′′ <i t′,
then rki(t′) = rki(t)+1. Note that this holds even when rki(t) is infinite, assuming∞+1 =∞.

We construct a HyperLTL1(F,G) formula ϕ that encodes the existence of an infinite
computation (q0, 0, 0) → (q1, n

1
1, n

1
2) → (q2, n

2
1, n

2
2) → · · · of M. In a model T of ϕ, a

configuration (q, n1, n2) is encoded by a trace t with t(0) ∩ Q = {q} and for i ∈ {1, 2},
rki(t) = ni. Then, ϕ states the existence of an initial trace t0, representing the configuration
(q0, 0, 0), as well as the existence of a successor t′ encoding (q′, n′1, n′2) for each trace t encoding
(q, n1, n2), i.e., we require (q, n1, n2)→ (q′, n′1, n′2). The latter is witnessed by the existence
of a transition (q, i, op, q′) such that:
1. t(0) ∩ Q = {q} and t′(0) ∩ Q = {q′}, i.e., t and t′ indeed encode the states of their

respective configurations correctly.
2. For all j ∈ N, i ∈ t(j) if and only if i ∈ t′(j), i.e. Si(t) = Si(t′). Thus, as argued above,

rki(t) = rki(t′), which implies ni = n′
i
.

3. If op is ++ then t <i t
′ and there does not exist any t′′ such that t <i t′′ <i t′, i.e.,

rki(t′) = rki(t) + 1, as ≤i is a total pre-oder. Then, we have n′i = ni + 1.
4. If op is -- then t >i t

′ and there does not exist any t′′ such that t >i t′′ >i t′, i.e.,
rki(t′) = rki(t)− 1, as ≤i is a total pre-oder. Then, we have n′i = ni − 1.

5. If op is =0? then for all j ∈ N, i /∈ t(j) and i /∈ t′(j). Hence, Si(t) = Si(t′) = ∅, i.e.,
rki(t) = rki(t′) = 0, which implies ni = n′i = 0.

We encode those conditions in ϕ, which is the conjunction of the following three sentences
and of ψ1 ∧ ψ2:

ϕ1 = ∀π.
∧
q 6=q′∈Q qπ ⇒ ¬q′π expresses that a trace is associated to at most one state.

ϕ2 = ∃π0.(q0)π0
∧G (¬1π0 ∧ ¬2π0) expresses the existence of a trace representing the

initial configuration (q0, 0, 0).
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ϕ3 = ∀π.∃π′.
∨

(q,i,op,q′)∈∆ qπ ∧ q′π′ ∧ ϕi,op ∧G (iπ ⇔ iπ′) expresses that all traces have a
successor obtained by faithfully simulating a transition of the machine.

Here, we use the formulas
ϕ1,++ = ∀π′′.π <1 π

′ ∧ (π′′ ≤1 π ∨ π′ ≤1 π
′′),

ϕ1,-- = ∀π′′.π >1 π
′ ∧ (π′′ ≥1 π ∨ π′ ≥1 π

′′), and
ϕ1,=0? = G (¬1π ∧ ¬1π′),

where π ≤1 π
′ = G (1π ⇒ 1π′) and π <1 π

′ = π ≤1 π
′ ∧F (¬1π ∧ 1π′). Finally, we define the

formulas ≤2, <2, and ϕ2,op analogously.
The sentence ϕ is not in prenex normal form. However, as no quantifier appears in the

scope of a temporal operator, it can be put in that form. Further, it is not of the form ∀2∃∗,
but we can apply Lemmas 7 and 8 to bring it into this form while preserving the temporal
depth, which is already one. We claim that ϕ is satisfiable if and only ifM has an infinite
computation starting in (q0, 0, 0).

Suppose ϕ is satisfied by a model T . The subformulas ϕ1 and ϕ2 enforce that T
contains a trace t0 encoding the initial configuration (q0, 0, 0) of M. Further, ϕ3 ex-
presses that every trace t encoding a configuration (q, n1, n2) has a successor t′ encoding
a configuration (q′, n′1, n′2) with (q, n1, n2) → (q′, n′1, n′2). Thus, there exists an infinite
sequence t0, t1, t2, . . . of traces encoding an infinite run ofM.

Conversely, supposeM has an infinite run (q0, 0, 0)→ (q1, n
1
1, n

1
2)→ (q2, n

2
1, n

2
2) · · · , then

for all j let tj be the trace whose projection to Q is {qj}∅ω, and whose projection to {i} is
{i}n

j
i ∅ω for i ∈ {1, 2}. One can then easily check that {tj | j ∈ N} is a model of ϕ. J

Thus, two universal quantifiers before some existential ones and using only F and G
without nesting yields undecidable satisfiability. Our next result shows that removing one of
the two universal quantifiers allows us to recover decidability, even when allowing nested
next operators and leading existential quantifiers.

As a first step in the proof, we show that the nested next operators can be eliminated
without introducing additional universal quantifiers. This is true, as we are only interested
in satisfiability.

I Lemma 10. For every ∃∗∀∃∗ HyperLTL1(F,G,X∗) sentence, one can construct in poly-
nomial time an equisatisfiable ∃∗∀∃∗ HyperLTL1(F,G) sentence.

Now, we are ready to prove our main decidability result in this section. Note that we do
not claim a matching lower bound here. We comment on this gap in the conclusion.

I Theorem 11. The following problem is in N2ExpTime: Given a HyperLTL1(F,G,X∗)
sentence ϕ of the form ∃∗∀∃∗, is ϕ satisfiable?

Proof. Let ϕ = ∃τ1 . . . τn.∀π.∃τn+1 . . . ∃τn+n′ .ψ be a HyperLTL1(F,G,X∗) sentence with
quantifier-free ψ. Due to Lemma 10, it is enough to consider the case where ψ is a Boolean
combination of formulas of the form Fβ for a Boolean combination β of atomic propositions.

Note that such a formula can only specify the appearance or non-appearance of combina-
tions of atomic propositions on the quantified traces, but not the order of these combinations.
Hence, to every tuple (t1, . . . , tk) of traces ti ∈ (2AP)ω, we associate a finite set of tuples of
valuations V (t1, . . . , tk) = {(t1(j), . . . , tk(j)) | j ∈ N} ⊆ (2AP)k, i.e., the set all the tuples of
valuations that appear eventually. The cardinality of V (t1, . . . , tk) is at most 2k|AP|.

Let β be a Boolean combination of atomic propositions over trace variables π1, . . . , πk.
Then, a trace assignment [(πi → ti)1≤i≤k] satisfies Fβ if and only if there exists j ∈ N such
that β is satisfied at position j of (t1, . . . , tk), i.e., there exists (v1, . . . , vk) ∈ V (t1, . . . , tk) such
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that (v1, . . . , vk) satisfies β (in the sense that any trace assignment Π such that Π(πi)(0) = vi
for all i satisfies β). Intuitively, we abstract a tuple of traces into a finite set of tuples of
valuations, and then abstract a model as a set of such finite representations. Then, we show
that satisfiability can be decided using such abstractions.

So, whether a given trace assignment [(πi → ti)1≤i≤k] satisfies a given Boolean combina-
tion ψ of formulas Fβ only depends on V (t1, . . . , tk), and given V ⊆ (2AP)k, one can check
in polynomial time whether a trace assignment yielding V satisfies ψ. If it is the case, we
say that V satisfies ψ.

To check the satisfiability of ϕ, we start by nondeterministically guessing a set S ⊆
2(2AP)n+n′+1 of sets of (n + n′ + 1)-tuples of valuations. This set is supposed to represent
a model of ϕ. The n first valuations represent the fixed values assigned to τ1, . . . , τn. The
(n + 1)-th represents the valuation of the universally quantified variable. Thus, for every
trace of the model there must exist a tuple in which that trace is represented at position
n+ 1. The valuations of positions n+ 2 to n+ n′ have to be such that ϕ is satisfied by all
tuples.

Thus, we check the following requirements:
1. For all V1, V2 ∈ S, {(v1, . . . , vn) | (v1, . . . , vn+n′+1) ∈ V1} is equal to {(v1, . . . , vn) |

(v1, . . . , vn+n′+1) ∈ V2}: The set of values taken by the traces assigned to τ1, . . . , τn
cannot depend on the values of the other variables. Thus, we ensure that these values
are fixed in the guessed model.

2. For all V ∈ S and 1 ≤ i ≤ n + n′ + 1, there exists V ′ ∈ S such that {(v1, . . . , vn, vi) |
(v1, . . . , vn+n′+1) ∈ V } = {(v1, . . . , vn+1) | (v1, . . . , vn+n′+1) ∈ V ′}. All the values taken
by the existentially quantified variables have to be taken by the universally quantified
one as well.

3. For all V ∈ S, V satisfies ψ.

If all requirements are satisfied, we accept, otherwise we reject. This procedure requires
nondeterministic doubly-exponential time as |S| ≤ 22|AP|+n+n′+1 .

Suppose ϕ is satisfiable and fix a model T . There exist t1, . . . , tn ∈ T such that
(T, [(τi → ti)1≤i≤n]) |= ∀π∃τn+1 . . . ∃τn+n′ .ψ. Furthermore, for a fixed t ∈ T there ex-
ist tn+1, . . . , tn+n′ ∈ T such that (T, [(τi → ti)1≤i≤n+n′ , π → t]) |= ψ. Let V ∗(t) =
{(t1(j), . . . , tn(j), t(j), tn+1(j), . . . , tn+n′(j)) | j ∈ N}.

Now, one can easily check that Requirements 1, 2, and 3 are satisfied by {V ∗(t) | t ∈ T}.
Thus, the algorithm accepts ϕ.

Conversely, suppose the algorithm accepts ϕ. Then, there exists some S satisfying all
three requirements above. We construct from S a model T of ϕ.

Let t1, . . . , tn be traces such that for all V ∈ S, {(v1, . . . , vn) | (v1, . . . , vn+n′+1) ∈ V } =
V (t1, . . . , tn), and for all (v1, . . . , vn+n′+1) ∈ V , (v1, . . . , vn) = (t1(j), . . . , tn(j)) for infinitely
many j, i.e., each of the valuations appears infinitely often in the traces. Those traces can
be constructed due to Requirement 1.

Let T0 = {t1, . . . , tn}. For all ` ∈ N we construct T` by induction on ` ∈ N, while
maintaining the following two invariants:
1. For all t ∈ T` there exists V ∈ S such that V (t1, . . . , tn, t) is equal to {(v1, . . . , vn+1) |

(v1, . . . , vn+n′+1) ∈ V }, and for all (v1, . . . , vn+n′+1) ∈ V , (v1, . . . , vn+1) is equal to
(t1(j), . . . , tn(j), t(j)) for infinitely many j, where the ti are the traces in T0.

2. If ` > 0 then for every t ∈ T`−1, there exist traces tn+1, . . . , tn+n′ ∈ T` such that
[(τi → ti)1≤i≤n+n′ , π → t] |= ψ.
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By Requirement 2 and by construction, T0 satisfies Invariant 1, and it clearly satis-
fies Invariant 2. Let ` ∈ N, suppose T` has been constructed, and that it satisfies In-
variants 1 and 2. By Invariant 1, for all t ∈ T` we can construct traces tn+1, . . . , tn+n′

such that V (t1, . . . , tn, t, tn+1, . . . , tn+n′) ∈ S and for all (v1, . . . , vn, v, vn+1, . . . , vn+n′) ∈
V (t1, . . . , tn, t, tn+1, . . . , tn+n′), it is the case that (v1, . . . , vn, v, vn+1, . . . , vn+n′) is equal to
(t1(j), . . . , tn(j), t(j), tn+1(j), . . . , tn+n′(j)) for infinitely many j (as all the (v1, . . . , vn, v) ap-
pear infinitely many times in (t1, . . . , tn, t) by Invariant 1). Let I(t) = {tn+1, . . . , tn+n′}. Let
T`+1 =

⋃
t∈T I(t), which satisfies Invariant 1 by Requirement 2. It also satisfies Invariant 2

by definition. Furthermore, by Requirement 3, V (t1, . . . , tn, t, tn+1, . . . , tn+n′) satisfies ψ.
Finally, let T =

⋃
`∈N T` and let t ∈ T . Then, there exists an ` such that t ∈ T`. Thus,

there also exist tn+1, . . . , tn+n′ ∈ T`+1 such that [(τi → ti)1≤i≤n+n′ , π → t] satisfies ψ.
Therefore, T satisfies ϕ. J

Recall that satisfiability of ∃∗∀∗ formulas is ExpSpace-complete [8]. The proof of
Finkbeiner and Hahn can be slightly adapted to produce a formula of temporal depth two:
their approach states the existence of a trace representing a sequence of configurations
of an exponential-space bounded Turing machine. The only difficulty that can arise in
expressing the correctness of the run described by that trace is relating a position of one
of the configurations to the neighbouring positions in the next configuration (in order to
simulate the movement of the head). One may then require to combine an until and a next
in order to express this requirement, in the scope of an always expressing that it holds for
every position. This nesting can be removed by adding a fresh proposition p that is satisfied
on all positions of the first configuration, on none of the second one, and so on, i.e., its truth
value alternates between the configurations. One can then express the previous requirement
with a single until in the scope of an always, yielding temporal depth two.

Our next result shows that one obtains better complexity when restricting the temporal
depth of formulas to one.

I Theorem 12. The following problem is NExpTime-complete: Given an ∃∗∀∗ HyperLTL
sentence ϕ with temporal depth one, is ϕ satisfiable?

We adapt the proof of Finkbeiner and Hahn for ExpSpace-completeness of the problem
with arbitrary temporal depth [8], i.e., we turn the HyperLTL formula into an exponentially
larger equisatisfiable LTL one (cp. the proof of Theorem 1). The decrease in complexity is a
consequence of the switch from PSpace to NP of the complexity of LTL satisfiability when
restricting temporal depth to one [7].

We conclude by considering the satisfiability problem for HyperLTL1(F,G) with arbitrary
quantifier prefixes, but restricted to models induced by finite-state systems. The undecidability
of satisfiability for arbitrary formulas over finite-state systems can be easily inferred from the
proof of undecidability of satisfiability of Finkbeiner and Hahn, as the formulas they construct,
if satisfiable, have a finite and ultimately periodic model, which is therefore representable
by a finite-state system. For formulas of HyperLTL1(F,G), we leave decidability open, but
prove intractability.

I Theorem 13. The following problem is Tower-hard: Given a HyperLTL1(F,G) sen-
tence ϕ, does ϕ have a model T (K) for some Kripke structure K?

Let us conclude by remarking that the satisfiability problem for HyperLTL1(F,G) over
Kripke structures is different from the general one, i.e., there are satisfiable formulas which
are not satisfied by the set of traces of any Kripke structure. Consider for instance the
sentence ϕ = ∀π.∃π′.G (aπ ⇒ aπ′) ∧ F (¬aπ ∧ aπ′), which is satisfied by {a}∗∅ω.
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Suppose there exists a Kripke structure K with a set of traces satisfying this sentence.
We define inductively an increasing sequence of finite trace prefixes pn for n ∈ N as p0 = ε

and pn+1 = pn{a} if pn{a} is a prefix of a trace of K, and pn+1 = pn∅ otherwise. Let t be
the limit of the sequence (pn)n∈N, i.e., the unique trace with prefix pn for every n. As the pn
are prefixes of traces of K, t itself is a trace of K. As K satisfies ϕ, there exists t′ such that
for all j, if a ∈ t(j) then a ∈ t′(j) and there exists j∗ such that a ∈ t′(j∗) and a /∈ t(j∗). In
particular, there exists a minimal such j∗. Then pj∗+1 = pj∗∅, but pj∗{a} is a prefix of t′.
This contradicts the choice of pj∗+1, as we prefer to extend by {a} instead of ∅. Thus, the
satisfiable sentence ϕ is not satisfiable by the set of traces of a finite Kripke structure.

5 Conclusion

We have shown that HyperLTL satisfiability can be decidable, either if one restricts the space
of models one is interested in to sufficiently simple ones, or if one restricts the alternation
and temporal depth of the formulas under consideration. In particular, we have investigated
the formulas of temporal depth one without untils. An interesting open problem is to extend
the decidability result presented in Theorem 11 to formulas with untils. Also, we claimed no
lower bound on the problem solved in Theorem 11. We claim there is an ExpSpace lower
bound obtained by encoding exponential space Turing machines, but the exact complexity
of the problem is left open. Another interesting problem left open is the decidability of
HyperLTL1(F,G) over Kripke structures. We have presented a Tower lower bound in
Theorem 13, but it is open whether the problem is indeed decidable.

In general, restricting the space of models turns out to be more fruitful than to restrict the
formulas under consideration, as satisfiability is undecidable for extremely simple formulas
(simplicity being measured in alternation depth and temporal depth). An interesting challenge
pertains to finding other measures of simplicity that yield larger decidable fragments.
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