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We transform a Muller game with n vertices into a safety game with (n!)3 vertices whose solution
allows to determine the winning regions of the Muller game and to compute a finite-state winning
strategy for one player. This yields a novel antichain-based memory structure and a natural notion
of permissive strategies for Muller games. Moreover, we generalize our construction by presenting a
new type of game reduction from infinite games to safety games and show its applicability to several
other winning conditions.

1 Introduction

Muller games are a source of interesting and challenging questions in the theory of infinite games. They
are expressive enough to describe all ω-regular properties. Also, all winning conditions that depend
only on the set of vertices visited infinitely often can trivially be reduced to Muller games. Hence, they
subsume Büchi, co-Büchi, parity, Rabin, and Streett conditions. Furthermore, Muller games are not
positionally determined, i.e., both players need memory to implement their winning strategies. In this
work, we consider three aspects of Muller games: solution algorithms, memory structures, and quality
measures for strategies.

To date, there are two main approaches to solve Muller games: direct algorithms and reductions.
Examples for the first approach are Zielonka’s recursive polynomial space algorithm [22], which is based
on earlier work by McNaughton [17], and Horn’s polynomial time algorithm for explicit Muller games
[12]. The second approach is to reduce a Muller game to a parity game using Zielonka trees [7] or latest
appearance records (LAR) [11].

In general, the number of memory states needed to win a Muller game is prohibitively large [7].
Hence, a natural task is to reduce this number (if possible) and to find new memory structures which may
implement small winning strategies in subclasses of Muller games.

As for the third aspect, to the best of our knowledge there is no previous work on quality measures
for strategies in Muller games. This is in contrast to other winning conditions. Recently, much attention
is being paid to not just synthesize some winning strategy, but to find an optimal one according to a
certain quality measure, e.g., waiting times in request-response games [13] and their extensions [23],
permissiveness in parity games [1, 3], and the use of weighted automata in quantitative synthesis [2, 5].
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2 Solving Muller Games via Safety Games

Inspired by work of McNaughton [18], we present a framework to deal with all three issues. Our
main contributions are a novel algorithm and a novel type of memory structure for Muller games. We
also obtain a natural quality measure for strategies in Muller games and are able to extend the definition
of permissiveness to Muller games.

While investigating the interest of Muller games for “casual living-room recreation” [18], Mc-
Naughton introduced scoring functions which describe the progress a player is making towards winning
a play: consider a Muller game (A ,F0,F1), where A is the arena and (F0,F1) is a partition of the set
of loops in A used to determine the winner. Then, the score of a set F of vertices measures how often
F has been visited completely since the last visit of a vertex not in F . Player i wins a play if and only if
there is an F ∈Fi such that the score of F tends to infinity while being reset only finitely often (a reset
occurs whenever a vertex outside F is visited).

McNaughton proved the existence of strategies for the winning player that bound her opponent’s
scores by |A |! [18], provided the play starts in her winning region. The characterization above implies
that such a strategy is necessarily winning. The bound |A |! was subsequently improved to 2 (and shown
to be tight) [9]. Since some score eventually reaches value 3, the winning regions of a Muller game can
be determined by solving the reachability game in which a player wins if she is the first to reach a score
of 3 1. However, it is cumbersome to obtain a winning strategy for the infinite-duration Muller game
from a winning strategy for the finite-duration reachability game. The reason is that one has to carefully
concatenate finite plays of the reachability game to an infinite play of the Muller game: reaching a score
of 3 infinitely often does not prevent the opponent from visiting other vertices infinitely often.

The ability to bound the losing player’s scores can be seen as a safety condition as well. This allows
us to devise an algorithm to solve Muller games that computes both winning regions and a winning
strategy for one player. However, we do not obtain a winning strategy for the other player. In general, it
is impossible to reduce a Muller game to a safety game whose solution yields winning strategies for both
players, since safety conditions are on a lower level of the Borel hierarchy than Muller conditions.

Given a Muller game, we construct a safety game in which the scores of Player 1 are tracked (up
to score 3). Player 0 wins the safety game, if she can prevent Player 1 from ever reaching a score of 3.
This allows to compute the winning region of the Muller game by solving a safety game. Furthermore,
by exploiting the intrinsic structure of the safety game’s arena we present an antichain-based memory
structure for Muller games. Unlike the memory structures induced by Zielonka trees, which disregard
the structure of the arena, and the ones induced by LARs, which disregard the structure of the winning
condition (F0,F1), our memory structure takes both directly into account: a simple arena or a simple
winning condition should directly lead to a small memory. The other two structures only take one source
of simplicity into account, the other one can only be exploited when the game is solved. Furthermore, our
memory also implements the most general non-deterministic winning strategy among those that prevent
the opponent from reaching a certain score in a Muller game. Thus, our framework allows to extend the
notion of permissiveness from positionally determined games to games that require memory.

Our idea of turning a Muller game into a safety game can be generalized to other types of winning
conditions as well. We define a weaker notion of reduction from infinite games to safety games which
not only subsumes our construction but generalizes several constructions found in the literature. Based
on work on small progress measures for parity games [14], Bernet, Janin, and Walukiewicz showed how
to determine the winning regions in a parity game and a winning strategy for one player by reducing it
to a safety game [1]. Furthermore, Schewe and Finkbeiner [20] as well as Filiot, Jin, and Raskin [10]

1 This reachability game was the object of study in McNaughton’s investigation of humanly playable games, which, for
practical reasons, should end after a bounded number of steps.
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used a translation from co-Büchi games to safety games in their work on bounded synthesis and LTL
realizability, respectively. We present further examples and show that our reduction allows to determine
the winning region and a winning strategy for one player by solving a safety game. Thus, all these games
can be solved by a new type of reduction and an algorithm for safety games. Our approach simplifies the
winning condition of the game – even down the Borel hierarchy. However, this is offset by an increase
in the size of the arena. Nevertheless, in the case of Muller games, our arena is only cubically larger
than the arena constructed in the reduction to parity games. Furthermore, a safety game can be solved in
linear time, while the question whether there is a polynomial time algorithm for parity games is open.

2 Definitions

The power set of a set S is denoted by 2S and N denotes the set of non-negative integers. The prefix
relation on words is denoted by v. For ρ ∈V ω and L⊆V ω we define Pref(ρ) = {w ∈V ∗ | wv ρ} and
Pref(L) =

⋃
ρ∈L Pref(ρ). For w = w1 · · ·wn, let Last(w) = wn.

An arena A = (V,V0,V1,E) consists of a finite, directed graph (V,E) without terminal vertices,
V0 ⊆ V and V1 = V \V0, where Vi denotes the positions of Player i. We require every vertex to have an
outgoing edge to avoid the nuisance of dealing with finite plays. The size |A | of A is the cardinality of
V . A loop C⊆V in A is a strongly connected subset of V , i.e., for every v,v′ ∈C there is a path from v to
v′ that only visits vertices in C. A play in A starting in v ∈V is an infinite sequence ρ = ρ0ρ1ρ2 . . . such
that ρ0 = v and (ρn,ρn+1) ∈ E for all n ∈ N. The occurrence set Occ(ρ) and infinity set Inf(ρ) of ρ are
given by Occ(ρ) = {v ∈V | ∃n ∈ N such that ρn = v} and Inf(ρ) = {v ∈V | ∃ωn ∈ N such that ρn = v}.
We also use the occurrence set of a finite play infix w, which is defined in the same way. The infinity set
of a play is always a loop in the arena. A game G = (A ,Win) consists of an arena A and a set Win⊆V ω

of winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win.
A strategy for Player i is a mapping σ : V ∗Vi → V such that (v,σ(wv)) ∈ E for all wv ∈ V ∗Vi. We

say that σ is positional if σ(wv) = σ(v) for every wv ∈ V ∗Vi. A play ρ0ρ1ρ2 . . . is consistent with σ if
ρn+1 = σ(ρ0 · · ·ρn) for every n with ρn ∈Vi. For v ∈V and a strategy σ for one of the players, we define
the behavior of σ from v by Beh(v,σ) = {ρ ∈ V ω | ρ play starting in v that is consistent with σ}. A
strategy σ for Player i is a winning strategy from a set of vertices W ⊆V if every ρ ∈Beh(v,σ) for v∈W
is won by Player i. The winning region Wi(G ) of Player i in G contains all vertices from which Player i
has a winning strategy. We always have W0(G )∩W1(G ) = /0 and G is determined if W0(G )∪W1(G ) =V .
A winning strategy for Player i is uniform, if it is winning from all v ∈Wi(G ).

A memory structure M = (M, Init,Upd) for an arena (V,V0,V1,E) consists of a finite set M of
memory states, an initialization function Init : V → M, and an update function Upd: M ×V → M.
The update function can be extended to Upd∗ : V+ → M in the usual way: Upd∗(ρ0) = Init(ρ0) and
Upd∗(ρ0 . . .ρnρn+1) =Upd(Upd∗(ρ0 . . .ρn),ρn+1). A next-move function (for Player i) Nxt : Vi×M→V
has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and all m ∈ M. It induces a strategy σ for Player i with
memory M via σ(ρ0 . . .ρn) = Nxt(ρn,Upd∗(ρ0 . . .ρn)). A strategy is called finite-state if it can be im-
plemented with a memory structure. The size of M (and, slightly abusive, σ ) is |M|.

We consider two types of games defined by specifying Win implicitly. A safety game is a tuple
G = (A ,F) with F ⊆V and Win = {ρ ∈V ω |Occ(ρ)⊆ F}. A Muller game is a tuple G = (A ,F0,F1)
where F0 is a set of loops of A , F1 contains the loops which are not in F0, and Win = {ρ ∈ V ω |
Inf(ρ) ∈F0}, i.e., ρ is winning for Player i if and only if Inf(ρ) ∈Fi. Safety games are determined
with uniform positional strategies and Muller games are determined with uniform finite-state strategies
of size |A |! [11].
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3 Scoring Functions for Muller Games

In this section, we introduce scores and accumulators for Muller games. These concepts describe the
progress of a player throughout a play. Intuitively, for each set F ⊆V , the score of F of a play prefix w
measures how often F has been visited completely since the last visit of a vertex that is not in F or since
the beginning of w. The accumulator of the set F measures the progress made towards the next score
increase: AccF(w) contains the vertices of F seen since the last increase of the score of F or the last visit
of a vertex v /∈ F , depending on which occurred later. For a more detailed treatment we refer to [9, 18].

Definition 1. Let w ∈V+, v ∈V , and F ⊆V .

• Define Sc{v}(v) = 1 and Acc{v}(v) = /0, and for F 6= {v} define ScF(v) = 0 and AccF(v) = F∩{v}.
• If v /∈ F, then ScF(wv) = 0 and AccF(wv) = /0.

• If v ∈ F and AccF(w) = F \{v}, then ScF(wv) = ScF(w)+1 and AccF(wv) = /0.

• If v ∈ F and AccF(w) 6= F \{v}, then ScF(wv) = ScF(w) and AccF(wv) = AccF(w)∪{v}.
Also, for F ⊆ 2V define MaxScF : V+∪V ω → N∪{∞} by MaxScF (ρ) = maxF∈F maxwvρ ScF(w).

Example 1. Let V = {0,1,2} and F = {0,1}. We have ScF(10012100) = 1 and AccF(10012100) = {0},
but MaxSc{F}(10012100) = 2, due to the prefix 1001. The score for F is reset to 0 by the occurrence of
2, i.e., ScF(10012) = 0 and AccF(10012) = /0.

If w is a play prefix with ScF(w) ≥ 2, then F is a loop of the arena. In an infinite play ρ , Inf(ρ)
is the unique set F such that ScF tends to infinity while being reset to 0 only finitely often. Hence,
MaxScF1−i(ρ)< ∞ implies Inf(ρ) ∈Fi. Also, we always have AccF(w)( F .

Next, we give a score-based preorder and an induced equivalence relation on play prefixes.

Definition 2. Let F ⊆ 2V and w,w′ ∈V+.

1. w is F -smaller than w′, denoted by w≤F w′, if Last(w) = Last(w′) and for all F ∈F :

• ScF(w)< ScF(w′), or
• ScF(w) = ScF(w′) and AccF(w)⊆ AccF(w′).

2. w and w′ are F -equivalent, denoted by w =F w′, if w≤F w′ and w′ ≤F w.

The condition w =F w′ is equivalent to Last(w) = Last(w′) and for every F ∈ F the equalities
ScF(w) = ScF(w′) and AccF(w) = AccF(w′) hold. Thus, =F is an equivalence relation. Both ≤F and
=F are preserved under concatenation, i.e., =F is a congruence.

Lemma 1. Let F ⊆ 2V and w,w′ ∈V+.

1. If w≤F w′, then wu≤F w′u for all u ∈V ∗.

2. If w =F w′, then wu =F w′u for all u ∈V ∗.

4 Solving Muller Games by Solving Safety Games

In this section, we show how to solve a Muller game by solving a safety game. Our approach is based
on the existence of winning strategies for Muller games that bound the losing player’s scores by 2.

Lemma 2 ([9]). In every Muller game G = (A ,F0,F1) Player i has a winning strategy σ from Wi(G )
such that MaxScF1−i(ρ)≤ 2 for every play ρ ∈ Beh(v,σ) with v ∈Wi(G ).
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The following example shows that the bound 2 is tight.
Example 2. Consider the Muller game G = (A ,F0,F1), where A is depicted in Figure 1, F0 =
{{0},{2},{0,1,2}} and F1 = {{0,1},{1,2}}. By alternatingly moving from 1 to 0 and to 2, Player 0
wins from every vertex, i.e., we have W0(G ) = {0,1,2}, and she bounds Player 1’s scores by 2. However,
he is able to achieve a score of two: consider a play starting at 1 and suppose (w.l.o.g.) that Player 0
moves to vertex 0. Then, Player 1 uses the self-loop once before moving back to 1, thereby reaching a
score of 2 for the loop {0,1} ∈F1.

10 2

Figure 1: The arena A for Example 2

A simple consequence of Lemma 2 is that a vertex v is in Player 0’s winning region of the Muller
game G if and only if she can prevent her opponent from ever reaching a score of 3 for a set in F1.
This is a safety condition which only talks about small scores of one player. To determine the winner
of G , we construct an arena which keeps track of the scores of Player 1 up to threshold 3. The winning
condition F of the safety game requires Player 0 to prevent a score of 3 for her opponent.
Theorem 1. Let G be a Muller game with vertex set V . One can effectively construct a safety game GS

with vertex set V S and a mapping f : V →V S with the following properties:
1. For every v ∈V : v ∈Wi(G ) if and only if f (v) ∈Wi(GS).

2. Player 0 has a finite-state winning strategy from W0(G ) with memory M ⊆W0(GS).

3. |V S| ≤
(

∑
|V |
k=1

(|V |
k

)
· k! ·2k · k!

)
+1≤ (|V |!)3.

Note that the first statement speaks about both players while the second one only speaks about
Player 0. This is due to the fact that the safety game keeps track of Player 1’s scores only, which al-
lows Player 0 to prove that she can prevent him from reaching a score of 3. But as soon as a score of 3 is
reached, the play is stopped. To obtain a winning strategy for Player 1, we have to swap the roles of the
players and construct a safety game which keeps track of the scores of Player 0. Alternatively, we could
construct the arena which keeps track of both player’s scores. However, that would require to define two
safety games in this arena: one in which Player 0 has to avoid a score of 3 for Player 1 and vice versa.
This arena is larger than the ones in which only the scores of one player are tracked (but still smaller
than (|V |!)3). It is well-known that it is impossible to reduce a Muller game to a single safety game and
thereby obtain winning strategies for both players. We come back to this in Section 6.

We begin the proof of Theorem 1 by defining the safety game GS. Let G = (A ,F0,F1) with arena
A = (V,V0,V1,E). We define

Plays<3 = {w | w play prefix in G and MaxScF1(w)< 3}

to be the set of play prefixes in G in which the scores of Player 1 are at most 2 and we define

Plays=3 = {w0 · · ·wn+1 |w0 · · ·wn+1 play prefix in G , MaxScF1(w0 · · ·wn)≤ 2, and

MaxScF1(w0 · · ·wnwn+1) = 3 }

to be the set of play prefixes in which Player 1 just reached a score of 3. Furthermore, let Plays≤3 =
Plays<3∪Plays=3. Note that these definitions ignore the scores of Player 0. The arena of the safety game
we are about to define is the =F1-quotient of the unraveling of A up to the positions where Player 1
reaches a score of 3 for the first time (if he does at all).
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[1]
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[21]
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[100]
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W0(GS) W1(GS)

Figure 2: The safety game GS for G from Example 2 (vertices drawn with double lines are in F); the
dashed line separates the winning regions.

Formally, we define GS = ((V S,V S
0 ,V

S
1 ,E

S),F) where

• V S = Plays≤3 /=F1
,

• V S
i = {[w]=F1

| [w]=F1
∈V S and Last(w) ∈Vi} for i ∈ {0,1},

• ([w]=F1
, [wv]=F1

) ∈ ES for all w ∈ Plays<3 and all v with (Last(w),v) ∈ E 2, and

• F = Plays<3 /=F1
.

The definitions of V S
0 and V S

1 are independent of representatives, as w =F1 w′ implies Last(w) =
Last(w′), we have V S =V S

0 ∪V S
1 due to V =V0∪V1, and F is well-defined, since every equivalence class

in Plays<3 /=F1
is also one in Plays≤3 /=F1

. Finally, let f (v) = [v]=F1
for every v ∈V .

Remark 1. If ([w]=F1
, [w′]=F1

) ∈ ES, then we have (Last(w),Last(w′)) ∈ E.

For the sake of readability, we denote =F1-equivalence classes by [w] from now on. All definitions
and statements below are independent of representatives and we refrain from mentioning it from now on.

Example 3. To illustrate these definitions, Figure 2 depicts the safety game GS for the Muller game G
from Example 2. One can verify easily that the vertices [v] for v∈V are in the winning region of Player 0.
This corresponds to the fact that Player 0’s winning region in the Muller game contains every vertex.

The proof of Theorem 1 is split into several lemmata. Due to determinacy of both games, it suffices
to consider only one Player (we pick i = 0) to prove Theorem 1.1.

To win the safety game, we simulate a winning strategy for the Muller game that bounds Player 1’s
scores by 2, which suffices to avoid the vertices in V S \F , which encode that a score of three is reached.

Lemma 3. For every v ∈V : if v ∈W0(G ) then [v] ∈W0(GS).

2Hence, every vertex in Plays=3 is terminal, contrary to our requirements on an arena. However, every play visiting these
vertices is losing for Player 0 no matter how it is continued. To simplify the following proofs, we refrain from defining outgoing
edges for these vertices.
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For the other direction of Theorem 1.1 we show that a subset of W0(GS) can be turned into a memory
structure for Player 0 in the Muller game that induces a winning strategy. We use the =F1-equivalence
class of w as memory state to keep track of Player 1’s scores in G . But instead of using all equivalence
classes in the winning region of Player 0, it suffices to consider the maximal ones with respect to ≤F1

that are reachable via a fixed positional winning strategy for her in the safety game. Formally, we have
to lift ≤F1 to equivalence classes by defining [w]≤F1 [w

′] if and only if w≤F1 w′.
The following proof is similar to the reductions from co-Büchi [10, 16, 20] and parity games [1] to

safety games, but for the more general case of Muller games. We come back to the similarities to the
latter reduction when we want to determine permissive strategies in the next section.

Lemma 4. For all v ∈V : if [v] ∈W0(GS) then v ∈W0(G ).

Proof. Let σ be a uniform positional winning strategy for Player 0 in GS and let R ⊆ V S be the set of
vertices which are reachable from W0(GS)∩{[v] | v ∈V} by plays consistent with σ . Every [w] ∈ R∩V S

0
has exactly one successor in R (which is of the form [wv] for some v ∈V ) and dually, every successor of
[w] ∈ R∩V S

1 (which are exactly the classes [wv] with (Last(w),v) ∈ E) is in R. Now, let Rmax be the set
of ≤F1-maximal elements of R. Applying the facts about successors of vertices in R stated above, we
obtain the following remark.

Remark 2. Let Rmax be defined as above.

1. For every [w] ∈ Rmax∩V S
0 , there is a v ∈ V with (Last(w),v) ∈ E and there is a [w′] ∈ Rmax such

that [wv]≤F1 [w
′].

2. For every [w]∈ Rmax∩V S
1 and each of its successors [wv], there is a [w′]∈ Rmax such that [wv]≤F1

[w′].

Thus, instead of updating the memory from [w] to [wv] (and thereby keeping track of the exact
scores) when processing a vertex v, we can directly update it to a maximal element that is F1-larger
than [wv] (and thereby over-approximate the exact scores). Formally, we define M = (M, Init,Upd) by
M = Rmax∪{⊥} 3,

Init(v) =

{
[w] if [v] ∈W0(GS) and there exists [w] ∈ Rmax with [v]≤F1 [w],
⊥ otherwise,

Upd([w],v) =

{
[w′] if there is some [w′] ∈ Rmax such that [wv]≤F1 [w

′],

⊥ otherwise.

This implies [w] ≤F1 Upd∗(w) for every w ∈ V+ with Upd∗(w) 6= ⊥. Thus, Last(w) = Last(w′), where
[w′] = Upd∗(w). Using Remark 2, we define the next-move function

Nxt(v, [w]) =

v′ if Last(w) = v, (v,v′) ∈ E, and there exists [w′] ∈ Rmax such that [wv′]≤F1 [w
′],

v′′ otherwise (where v′′ is some vertex with (v,v′′) ∈ E),

and Nxt(v,⊥) = v′′ for some v′′ with (v,v′′) ∈ E. The second case in the case distinction above is just to
match the formal definition of a next-move function; it is never invoked due to Last(w) = Last(w′) for
Upd∗(w) = [w′] or Upd∗(w) =⊥.

3We use the memory state ⊥ to simplify our proof. It is not reachable via plays that are consistent with the implemented
strategy and can therefore be eliminated.
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It remains to show that the strategy σ implemented by M and Nxt is a winning strategy for Player 0
from W = {v | [v] ∈W0(GS)}. An inductive application of Remark 2 shows that every play w that starts
in W and is consistent with σ satisfies Upd∗(w) 6= ⊥. This bounds the scores of Player 1 by 2, as we
have [w]≤F1 Upd∗(w) ∈ Rmax ⊆ Plays<3 for every such play. Hence, σ is indeed a winning strategy for
Player 0 from W .

Using Lemma 3 and the construction in the proof of Lemma 4 proves Theorem 1.2.
Corollary 1. Player 0 has a finite-state winning strategy from W0(G ) whose memory states form an
≤F1-antichain in W0(GS).

To finish the proof of Theorem 1, we determine the size of GS to prove the third statement. To this
end, we use the concept of a latest appearance record (LAR) [11, 17]. Note that we do not need a hit
position for our purposes. A word ` ∈ V+ is an LAR if every vertex v ∈ V appears at most once in `.
Next, we map each w ∈ V+ to a unique LAR, denoted by LAR(w), as follows: LAR(v) = v for every
v ∈V and for w ∈V+ and v ∈V we define LAR(wv) = LAR(w)v if v /∈ Occ(w) and LAR(wv) = p1 p2v
if LAR(w) = p1vp2. A simple induction shows that LAR(w) is indeed an LAR, which also ensures that
the decomposition of w in the second case of the inductive definition is unique. We continue by showing
that LAR(w) determines all but |LAR(w)| many of w’s scores and accumulators.
Lemma 5. Let w ∈V+ and LAR(w) = vkvk−1 · · ·v1.

1. w = xkvkxk−1vk−1 · · ·x2v2x1v1 for some xi ∈V ∗ with Occ(xi)⊆ {v1, . . . ,vi} for every i.

2. ScF(w)> 0 if and only if F = {v1, . . . ,vi} for some i.

3. If ScF(w) = 0, then AccF(w) = {v1, . . . ,vi} for the maximal i such that {v1, . . . ,vi} ⊆ F and
AccF(w) = /0 if no such i exists.

4. Let ScF(w)> 0 and F = {v1, . . . ,vi}. Then, AccF(w) ∈ { /0}∪{{v1, . . . ,v j} | j < i}.
This characterization allows us to bound the size of GS and to prove Theorem 1.3.

Lemma 6. We have |V S| ≤
(

∑
|V |
k=1

(|V |
k

)
· k! ·2k · k!

)
+1≤ (|V |!)3.

Proof. In every safety game, we can merge the vertices in V \F to a single vertex without changing
W0(G ). Since [v] ∈ F , we also retain the equivalence v ∈Wi(G )⇔ [v] ∈Wi(GS).

Hence, it remains to bound the index of Plays<3 /=F1
. Lemma 5 shows that a play prefix w ∈ V+

has |LAR(w)| many sets with non-zero score. Furthermore, the accumulator of the sets with score 0
is determined by LAR(w). Now, consider a play w ∈ Plays<3 and a set F ∈F1 with non-zero score.
We have ScF(w) ∈ {1,2} and there are exactly |F | possible values for AccF(w) due to Lemma 5.4.
Finally, LAR(w) = LAR(w′) implies Last(w) = Last(w′). Hence, the index of Plays<3 /=F1

is bounded
by the number of LARs, which is ∑

n
k=1
(n

k

)
· k!, times the number of possible score and accumulator

combinations for each LAR ` of length k, which is bounded by 2k · k!.

In the proof of Theorem 1.2, we used the maximal elements of Player 0’s winning region of the safety
game that are reachable via a fixed winning strategy. It is the choice of this strategy that determines the
size of our memory structure. However, finding a winning strategy that visits at most k ∈N vertices in an
arena (from a fixed initial vertex) for a given k is NP-complete. This can be shown by a reduction from
the vertex cover problem (compare, e.g., [8] where a more general result is shown). Moreover, it is not
even clear that a small strategy also yields few maximal elements.

In general, a player cannot prevent her opponent from reaching a score of 2, but there are arenas in
which she can do so. By first constructing the subgame G ′S up to threshold 2 (which is smaller than GS),
we can possibly determine a subset of Player 0’s winning region faster and obtain a (potentially) smaller
finite-state winning strategy for this subset. But Example 2 shows that this approach is not complete.
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5 Permissive Strategies for Muller Games

Bernet et al. introduced the concept of permissive strategies for parity games4 [1], a non-deterministic
winning strategy that subsumes the behavior of every positional (non-deterministic) winning strategy. To
compute such a strategy, they reduce a parity game to a safety game. The main observation underlying
their reduction is the following: if we denote the number of vertices of priority c by nc, then a (non-
deterministic) positional winning strategy for Player 0 does not allow a play in which an odd priority c is
visited nc+1 times without visiting a smaller priority in between. This property can be formulated using
scoring functions for parity games as well. The scoring function for a priority c counts the occurrences
of c since the last occurrence of a smaller priority (such an occurrence resets the score for c to 0). Hence,
our work on Muller games can be seen as a generalization of Bernet et al.’s work. While the bound nc on
the scores in a parity game is straightforward, the bound 2 for Muller games is far from obvious.

Since both constructions are very similar, it is natural to ask whether we can use the concept of
permissive strategies for Muller games. In parity games, we ask for a non-deterministic strategy that
subsumes the behavior of every positional strategy. As positional strategies do not suffice to win Muller
games, we have to give a new definition of permissiveness for such games. In other words, we need to
specify the strategies whose behaviors a permissive strategies for a Muller game should subsume. One
way to do this is to fix a sufficiently large bound M and to require that a permissive strategy for a Muller
games subsumes the behavior of every finite-state winning strategy of size at most M (this was already
proposed by Bernet et al. for parity games [1]).

However, we prefer to take a different approach. By closely inspecting the reduction of parity to
safety games, it becomes apparent that the induced strategy does not only subsume the behavior of every
positional winning strategy, but rather the behavior of every strategy that prevents the opponent from
reaching a score of nc+1 for some odd priority c (in terms of scoring functions for parity games). It is this
formulation that we extend to Muller games: a (non-deterministic) winning strategy for a Muller game
is permissive, if it subsumes the behavior of every (non-deterministic) winning strategy that prevents the
losing player from reaching a score of 3. We formalize this notion in the following and show how to
compute such strategies from the safety game constructed in the previous section.

A multi-strategy for Player i in an arena (V,V0,V1,E) is a mapping σ : V ∗Vi → 2V \ { /0} such that
v′ ∈ σ(wv) implies (v,v′) ∈ E. A play ρ is consistent with σ if ρn+1 ∈ σ(ρ0 · · ·ρn) for every n such that
ρn ∈ Vi. We still denote the plays starting in a vertex v that are consistent with a multi-strategy σ by
BehA (v,σ) and define BehA (W,σ) =

⋃
v∈W BehA (v,σ) for every subset W ⊆V . A multi-strategy σ is

winning for Player 0 from a set of vertices W in a game (A ,Win) if BehA (W,σ) ⊆Win, and a multi-
strategy τ is winning for Player 1 from W , if BehA (W,σ)⊆V ω \Win. It is clear that the winning regions
of a game do not change when we allow multi-strategies instead of standard strategies.

To define finite-state multi-strategies we have to allow a next-move function to return more than one
vertex, i.e., we have Nxt : Vi×M → 2V \ { /0} such that v′ ∈ Nxt(v,m) implies (v,v′) ∈ E. A memory
structure M and Nxt implement a multi-strategy σ via σ(wv) = Nxt(v,Upd∗(wv)).

Definition 3. A multi-strategy σ ′ for a Muller game G is permissive, if

1. σ ′ is a winning strategy from every vertex in W0(G ), and

2. BehA (v,σ)⊆BehA (v,σ ′) for every multi-strategy σ and every vertex v with MaxScF1(ρ)≤ 2 for
every ρ ∈ BehA (v,σ).

4A parity game (A ,Ω) consists of an arena A and a priority function Ω : V → N. A play ρ is winning for Player 0 if the
minimal priority that is seen infinitely often during the play is even.
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The original definition for parity games replaces the second condition by the following requirement:
BehA (v,σ)⊆ BehA (v,σ ′) for every positional multi-strategy σ and every v from which σ is winning.

Example 4. Once again consider the Muller game of Example 2. Starting at vertex 1, moving to 0 is
consistent with a winning strategy for Player 0 that bounds Player 1’s scores by 2. Similarly, moving to
2 is also consistent with a winning strategy for Player 0 that bounds Player 1’s scores. Hence, we have
σ ′(1) = {0,2} for every permissive strategy σ ′. Now consider the play prefix 10. Here it is Player 1’s
turn and he can use the self-loop either infinitely often (which yields a play that is winning for Player 0)
or only finitely often (say n times) before moving back to vertex 1. In this situation, i.e., with play prefix
10n+11, a strategy that bounds Player 1’s scores by 2 has to move to vertex 2. Hence, we must have
σ ′(10n+11)⊇ {2}. However, it is possible that we also have 1 ∈ σ ′(10n+11), since a permissive strategy
may allow more plays than the ones of strategies that bound Player 1’s scores by 2. However, at some
point, σ ′ has to disallow the move back to vertex 0, otherwise it would allow a play that is losing for her.

Using the safety game GS defined in the previous section, we are able to show that Player 0 always
has a finite-state permissive strategy and how to compute one.

Theorem 2. Let G be a Muller game and GS the corresponding safety game as above. Then, Player 0
has a finite-state permissive strategy for G with memory states W0(GS).

The proof is very similar to the one for Theorem 1.2 (cf. the construction in the proof of Lemma 4),
but we have to use all vertices in W0(GS) as memory states to implement a permissive strategy, only using
the maximal ones (restricted to those reachable by some fixed winning strategy for the safety games) does
not suffice. Furthermore, the next-move function does not return one successor that guarantees a memory
update to a state from W0(GS), but it returns all such states.

Proof. We define M= (M, Init,Upd) where M =W0(GS)∪{⊥} 5,

Init(v) =

{
[v] if [v] ∈W0(GS),
⊥ otherwise,

Upd([w],v) =

{
[wv] if [wv] ∈W0(GS),
⊥ otherwise.

Hence, we have Upd∗(w) = [w] ∈W0(GS) as long as every prefix x of w satisfies [x] ∈W0(GS), and
Upd∗(w) =⊥ otherwise. We define Nxt by Nxt(v,⊥) = {v′} for some successor v′ of v and

Nxt(v, [w]) =

{
{v′ | [wv′] ∈W0(GS)} if [w] ∈W0(GS) and Last(w) = v,
{v′′} otherwise, where v′′ is some successor of v.

Since every vertex in W0(GS)∩V S
0 has at least one successor in W0(GS), the next-move function always

returns non-empty set of successors of v in G .
It remains to show that the strategy σ ′ implemented by M and Nxt is permissive. We begin by

showing that σ is winning from every vertex v ∈W(G ): due to Lemma 3, we have [v] ∈W0(GS). Hence,
the memory is initialized with [v] ∈W0(GS). A simple induction shows Upd∗(w) = [w] ∈W0(GS) for
every play prefix that starts in [v] is consistent with σ ′. This bounds Player 1’s scores by 2. Hence, σ ′ is
indeed winning from v.

5Again, we use the memory state ⊥ to simplify our proof. It is not reachable via plays that are consistent with the strategy
implemented by M and can therefore eliminated and its incoming transitions can be redefined arbitrarily.
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Finally, consider a multi-strategy σ and a vertex v such that MaxScF1(ρ) ≤ 2 for every play ρ ∈
BehA (v,σ). We have to show that every play ρ ∈ BehA (v,σ) is consistent with σ ′. Since σ is winning
from v (as it bounds Player 1’s scores), we have v ∈W0(G ). Now, assume ρ is not consistent with σ ′

and let ρ0 · · ·ρnρn+1 be the shortest prefix such that ρn+1 /∈ σ ′(ρ0 · · ·ρn). Then, we have [ρ0 · · ·ρnρn+1] /∈
W0(GS). Hence, Player 1 has a strategy to enforce a visit to V S \ F in GS starting in [ρ0 · · ·ρnρn+1].
Player 1 can mimic this strategy in G to enforce a score of 3 against every strategy of Player 0 when
starting with the play prefix ρ0 · · ·ρnρn+1. Since this prefix is consistent with σ , which we have assumed
to bound Player 1’s scores by 2, we have derived the desired contradiction.

6 Safety Reductions for Infinite Games

It is well-known that classical game reductions are not able to reduce Muller games to safety games,
since they induce continuous functions mapping (winning) plays of the original game to (winning) plays
of the reduced game. The existence of such functions is tied to topological properties of the sets of
winning plays in both games. However, we transformed a Muller game to a safety game which allowed
us to determine the winning regions and a winning strategy for one player. This is possible, since our
reduction does not induce a continuous function: a play is stopped as soon as Player 1 reaches a score
of 3, but it can (in general) be extended to be winning for Player 0.

In this section, we briefly discuss the reason why Muller games can not be reduced to safety games
in the classical sense, and then we present a novel type of game reduction that allows us to reduce many
games known from the literature to safety games. The advantage of this safety reduction is that the
reduced game is always a safety game. Hence, we can determine the winning regions of various games
from different levels of the Borel hierarchy using the same technique. However, we only obtain a winning
strategy for one player, and to give such a reduction, we need to have some information on the type of
winning strategies a player has in such a game. Let us begin by discussing classical game reductions.

An arena A = (V,V0,V1,E) and a memory structure M= (M, Init,Upd) for A induce the expanded
arena A ×M = (V ×M,V0×M,V1×M,E ′) where ((s,m),(v′,m′)) ∈ E ′ if and only if (v,v′) ∈ E and
Upd(m,v′) = m′. Every play ρ in A has a unique extended play ρ ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in
A ×M defined by m0 = Init(ρ0) and mn+1 = Upd(mn,ρn+1), i.e., mn = Upd∗(ρ0 · · ·ρn). A game G =
(A ,Win) is reducible to G ′ = (A ′,Win′) via M, written G ≤M G ′, if A ′ = A ×M and every play ρ in
G is won by the player who wins the extended play ρ ′ in G ′, i.e., ρ ∈Win if and only if ρ ′ ∈Win′.

Lemma 7. Let G be a game with vertex set V and W ⊆ V . If G ≤M G ′ and Player i has a positional
winning strategy for G ′ from {(v, Init(v)) | v ∈W}, then she also has a finite-state winning strategy with
memory M for G from W.

The set WinM ⊆ V ω of winning plays of a Muller game is in general on a higher level of the Borel
hierarchy than the set WinS ⊆Uω of winning plays of a safety game. Hence, in general, there exists no
continuous (in the Cantor topology) function f : V ω →Uω such that ρ ∈WinM if and only if f (ρ) ∈
WinS (see, e.g., [15]). Since the mapping from a play in A to its extended play in A ×M is continuous,
we obtain the following negative result (which holds for other pairs of games as well).

Corollary 2. In general, Muller games cannot be reduced to safety games.

To overcome this, we present a novel type of game reduction which encompasses the construction
presented in Section 4 and is applicable to many other infinite games.
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Definition 4. A game G =(A ,Win) with vertex set V is (finite-state) safety reducible, if there is a regular
language L⊆V ∗ of finite words such that:
• For every play ρ ∈V ω : if Pref(ρ)⊆ L, then ρ ∈Win.

• If v ∈W0(G ), then Player 0 has a strategy σ such that Pref(Beh(v,σ))⊆ L.
Note that a strategy σ satisfying Pref(Beh(v,σ)) ⊆ L is winning for Player 0 from v. Many games

appearing in the literature on infinite games are safety reducible, although these reductions do neither
yield fast solution algorithms nor optimal memory structures.
• In a Büchi game G , Player 0 has a positional winning strategy such that every consistent play visits

a vertex in F at least every k = |V \F | steps. Hence, G is safety reducible with L = Pref(((V \
F)≤k ·F)ω).

• In a co-Büchi game G , Player 0 has a positional winning strategy such that every consistent play
stays in F after visiting each vertex in V \F at most once. Hence, G is safety reducible with
L = Pref({w ·Fω | each v ∈V \F appears at most once in w}).
• In a request-response game G , Player 0 has a finite-state winning strategy such that in every con-

sistent play every request is answered within k = |V | · r · 2r+1 steps, where r is the number of
request-response pairs [21]. Hence, G is safety reducible to the language of prefixes of plays in
which every request is answered within k steps.

• In a parity game, Player 0 has a positional winning strategy such that every consistent play does
not visit nc +1 vertices with an odd priority c without visiting a smaller even priority in between,
where nc is the number of vertices with priority c. Hence, G is safety reducible to the language of
prefixes of plays satisfying this condition for every odd priority c.

• Lemma 2 shows that a Muller game is safety reducible to the language of prefixes of plays that
never reach a score of 3 for Player 1.

Let A = (V,V0,V1,E) be an arena and let A = (Q,V,q0,δ ,F) be a deterministic finite automaton
recognizing a language over V . We define the arena A ×A = (V ×Q,V0×Q,V1×Q,E ◦ δ ) where
((v,q),(v′,q′)) ∈ E ◦δ if and only (v,v′) ∈ E and δ (q,v′) = q′.
Theorem 3. Let G be a game with vertex set V that is safety reducible with language L(A) for some
DFA A= (Q,V,q0,δ ,F). Define the safety game G ′ = (A ×A,V ×F).

1. v ∈W0(G ) if and only if (v,δ (q0,v)) ∈W0(G ′).

2. Player 0 has a finite-state winning strategy from W0(G ) with memory states Q.
It is easy to show that every game in which Player 0 has a finite-state winning strategy is safety-

reducible to the prefixes of plays consistent with this strategy, which is a regular language. However, for
this construction, we need a finite-state winning strategy, i.e., there is no need for a safety reduction.

If G is determined, then Theorem 3.1 is equivalent to v ∈Wi(G ) if and only if (v,δ (q0,v)) ∈Wi(G ′).
Hence, all games discussed above can be solved by solving safety games. We conclude by mentioning
that safety reducibility of parity games was used implicitly to construct an algorithm for parity games [14]
and to compute permissive strategies for parity games [1]. Furthermore, the safety reducibility of co-
Büchi games is used implicitly in work on bounded synthesis [20] and LTL realizability [10], so-called
“Safraless” constructions [16] which the do not rely on determinization of automata on infinite words.

Furthermore, the new notion of reduction allows to generalize permissiveness to all games discussed
in Example 3: if a game is safety reducible to L, then we can construct a multi-strategy that allows every
play ρ in which Player 1 cannot leave L starting from any prefix of ρ . Thereby, we obtain what one could
call L-permissive strategies. For example, this allows to construct the most general non-deterministic
winning strategy in a request-response game that guarantees a fixed bound on the waiting times.
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7 Conclusion

We have shown how to translate a Muller game into a safety game to determine both winning regions
and a finite-state winning strategy for one player. Then, we generalized this construction to a new type
of reduction from infinite games to safety games with the same properties. We exhibited several implicit
applications of this reduction in the literature as well as several new ones. Our reduction from Muller
games to safety games is implemented in the tool GAVS+6 [6]. In the future, we want to compare the
performance of our solution to classical reductions to parity games as well as to direct algorithms.

Our construction is based on the notion of scoring functions for Muller games. Considering the
maximal score the opponent can achieve against a strategy leads to a hierarchy of all finite-state strategies
for a given game. Previous work has shown that the third level of this hierarchy is always non-empty,
and there are games in which the second level is empty. Currently, there is no non-trivial characterization
of the games whose first or second level of the hierarchy is non-empty, respectively.

The quality of a strategy can be measured by its level in the hierarchy. We conjecture that there is
always a finite-state winning strategy of minimal size in the least non-empty level of this hierarchy, i.e.,
there is no tradeoff between size and quality of a strategy. This tradeoff may arise in many other games
for which a quality measure is defined. Also, a positive resolution of the conjecture would decrease the
search space for a smallest finite-state strategy.

We used scores to construct a novel antichain-based memory structure for Muller games. The an-
tichain is induced by a winning strategy for the safety game. It is open how the choice of such a strategy
influences the size of the memory structure and how heuristic approaches to computing winning strate-
gies that only visit a small part of the arena [19] influence the performance of our reduction.

Finally, there is a tight connection between permissive strategies, progress measure algorithms, and
safety reductions for parity games: the progress measure algorithm due to Jurdziński [14] and the re-
duction from parity games to safety game due to Bernet et al. [1] to compute permissive strategies are
essentially the same. Whether the safety reducibility of Muller games can be turned into a progress
measure algorithm is subject to ongoing research.

Acknowledgments The authors want to thank Wolfgang Thomas for bringing McNaughton’s work to
their attention, Wladimir Fridman for fruitful discussions, and Chih-Hong Cheng for his implementation
of the algorithm.
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A Appendix

A.1 Proofs for Section 3

Proof of Lemma 1.
1.) It suffices to show that w≤F w′ implies wv≤F w′v for all v ∈V . So, let F ∈F : if v /∈ F , then

we have ScF(wv) = ScF(w′v) = 0 and AccF(wv) = AccF(w′v) = /0.
Now, suppose we have v ∈ F . First, consider the case ScF(w)< ScF(w′): then, either the score of F

does not increase in wv and we have

ScF(wv) = ScF(w)< ScF(w′)≤ ScF(w′v)

or the score increases in wv and we have

ScF(wv) = ScF(w)+1≤ ScF(w′)≤ ScF(w′v)

and AccF(wv) = /0, due to the score increase. This proves our claim.
Now, consider the case ScF(w) = ScF(w′) and AccF(w) ⊆ AccF(w′). If AccF(w) = F \ {v}, then

also AccF(w′) = F \{v}, as the accumulator for F can never be F . In this situation, we have

ScF(wv) = ScF(w)+1 = ScF(w′)+1 = ScF(w′v)

and AccF(wv) = AccF(w′v) = /0. Otherwise, we have

ScF(wv) = ScF(w) = ScF(w′)≤ ScF(w′v) .

If ScF(w′)< ScF(w′v), then we are done. So, consider the case ScF(w′) = ScF(w′v): we have

AccF(wv) = AccF(w)∪{v} ⊆ AccF(w′)∪{v}= AccF(w′v) ,

due to AccF(w)⊆ AccF(w′) and the fact that the score for w′v does not increase, which implies that the
accumulator for wv′ is obtained by adding v′ to the accumulator of w′.

2.) Apply 1. to the definition of =F .

A.2 Proofs for Section 4

Proof of Lemma 3. Let σ be a winning strategy for Player 0 for G such that MaxScF1(ρ)≤ 2 for every
play ρ ∈ Beh(v,σ) with v ∈ W0(G ). Due to Remark 1, every play prefix [w1] · · · [wn] in GS can be
mapped to a play p([w1] · · · [wn]) = Last(w1) · · ·Last(wn) in G . We use this to define a strategy σ ′ for
GS by σ ′([w1] · · · [wn]) = [wn · σ(p([w1] · · · [wn]))] for every play prefix [w1] · · · [wn] of GS with [wn] ∈
V S

0 \ Plays=3. This is a legal move due to the definition of ES and the restriction to plays ending in
Plays<3 is sufficient, since all other plays are already losing for Player 0. A simple induction shows
[w1] · · · [wn] being consistent with σ ′ implies p([w1] · · · [wn]) being consistent with σ .

It remains to show that σ ′ is winning for Player 0 from {[v] | v ∈W0(G )}. So, suppose σ ′ is not
winning from some vertex [v] with v∈W0(G ), i.e., there exists a play prefix [w1] · · · [wn] that is consistent
with σ ′ such that w1 =F1 v and wn ∈ Plays=3. Another simple induction shows p([w1] · · · [wn]) ∈ [wn].
However, this contradicts our assumption on σ , since p([w1] · · · [wn]) is consistent with σ , but allows
Player 1 to reach a score of 3.
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Proof of Lemma 5.
1.) By induction over |w|. If |w|= 1, then the claim follows immediately from w = LAR(w). Now,

let |wv|> 1. If v /∈ Occ(w), then LAR(wv) = LAR(w)v and the claim follows by induction hypothesis.
Now, suppose LAR(w) = p1vp2 with p1 = vk · · ·vi+1 and p2 = vi−1 · · ·v1, and hence vi = v. By

induction hypothesis, there exists a decomposition w = xkvkxk−1vk−1 · · ·v2x1v1 for some xi ∈V ∗ such that
Occ(xi) ⊆ {v1, . . . ,vi} for every i. Furthermore, we have LAR(wv) = p1 p2v = v′k · · ·v′1 where v′1 = vi,
v′j = v j−1 for every j in the range 1 < j ≤ i, and v′j = vi for every j in the range i < j ≤ k. Now,
define x′1 = ε , x′j = x j−1 for every j in the range 1 < j < i, x′i = xivixi−1, and x′j = x j for every j in the
range i < j ≤ k. It is easy to verify, that the decomposition wv = x′kv′kx′k−1v′k−1 · · ·v′2x′1v′1 has the desired
properties.

2.) We have ScF(w) > 0 if and only if there exists a suffix x of w with Occ(x) = F . Due to the
decomposition characterization, having a suffix x with Occ(x) = F is equivalent to F = {v1, . . . ,vi} for
some i.

3.) By definition, we have AccF(w) = Occ(x) where x is the longest suffix of w such that the score
of F does not change throughout x and Occ(x) ⊆ F . Consider the decomposition characterization of
w as above. We have {v1, . . . ,vi} ⊆ AccF(w), since xivi · · ·v1v1 is a suffix of w satisfying Occ(x) ⊆ F .
Furthermore, since vi+1 /∈ F by the maximality of i, this is the longest such suffix and we have indeed
AccF(w) = {v1, . . . ,vi}.

4.) The latest increase of ScF(w) occurs after (or at) the last visit of vi, since Occ(vixi−1 · · ·x1v1) = F .
Hence, AccF(w) is the occurrence set of a suffix of xi−1 · · ·x1v1 and the decomposition characterization
yields the result.

A.3 Proofs for Section 6

Proof of Theorem 3. Every play prefix v1 · · ·vn in A can be mapped to an expanded play e(v1 · · ·vn) =
(v1,q1) · · ·(vn,qn) with q1 = δ (q0,v1) and q j+1 = δ (q j,v j+1), i.e., in its second component, the expanded
play in A ×A simulates the run of A on the original play in A . Dually, a play prefix (v1,q1) · · ·(vn,qn)
in A ×M is mapped to its projected play by p((v1,q1) · · ·(vn,qn)) = v1 · · ·vn.

1.) Let v∈W0(G ) and let σ be a winning strategy for Player 0 from v that satisfies Pref(Beh(v,σ))⊆
L(A). We define a strategy for G ′ by σ ′((v1,q1) · · ·(vn,qn)) = (v′,δ (qn,v′)) where v′ = σ(v1 · · ·vn).
We show that this strategy is winning for Player 0 from (v,δ (q0,v)). A simple induction shows that
(v1,q1) · · ·(vn,qn) being consistent with σ ′ implies p((v1,q1) · · ·(vn,qn)) being consistent with σ . So,
suppose σ ′ is not winning in the safety game, i.e., there exists a play prefix w′ in G ′ starting in (v,δ (q0,v))
that is consistent with σ such that its last vertex (vn,qn) is in V × (Q\F). Since the second component
simulates the run of A on p(w′), we have qn = δ ∗(q0, p(w′)) ∈ (Q\F). This contradicts our assumption
on σ allowing only play prefixes that are in L(A).

For the other direction, we construct a finite-state winning strategy with memory states Q that is
winning for Player 0 from W0(G ). Fix a uniform positional winning strategy σ ′ for Player 0 for G ′ that
is winning from W0(G ′), define M= (Q, Init,δ ) with Init(v) = (v,δ (q0,v)), in W0(GS) and define Nxt by
Nxt(v,q) = v′, if σ ′(v,q) = (v′,q′) for some q′. Let (v,δ (q0,v)) ∈W0(G ′). We show that the strategy σ

induced by M and Nxt is winning for Player 0 from v. A simple induction shows that w starting in v and
being consistent with σ implies e(w) being consistent with σ ′. Hence, we have Pref(Beh(v,σ))⊆ L(A),
since the memory simulates the run of A on w and does not leave F .

2.) We have {(v,δ (q0,v)) | v ∈W0(G )} ⊆W0(G ′) due to the first part of the proof for 1.). Hence, the
construction in the second part of the proof for 1.) yields a finite-state winning strategy for Player 0 from
W0(G ) with memory states Q.
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