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We consider the synthesis of distributed implementationspecifications in Prompt Linear Tempo-
ral Logic (PROMPT-LTL), which extends LTL by temporal optna equipped with parameters that
bound their scope. For single process synthesis it is vegdldished that such parametric extensions
do not increase worst-case complexities.

For synchronous systems, we show that, despite being marerfid, the distributed realizabil-
ity problem for PROMPT—LTL is not harder than its LTL courgart. For asynchronous systems we
have to consider an assume-guarantee synthesis probleva,les/e to express scheduling assump-
tions. As asynchronous distributed synthesis is alreadgcidable for LTL, we give a semi-decision
procedure for the PROMPT-LTL assume-guarantee synthesidgm based on bounded synthesis.

1 Introduction

Linear Temporal Logic[[16] (LTL) is the most prominent sgeztion language for reactive systems
and the basis for industrial languages like ForSpéc [2] a8l [B]. Its advantages include a com-
pact variable-free syntax and intuitive semantics as veetha exponential compilation property, which
explains its attractive algorithmic properties: every Lidtmula can be translated into an equivalent
Biichi automaton of exponential size. This yields a polyradrepace model checking algorithm and a
doubly-exponential time algorithm for solving two-playgames. Such games solve the monolithic LTL
synthesis problem: given a specification, construct a cthe-design implementation.

However, LTL lacks the ability to express timing constraint~or example, the request-response
property G(req — Fresp requires that every requestq is eventually responded to byrasp It is
satisfied even if the waiting times between requests andnssg diverge, i.e., it is impossible to require
that requests are granted within a fixed, but arbitrary, artholitime. While it is possible to encode an
a-priori fixed bound for an eventually into LTL, this requérgrior knowledge of the system’s granularity
and incurs a blow-up when translated to automata, and isctinsidered impractical.

To overcome this shortcoming of LTL, Alur et al. introducedrametric LTL (PLTL) [1], which
extends LTL with parameterized operators of the fdfay andG<y, wherex andy are variables. The
formulaG(req— F<x resp expresses that every request is answered within an agbitnatrfixed, num-
ber of stepsx(x). Here,a is a variable valuation, a mapping of variables to naturahipers. Typically,
one is interested in whether a PLTL formula is satisfied withpect to some variable valuation, e.g.,
model checking a transition systei against a PLTL specificatiofh amounts to determining whether
there is anx such that every trace o satisfiesp with respect taa. Alur et al. showed that the PLTL
model checking problem is P&CE-complete. Due to monotonicity of the parameterized opesabne
can assume that all variablgsn parameterized always operatdss., are mapped to zero, as variable
valuations are quantified existentially in the problemestagnts. Dually, again due to monotonicity,
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one can assume that all variablesn parameterized eventually operatérsy are mapped to the same
value, namely the maximum of the bounds. Thus, in many casgsarameterized always operators and
different variables for parameterized eventually opesa#me not necessary.

Motivated by this, Kupferman et al. introduced PROMPT-LIR], which can be seen as the frag-
ment of PLTL without the parameterized always operator aitld avsingle bound for the parameterized
eventually operators. They proved that PROMPT—LTL modekking is P $AcE-complete and solv-
ing PROMPT-LTL games is 2BPTIME-complete, i.e., not harder than LTL games. While the result
of Alur et al. rely on involved pumping arguments, the resoit Kupferman et al. are all based on the
so-called alternating color technique, which basicallgves$ to reduce PROMPT-LTL to LTL. Further-
more, the result on PROMPT-LTL games was extended to PLTlegdff)], again using the alternating
color technique. These results show that adding parantetefd. does not increase the asymptotic com-
plexity of the model checking and the game-solving probletrich is still true for even more expressive
logics [6/21].

The synthesis problems mentioned above assume a settimnpiete information, i.e., every part
of the system has a complete view on the system as a whole. udgwkis setting is highly unrealistic
in virtually any system. Distributed synthesis on the othand, is the problem of synthesizing multiple
components with incomplete information. Since there aeeifigations that are not implementable, one
differentiates synthesis from the corresponding deciprafblem, i.e., theealizability problem of a for-
mal specification. We focus on the latter, but note that froerhethods presented here, implementations
are efficiently extractable from a proof of realizability.

The realizability problem for distributed systems dateskb® work of Pnueli and Rosner in the
early nineties[[17]. They showed that the realizability deon for LTL becomes undecidable already
for the simple architecture of two processes with pairwigemnt inputs. In subsequent work, it was
shown that certain classes of architectures, like pipelared rings, can still be synthesized automati-
cally [13/15]. Later, a complete characterization of thehiectures for which the realizability problem
is decidable was given by Finkbeiner and Schewe byirtf@mation forkcriterion [7]. Intuitively, an
architecture contains an information fork, if there is afoimation flow from the environment to two
different processes where the information to one procekglden from the other and vice versa. The
distributed realizability problem is decidable for all hitectures without information fork. Beyond de-
cidability results, semi-algorithms like bounded syntbd&] give an architecture-independent synthesis
method that is particularly well-suited for finding smakted implementations.

Our Contributions. As mentioned above, one can add parameters to LTL for freecdimplexity
of the model checking problem and of solving infinite gamessdoot increase. This raises the ques-
tion whether this observation also holds for the distridutealizability of parametric temporal logics.
For synchronous systems, we can answer this question diffialya For every class of architectures
with decidable LTL realizability, the PROMPT-LTL realizlity problem is decidable, too. To show
this, we apply the alternating color techniqlie![12] to rexltlte distributed realizability problem of
PROMPT-LTL to the one of LTL: one can again add parameterigeiators to LTL for free.

For asynchronous systems, the environment is typicallyrasd to take over the responsibility for
the scheduling decision [19]. Consequently, the resulitigedules may be unrealistic, e.g., one process
may nhot be scheduled at all. Whilairnessassumptions such as “every process is scheduled infinitely
often” solve this problem for LTL specifications, they arsdfficient for PROMPT-LTL.: a fair sched-
uler can still delay process activations arbitrarily lomgl@ghereby prevent the system from satisfying its
PROMPT-LTL specification for any bouridd Bounded fairscheduling, where every process is guar-
anteed to be scheduled in bounded intervals, overcomesrbliidem. Since bounded fairness can be
expressed in PROMPT-LTL, the realizability problem in agyonous architectures can be formulated
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more generally as an assume-guarantee realizability gmotiiat consists of two PROMPT-LTL specifi-
cations. We give a semi-decision procedure for this prolidased on a new method for checking empti-
ness of two-colored Biichi graphs [12] and an extension ohided synthesis [8]. As asynchronous LTL
realizability for architectures with more than one processndecidable[[19], the same result holds for
PROMPT-LTL realizability. Decidability in the one processse, which holds for LTLL[19], is left open.

All these results also hold for PLTL and even stronger lo§@;21] to which the alternating color
technique is still applicable.

Related Work. There is a rich literature regarding the synthesis of distdd systems from global
w-regular specifications [4}7,13,/115]17] 18]. We are not awémork that is concerned with the realiz-
ability of parameterized logics in this setting. For locaésifications, i.e., specifications that only relate
the inputs and outputs of single processes, the realizapilbblem becomes decidable for a larger class
of architectures [14]. An extension of these results to @drfree languages was given by Fridman and
Puchalal[9]. The realizability problem for asynchronoustesns and LTL specifications is undecidable
for architectures with more than one process to be synib@sid]. Later, Gastin et al. showed decid-
ability of a restricted specification language and certgjres of architectures, i.e., well-connected| [11]
and acyclic[[10] ones. Bounded synthesis [8] provides alflexsynthesis framework that can be used
for synthesizing implementations for both the asynchrenand synchronous setting.

2 PromptLTL

Throughout this work, we fix a set AP of atomic propositioneeTormulas of PROMPT-LTL are given
by the grammar

p=al-alprd|opVve[XP[pUP|[pRG|Fpd

wherea € AP is an atomic proposition;:, A,V are the usual boolean operators, atdJ,R are LTL
operators next, until, and release. We use the derived mpeta:= aV —a andff := aA —a for some
fixedae AP, andF ¢ :=ttU ¢ andG ¢ :=ffR ¢ as usual. Furthermore, we uge— (/ as shorthand for
—¢ V y, if the antecedenp is a (negated) atomic proposition (where we identifya with a). We define
the size ofp to be the number of subfomulas @f The satisfaction relation for PROMPT-LTL is defined
between arw-word w = wowiw, - - - € (ZAP)“), a positionn of w, a boundk for the prompt-eventually
operators, and a PROMPT-LTL formula. For the LTL operatitis, defined as usual (and oblivious to
k) and for the prompt-eventually we have

e (w,n,k) F Fp¢ if, and only if, there exists @ in the range &< j < k such thatw,n+ j,k) F ¢.

For the sake of brevity, we writew,k) F ¢ instead of(w,0,k) F ¢ and say thatvis a model of¢ with
respect tk. Note that(w,n, k) E ¢ implies (w,n,K') E ¢ for everyk’ >k, i.e., satisfaction with respect to
k is an upwards-closed property.

The Alternating Color Technique. In this subsection, we recall the alternating color techajgvhich
Kupferman et al. introduced to solve model checking, assguaeantee model checking, and the realiz-
ability problem for PROMPT-LTL specifications [12].

Letr ¢ AP be a fixed fresh proposition. Ag-wordw’ € (2APU{'})w is anr-coloring ofw € (24P)%
if w,NAP = wj, i.e.,w, andw, coincide on all propositions in AP. The additional propiasitr can be
thought of as the color of7;: we say that thecolor changesat positionn, if n = 0 or if the truth values
of rinw,_,; and inwj, are not equal. In this situation, we say tias achange point An r-block is a
maximal infixw/,---wj, of W such that the color changesmtandn+ 1, but not in between.
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Letk > 1: we say thatV is k-spacedf the color changes infinitely often and eacblock has length
at leastk; we say thaw is k-bounded if eachr-block has length at most Note thatk-boundedness
implies that the color changes infinitely often.

Given a PROMPT-LTL formul#, letrel, (¢) denote the formula obtained by inductively replacing
every subformuldep @ by

(r—=(rU(=rurel(y)))) A (=r = (-ru (rurek (g)))) ,

which is only linearly larger thag and requires every prompt eventually to be satisfied withimast
one color change (not counting the position whgréolds). Furthermore, the formubdt, = GFr A
GF-r is satisfied if the colors change infinitely often. Finallye wefine the LTL formulec, (¢) =
rel; (¢ ) Aalt,. Kupferman et al. showed thé@tandc; (¢ ) are in some sense equivalent@rwords which
are bounded and spaced.

Lemma 1 (Lemma 2.1 of[[12]) Let$ be aPROMPTLTL formula, and let we (24F)%.
1. If (wk) E ¢, then Wk c (@) for every k-spaced r-coloring vof w.
2. Ifw is a k-bounded r-coloring of w with"vi c; (¢ ), then(w, 2k) = ¢.

Whenever possible, we drop the subscrigor the sake of readability, if is clear from context.
However, when we consider asynchronous systems in Ségtiva Aeed to relativize two formulas with
different colors, which necessitates the introductiorhefsubscripts.

3 Synchronous Distributed Synthesis

PROMPT-LTL specifications can give guarantees that LTL ogrior example by asserting not only
that requests to a system are answereehtually but also that there is ampper boundon the reaction
time. This is especially important in distributed systemiace such timing constraints become more
difficult to implement because of information flows betwela various parts of the system.

Consider for example a distributed computation system revhecentral master getsmportantand
unimportanttasks, and can forward tasks to a number of clients. A cliantather enqueue the task,
which means that it will be processedentually or clear the client-side queue and process the task
immediately. The latter operation is very costly (we haveetnember the open tasks as they still need to
be completed), but guarantees an upper bound on the coamplietie. While in LTL we can only specify
that all incoming tasks are processed eventually, in PRONIPL we can specify that the answer time
to important tasks is bounded by the form@&mportanttask— prinishedtask)ﬂ

We continue by formalizing the distributed realizabilitsoplem. LetX andY be finite and pairwise
disjoint sets of variables. Aaluationof X is a subset 0K; thus, the set of all valuations &fis 2X. For

W= WoWiWz - € (25)® andw = wpwyw--- € (2¥)%, letwWUW = (Wo U W) (W1 UW,) (W UWS) -+ €
(ZXUY)w_

Strategies. A strategy f (2X)* — 2¥ maps a history of valuations &f to a valuation ofy. A 2Y-
labeled 2*-transition system¥ is a tuple (S s,A,l) whereSis a finite set of statesy € Sis the
designated initial state): Sx 2X — Sis the transition function, antk S— 2" is the state-labeling.

1A similar constraint could be simulated in LTL by writing then every important incoming task, the worker queues are
cleared. This, however, removes implementation freedafrenuires the developer to determine how to implement e,
instead of letting the synthesis algorithm decide.
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We generalize the transition function to sequences o¥eny2definingA*: (2X)* — Srecursively as
A*(€) = sp andA* (Wo - - - Wn_1Wh) = A(A* (Wo - - - Wi_1), W) for wo - - -wn_ 1wy, € (2%)*. A transition sys-
tem.” generateshe strategyf if f(w)=1(A*(w)) for everyw € (2X)*. A strategyf is calledfinite-state
if there exists a transition system that generdtes

Let X" andY’ be finite and disjoint sets whek is additionally disjoint from¥ andY’ is additionally
pairwise disjoint fromX andY. Further, letf: (2X)* — 2¥ and f': (2X)* — 2"’ be two strategies with
the same domain but pairwise different co-domairafd 2. Theproduct fx f': (2¥)* — 2YYY' of f
and f’ is defined ag f x f')(w) = f(w) U f'(w) for everyw € (2X)*. The 2-projection of a sequence
Wo - - Wn € (2X9%X)* is projpx (Wo - - - Wn) = (Wo N1 X) -+ - (Wy N X) € (2¥)*. The 2-widening of a strategy
f: (2%)" — 2" is defined as widg (f): (2X?X)* — 2¥ with wide, (f)(w) = f(projx (w)) for w €
(2XUX'y*, For strategies : (2%)* — 2¥ andf’: (2X')* — 2¥', thedistributed product fo f/: (2XUX')* —
2YUY'is defined as the product wigex (f) x wide,xx (f').

The behavior of a strategf: (2X)* — 2Y is characterized by an infinite tree that branches by the
valuations ofX and whose nodew € (2*X)* are labeled with the strategic choid¢w). For an infi-
nite wordw = wowyw; - -- € (2X)®, the corresponding labeled path is defined &&) Uwo)( f(wo) U
wa) (f(Wowp) Uws) --- € (2XYY)@. We lift the set containment operaterto the containment of a labeled
pathw = wowiWs - -- € (2XYY)? in a strategy tree induced by (2X)* — 2Y, i.e.,w € f if, and only
if, f(e) =wpNY andf((wonX)---(winX)) =wiy1NY for all i > 0. We define the satisfaction of a
PROMPT-LTL formulag¢ (over propositionsX UY) on strategyf with respect to the bounk, written
(f,k) E ¢ for short, agw, k) F ¢ for all pathsw € f.

Distributed Systems. We characterize a distributed system as a set of procestea fied communi-
cation topology, called aarchitecturein the following. Recall that AP is the set of atomic propiasis
used to build formulas. Aarchitecture< is a tuple(P, penv, {1p} per, {Op} pep), WhereP is the finite set
of processes angen, € P is the distinct environment process. We denotéPby= P\ { pen} the set of
system processes.

Given a procesp < P, the inputs and outputs of this process iy& AP andO, C AP, respec-
tively, where we assuml,,, = 0. We use the notatiolpr and Op for someP’ C P for (Jyep Ip and
Uper Op, respectively. While processes may share the same inputase of broadcasting), the outputs
of processes must be pairwise disjoint, i.e., forpat p’ € P it holds thatO, NOy = 0.

An implementatiorof a procesp € P~ is a strategyfp: (2'0)* — 290 mapping finite input sequences
to a valuation of the output variables.

a pl—C>
p 9>

(a) (b)
Figure 1: Example architectures

Example 1. Figure[1 shows example architecture$ and.c#, where

21 = ({Penv, P1, P2} Penvs { Perv— 0, p1 — {a}, p2 — {b}}, {penv— {a, b}, p1 = {c}, po — {d}}), and
2> = ({ Penv, P1, P2} Penvs { Perv— 0, p1 — {@}, p2 = {b} }, {Penv— {a}, pr = {b}, p2 — {c}}) .
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The architecture#; in Fig.[1(a) contains two system processgsand pz, and the environment process
Perv- The processep; and p, receive the inputs, respectivelyb, from the environment and outpat
andd, respectively. Hence, the environment can provide propessth information that is hidden from
p2 and vice versa. In contrast, architectusg, depicted in Fig[ 1(B), is a pipeline architecture where
information from the environment can only propagate thtotlge pipeline processes and ps.

Distributed Realizability. Let .o/ = (P, Penv, {Ip}per, {Op}pep) be an architecture. Theistributed
realizability problem fores is to decide, given a PROMPT-LTL formudg whether there exist a bouikd
and a finite-state implementatidp for every procesp € P~, such that the distributed produ@l,cp- fp
satisfiesp with respect tc, i.e., (Qpep- fp,K) F ¢. In this case, we say thdtis realizable ine7. The
distributed realizability problem for LTL is a special caas LTL is a fragment of PROMPT-LTL.

Letr ¢ AP be the fresh proposition introduced for the alternatioigpictechnique to relativize formu-
las and lete = (P, penv, {Ip}pep, {Op}pep) be an architecture as above. We define the architecttiras
(PU{Pr}, Penvs {1p}per U{lr},{Op}pep U{Or}), wherel, = 0 andO, = {r}. Intuitively, this describes
an architecture where one additional procpsss responsible for providing sequences(ﬂ‘ir})‘*’, ie.,

a coloring byr. We show thatp in <7 andc;(¢) in /" are equi-realizable by applying the alternating
color technique. As the processes are synchronized, tloé igrsimilar to the one for the single-process
case by Kupferman et al. [12].

Theorem 1. APROMPTLTL formula¢ is realizable ing/ if, and only if, G(¢) is realizable ine/".

Proof. Let.oZ = (P, Penv, {lp}pep, {Op}pep) be an architecture anpibe a PROMPT-LTL formula.

Assume that the PROMPT-LTL formu{ais realizable ine/. Then, there exist finite-state strategies
fp for p e P~ and a boundk satisfying the PROMPT—-LTL distributed realizability ptetn (<7, ¢). For
everyw € Qpep- fp, it holds that(w, k) = ¢. By Lemmal L1 it holds that evelspaced -coloring w
of w satisfies; (¢). Let f,: (20)* — 2{"} be a (finite-state) strategy that producesktspaced sequence
(0%{r}¥). Then, the process implementatiofi§,} . together withf; are a solution to the LTL
distributed realizability problenie?’,c;(¢)).

Now, assume that the LTL formule (¢) is realizable in the architecture’’. Thus, there exist
finite-state strategie$, for p € P~ and a finite-state strategfy for processp;. Note that the strat-
egy f;: (2%)* — 2{"} has a unique output, € (2{"})®, as it has no inputs. We claim that is k-bounded,
wherek is the number of states of the transition systefn= (S s,A,1) generatingf;. To see this, note
that f, has no inputs, i.e., every state.af has a unique successorAnand the unique run of” on ¢
ends up in a loop which is traversed ad infinitum. As the outguibas infinitely many change points,
the loop contains at least one statiabeled byl (s) = 0 and at last one statewith |(s') = {r}. Thus,
the maximal length of a block of; is bounded by the length of the loop, which in turn is boundgd b
the size of¥.

Hence, for every € @pcp- fp, the wordw; Uwis ak-bounded-coloring ofw with w; Uw = rel;(¢).

By Lemmal L2, for all sucw it holds that(w, 2k) = ¢. Hence {f,} . together with the boundkds a
solution to the PROMPT-LTL distributed realizability ptebn. O

To conclude, we show that the newly introduced progaspreserves thénformation forkcrite-
rion [7]. Formally, consider tuple@’,V’, p, p'), whereP’ is a subset of the process®s,is a subset of
the variables disjoint fronh, U1y, andp,p’ € P~ \ P’ are two different processes. Such a tuple is an
information fork in.< if P’ together with the edges that are labeled with at least oriablarfromV’
forms a sub-graph of7 rooted in the environment and there exist two nogeg € P’ that have edges
to p, p/, respectively, such th&q ) Zly andOyq, py ¢ 1. For example, the architecture in Fig. 1(a)
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contains the information forl{ penv}, @, p1, p2), While the pipeline architecture depicted in Fig. 1(b) does
not contain an information fork.

Lemma 2. /" contains an information fork if, and only if7 contains an information fork.

Proof. Theif direction follows immediately by construction: {P’,V’, p,p) is an information fork in
</ then it is an information fork inzz" as well. Hence, assum®@’,V’, p, p) is an information fork in
</". It holds that neithep, = p nor p; = p’ sincep, has no incoming edges. Ag = 0, p; cannot be in
a sub-graph that is rooted in the environment, hepeé, P’ andr ¢ V'. It follows that (P',V', p,p') is
an information fork ing7. O

Thus, we can use well-known results for the decidability stributed realizability for LTL and
weakly ordered architectures [7], i.e., those without darmation fork.

Corollary 1. Let« be an architecture. ThHEROMPTLTL distributed realizability problem fok7 is
decidable if, and only ife/ is weakly ordered.

Furthermore, we can directly apply semi-algorithms for digtributed realizability problem, such as
bounded synthesis|[8], to effectively construct smaledisolutions.

4 Asynchronous Distributed Synthesis

The asynchronous system model is a generalization of thehsynous model discussed in the last sec-
tion. In an asynchronous system, not all processes are @eldedt the same time. We model the
scheduler as part of the environment, i.e., at any given tire@nvironment additionally signals whether
a process is enabled. The resulting distributed realinalploblem is already undecidable for LTL
specifications and systems with more than one process [19].

We have to adapt the definition of the PROMPT-LTL realizépifiroblem for the asynchronous
setting. Using the definition from Sectibh 3, the system @mensatisfy a PROMPT-LTL formula if the
scheduler is part of the environment, since it may delay dudiveg indefinitely. Moreover, even if the
scheduler is assumed to be fair, it can still build incregsialay blocks between process activation times,
such that it is impossible for the system to guarantee anpdbkE N. Hence, we employ the concept
of bounded fairschedulers and allow the system valuations to depend orcttezlsler bound. More
generally, this is a typical instance of an assume-guagaspiecification: under the assumption that the
scheduler is bounded fair, the system satisfies its spdafican the following, we formally introduce
the distributed realizability problem for asynchronousteyns and assume-guarantee specifications.

To model scheduling, we introduce an additional set Sehgdcheq, | p € P~} of atomic proposi-
tions. The valuation o$cheg indicates whether system procgss currently scheduled or not. Given
a (synchronous) architecturg’ = (P, Penv; {Ip}pep, {Op} per), We define the asynchronous architecture
«/* as the architecture with the environment out@it = Op,,, U Sched. Furthermore, we extend the
input I, of a process by its scheduling variatsieneq, i.e., 1; = 1, U {scheg} for everyp € P~. The
environment can decide in every step which processes talslgheWhen a process is not scheduled,
its state—and thereby its outputs—do not change [8]. Formally,flefor p € P~ be a finite-state im-
plementation for a procegsand.”, = (S 5,4, 1) a transition system that generatigs For every path
W= WowiW, - - € (2'0)@ it holds that ifscheg ¢ w; for somei € N, thenA*(w[i]) = A*(w[i +1]), where
w[i] denotes the prefiwowy - - - w; of w.

A PROMPT-LTL assume-guarantee specificatigny) consists of a pair of PROMPT-LTL for-
mulas. The asynchronous assume-guarantee realizahitiblgm asks, given an asynchronous archi-
tectureo/* and (¢, ) as above, whether there exists a finite-state implementégiéor every process
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p € P~ such that for every bounkithere is a bound such that for everyw € @ .p- fp, we have that
(W,k) F ¢ implies (w,1) F (. In this case, we say th@ p- fp satisfies(¢, ().

Consider the bounded fairness specification discussedatvnch is expressed by the formfla=
Npep- GFpscheq, i.e., for every point in time, everg is scheduled within a bounded number of steps.
That is, we use as an assumption on the environment which implies that taeageey only has to
be satisfied if¢ holds. Consider for example the asynchronous architecomesponding to Fig. 1(a)
and the PROMPT-LTL specificatiap = G(Fpc A Fp—cAFpd AFp—d). Even when we assume a fair
scheduler, i.e.¢p = GFscheg, A GFscheg,, the environment can prevent one process from satisfying
the specification for any bourd This problem is fixed by assuming the scheduler to be boufaled
i.e., ¢ = GFpscheg, A GFpsched,. Then, there exist realizing implementations for procegseand
p2 (that alternate between enabling and disabling the oytpnt) the bound on the guarante¢ is2-k
for every boundk.

Unlike LTL, where the assume-guarantee probl@my) can be reduced to the LTL realizability
problem for the implicatiop — , this is not possible in PROMPT-LTL due to the quantifierraié¢ion
on the bounds. Indeed, itis still open whether the PROMPT-d4S5ume-guarantee realizability problem
in the single-process case is decidable. We show that evba fgroblem turns out to be decidable, an
implementation that realizes the specification may neeeireal infinite memory.

Lemma 3. There exists an assume-guaranEBlROMPTLTL specification that can be realized with an
infinite-state strategy, but not with a finite-state strgteg

Proof. Consider the assume-guarantee specificat§ony) with ¢ = GFpoV FG—-o0 andy = ff and a
single process architecture with= 0 andO = {o0}. As the guaranteq is false, the implementation
has to falsify the assumptiop for every boundk on the prompt-eventually operator to realige ).
To falsify ¢ with respect tdk, the implementation has to produce a sequemee(Z{O})‘*’ whereo is
repeatedly true and wheré B an infix ofw. Thus, the size of the implementation depend«and an
implementation that falsifieg for everyk must have infinite memory. O

Since the LTL realizability problem is undecidable and iempentations for PROMPT-LTL assume-
guarantee specifications may need infinite memory, the PRIIUAL assume-guarantee realizability
problem for asynchronous architectures may be at bestldeh@y a semi-decision procedure. We
present such a semi-algorithm for the asynchronous distéibrealizability problem for assume-guarantee
PROMPT-LTL specifications based on bounded synthesisri&@ounded synthesis, a transition system
of a fixed size is “guessed” and model checked by a constraliveis Model checking for PROMPT—LTL
can be solved by checking pumpable non-emptiness of coRiietli graphs/[[12]. However, the pumpa-
bility condition cannot directly be expressed in the bouhdgnthesis constraint system. Hence, in
Sectior 4.1, we give an alternative solution to the non-@mps of colored Biichi graphs by a reduction
to Biichi graphs that have access to the state space of tigtiva system. We use this result to build
the semi-algorithm that is presented in Section 4.2.

4.1 Nonemptiness of Colored Bchi Graphs

In the case of LTL specifications, the nonemptiness probtarBfichi graphs gives a classical solution to
the model checking problem for a given systefh Let ¢ be the LTL formula that” should satisfy. In a
preprocessing step, the negatiorpab translated to a nondeterministic Blichi word automator [3].
Then ¢ is violated by.” if, and only if, the Buchi graplG representing the product of and .4~
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is nonempty. An accepting patlin G witnesses a computation of that violates¢. Colored Bichi
graphsare an extension to those graphs in the context of model cigeBIROMPT-LTL [12].

A colored Biichi graph of degree two is a tude= ({r,r'},V,E,vp,L, %) wherer andr’ are propo-
sitions, V is a set of verticesg CV xV is a set of edgesyy € V is the designated initial vertex,
L: V — 2{""} describes the color of a vertex, asél = {B1,B;} is a generalized Biichi condition of
index two, i.e.B1,B2 C V. A Bichi graph is a special case where we omit the labelingtfan and are
interested in finding an accepting path. A path- voviv2--- € V¥ is pumpable, if we can pump all its
r’-blocks without pumping its-blocks. Formally, a path is pumpable if for all adjacErthange points
andi’, there are positiong, j’, andj” such that < j < j' < j” <i’, vj = vj» andr € L(v;) if, and only if,

r ¢ L(vy). A pathrtis accepting, if it visits botlB; andB; infinitely often. Thepumpable nonemptiness
problem forG is to decide whetheG has a pumpable accepting path. It is dkiSPACE-complete and
solvable in linear time [12].

We give an alternative solution to this problem based on aatésh to the nonemptiness problem of
Blichi graphs. To this end, we construct a non-determmgsifety automatonpump that characterizes
the pumpability condition. Note that an infinite word is guisal by a safety automaton if, and only if,
there exists an infinite run on this word.

Lemma 4. Let G= ({r,r'},V,E,vp,L, %) be a colored Bchi graph of degree two. There exists achi
graph G with ¢(|G'|) = ¢(|G|?) such that G has a pumpable accepting path if, and only’ithi& an
accepting path.

Proof. We define a non-deterministic safety automatéfymp= (V x 20"} S 5,8, S) over the alphabet
V x 2{t"'} that checks the pumpability condition. The producBoéind. #5ump (defined later) represents
the Biichi graphG’ where every accepting path is pumpable.

The language? C (V x 2{""})® of pumpable paths (with respect to a fixed set of vertMpss
an w-regular language that can be recognized by a small nomrdigistic safety automaton. This
automaton#,,mp operates in 3 phases between every pair of adjacesitange points: first, it non-
deterministically remembers a vertexand the corresponding truth valuerofThen, it checks that this
value changes and thereafter it remains to show that thexwerepeats before the nexXtchange point.
Thus, the state spa&of 4pympis

{so}u{swx lveV,xe 2{”'}}U{d,7y lveV,ye Z{r’r/}}u{s’z’ |ze Z{r’}}

and the initial state isy. The state space corresponds to the 3 phases: In the stavertexv and
a truth value ofr are remembered, before statg, the value ofr changes, and] is the state after the

vertex repetition. The transition functiah (Sx (V x 21r'})) — 2Sis defined as follows:
* (%0, (%X) = {sux}
Six  If X=X
o O(syx, (V,X)) 2 S svw if x=gn X
Sy IF X=X andx #£ gy X

Suy if x=gy yandv #v

0 v
° (gl.w( ;X)) > {%{rl} if X =y yandv=yv

! H —
e 5 ()2 % Xz
Sux I X#pyy
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whereA =c B is defined agANC) = (BNC). The size of #pumpis in O(|V|). Figurel2 gives a visual-
ization of this automaton.

Figure 2: Schematic visualization of the automatdg,m, from the proof of Lemmal4. The 3 phases are
clearly visible: In the red states (solid rectangles) the valugs, x) are non-deterministically stored
and those states can only be left if there is a change in theealr. The subsequent blue stats%
(dashed rectangles) can only be left in case of a vertexitiepeteading to the green stai€ (dotted
circles) that waits for the next change point.

Remark 1. Note that in the context of this proof, it would be enough tmeenber a vertex without
the valuation of(r,r'} as the vertex determines the valuation by the labeling foanét: v — 2{""} of G.
However, we will later use#,umpin @ more general setting (cf. Sectionl4.2).

We define the produdB’ of the colored Buichi grape = ({r,r'},V,E,vp,L, %) and the automa-
ton .#pump as the Buchi grapfV x SE', (v, %), #’), where

((vs),(V,9)eE" < (wWV)eEAS €(s (v,L(V)))

and whereZ’ = (B/,B5) is given byB| = {(v,s) | ve Bj ands< S} for i € {1,2}. The size ofG is in
ﬁ(|G|2). It remains to show thaB has a pumpable accepting path if, and onlyGf,has an accepting
path.

Consider a pumpable accepting patlin G. We show that there is a corresponding accepting path
m in G. Leti andi’ be adjacent’-change points. Then there are positigns’, and j” such that
i<j<j <" <V, vj=vp andr € L(vj) if, and only if, r ¢ L(vj). By construction, at position
i, automaton,ump is some state from the sét, s, ’r }} We follow the automaton and remember
vertexv and the truth value of at positionj > i (some states,x). Next, we take the transition m
where the truth value af changes (at positiofY). Lastly, we check that there is a vertex repetition (at
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position j”) and go to statd]. At the nextr’-change point, the argument repeats. This path is accepting,
as the original one is accepting.

Now, consider an accepting pathin G'. We show that there is a pumpable accepting path.ihet
™ be the projection of every position af to the first component. By constructiom, is an accepting
path inG. Let 7575, 1 - - - T be anr’-block of 1. As iThas a run on automataryymp, we know that there
exists a state repetition betweeandi’ where the truth value af changes in between. Hence, the path
1T is pumpable. O

4.2 A Semi-Algorithm for Assume-Guarantee Realizability

As the assume-guarantee realizability problem for asymmahus architectures is undecidable and infinite-
state strategies are required in general, we give a sensiole@rocedure for the problem, as an exten-
sion of the bounded synthesis approéch [8]. Based on an L&tifsgation, an architecturez/, and

a size bound, bounded synthesis separately considers the problemsdiridim global transition sys-
tem that satisfies the given specification, and of dividing tilansition system into local components
according to the given architecture. To this end, two setsooktraints are generated: an encoding of
the satisfaction ofp by a global transition systeny’ of sizeb, and an encoding of the architectural
constraints that divides this global system into local cormgnts. If the conjunction of both sets of con-
straints is satisfiable, then a model of the constraintsesegmts a distributed system that satisfiein

/. Since the architectural constraints we consider are thee ses in standard bounded synthesis, we
only have to modify the constraints encoding the existerfigeghobal transition system that satisfies the
given specification.

In the following, we use the techniques developed in the dabsection to generalize the encod-
ing of the specification from a single LTL formulf to an assume-guarantee specificatigny) in
PROMPT-LTL. Given an assume-guarantee specificatjony), we first solve the problem of model-
checking assume-guarantee specifications by building\eersal co-Blchi tree automatas; that ac-
cepts a transition systerw’ if, and only if, . satisfies(¢, ). From%4 and a given bound, we then
build a constraint system that is satisfiable if, and onlgifjmplementation” of (¢, ) with sizeb ex-
ists. Finally, the encoding of architectural constrairda be adopted without changes from the original
approach to obtain a conjunction of constraints that is&alile if, and only if, there is a system of size
b that satisfieg¢, ) in <.

Encoding (¢, ¢) into Buchi automata. Let.</* = (P, Penv, {I} peP, {Op } pep) be an asynchronous ar-
chitecture and let = Op,  andO = |J,.p- O}, be the set of inputs, respectively outputs, of the composi-
tion of the system processes. First, we construct the ntrdanistic Buchi automatonst, (e (¢) =
(219091} Q, g0, 5,B), wheret, () = alt, A —rel, () whose language contains exactly those paths
that satisfyc, (@) Ac, (@) [3].

Lemma 5 (cf. Theorem 6.2 of [12]) Let . be a2°-labeled2'-transition system. Thew’ does not
satisfy(i, ¢) if, and only if, the product of” and /¢, ()¢, (9) IS pumpable non-empty.

To check the existence of pumpable error paths, we use theleenministic automatonpymp =
(V x 2r"} 5 5,8,9) from the proof of Lemma&l4. Here, we lst= X x Q, whereX is a set withb
elements, representing the state space of the desiretbsoldt andQ is the state space of the automa-
ton ¢, (y)nc.(9) defined above. That is, we use\ashe state spack x Q of the colored Buchi graph
that is used to model check an implementatigragainst a specificatiofy, ¢).
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The product of 45, (y)ac (¢) @and Apump IS @n automaton/” that operates on the inputs outputs
O, propositions{r,r’'}, and the state spac€ of the implementation, and accepts all those paths that are
pumpable and violate the assume-guarantee specificafiobefoma4).
A is defined as
<2|UOU{I'7I"} x X, Q > 57 (qus)), 5*’ B*>,

whered*: Q x Sx 2'V0U{rr'} » [x} — 2Q*Sis defined as

5*((9,9),(0,x) = {(d,s) | d €d(q,0) A S ed(s{axtu(an{rr}))},

andB* is the Buchi condition{(q,s) | g€ B,s€ S}.

We complement/”, resulting in a universal co-Biichi automat@n that accepts a given sequence
we (2'YI'H@ of inputs and the behavior of an implementatighonw iff the execution of” onw satis-
fies(y, ¢). Finally, we construct a universal co-Buichi tree automaig = (2° x X, 2V} Q, g, 0,9)
by spanning a copy o for every direction in ("""}, Then, an implementatios’ is accepted by
if, and only if, . satisfies(¢, ) (for all possible input sequences). Thdg; solves the problem of
model-checking assume-guarantee specifications.

Encoding the automaton into constraints. Now, we use a slightly modified bounded synthesis algo-
rithm [8] to encode?4 into a set of constraints in a first-order theory with unipteted functions and

a total order, such that the constraints are satisfiabléeffet exists an implementatio#f that satisfies
(¢, y). The main difference to the existing approach is that theifipation automator? has access to
the states of the implementatiori. This is not a problem, since the generated constraintsogiptefer

to the state space of anyway. The original proof of correctness can be used wittominodifications

to obtain the following corollary.

Corollary 2. Given an assume-guarantee specificatipny) and a bound b, there is a constraint system
(in a decidable first-order theory) that is satisfiable if,daonly if, there exist an implementatia#f of
size b such that” satisfies(¢, y).

Encoding of architectural constraints. As mentioned above, the encoding of architectural comggai
can be adopted without changes, and it can in particularcalstain additional bounds on the state space
of every single component the conjunction of both sets otraints then asks for the existence of a
distributed implementatioy’ = @ ,cp- fp Of sizebthat satisfieg¢, ), possibly with additional bounds
by for everyp € P~ on the size of the components. Thus, we obtain:

Theorem 2. Given an assume-guarantee specificatigny), an asynchronous architecture’™, and a
family of bounds pfor every pc P~, there is a constraint system (in a decidable first-ordeotiggthat
is satisfiable if, and only if, there exist implementatiop®ffsize i for every pc P~ such that® ,cp- fp
satisfies(¢, @) in o7*.

By exhaustively traversing the space of bourids),cp- and by solving the resulting constraint
system as in the previous theorem, we obtain a semi-algoffith the asynchronous assume-guarantee
realizability problem for PROMPT—-LTL. Furthermore, this@solves the synthesis problem, as imple-
mentations are efficiently obtained from a satisfying assignt of the constraint system.

Corollary 3. Let« be an asynchronous architecture. TRROMPTLTL distributed assume-guarantee
realizability problem fore is semi-decidable.
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5 Conclusion

In this paper, we have initiated the investigation of dstted synthesis for parameterized specifications,
in particular for PROMPT-LTL. This logic subsumes LTL, bulditionally allows to express bounded
satisfaction of system properties, instead of only evérsatsfaction. To the best of our knowledge, this
is the first treatment of PROMPT-LTL specifications in dmited synthesis.

We have shown that for the case of synchronous distributgte s, we can reduce the PROMPT-LTL
synthesis problem to an LTL synthesis problem. Thus, thepbexity of PROMPT-LTL synthesis corre-
sponds to the complexity of LTL synthesis, and the PROMPTAHdalizability problem is decidable if,
and only if, the LTL realizability problem is decidable. Rbe case of asynchronous distributed systems
with multiple components, the PROMPT-LTL realizabilityoptem is undecidable, again correspond-
ing to the result for LTL. For this case, we give a semi-decigorocedure based on a novel method
for checking emptiness of two-colored Biichi graphs. A#igl results also hold for PLTL and the even
stronger logics from_ ]6, 21], as they have the exponentiabftation property and as the alternating
coloring technique is applicable to these logics as well.

Among the problems that remain open is realizability of PREIMLTL specifications in asyn-
chronous distributed systems with a single component. ptoblem can be reduced to the (single-
process) assume-guarantee realizability problem for PROMTL, which was left open in[12].
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