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We continue the investigation of parameterized extensadrisinear Temporal Logic (LTL) that
retain the attractive algorithmic properties of LTL: a podynial space model checking algorithm
and a doubly-exponential time algorithm for solving gan#dsr et al. and Kupferman et al. showed
that this is the case for Parametric LTL (PLTL) and PROMPT-k&spectively, which have temporal
operators equipped with variables that bound their scopieni@. Later, this was also shown to be
true for Parametric LDL (PLDL), which extends PLTL to be atbeexpress allv-regular properties.
Here, we generalize PLTL to systems with costs, i.e., we ddaond the scope of operators in
time, but bound the scope in terms of the cost accumulatedgitime. Again, we show that model
checking and solving games for specifications in PLTL witstsds not harder than the corresponding
problems for LTL. Finally, we discuss PLDL with costs andexgions to multiple cost functions.

1 Introduction

Parameterized linear temporal logics address a serioutceling of Linear-temporal Logic (LTL):
LTL is not able to express timing constraints, e.g., widglgg — Fp) expresses that every requess
eventually answered by a respongethe waiting time between requests and responses mighgdive
This is typically not the desired behavior, but cannot bedwdut by LTL.

To overcome this shortcoming, Alur et al. introduced paramied LTL [1], which extends LTL with
parameterized operators of the fofim, andG <y, wherex andy are variables. The formul@(q— F<xp)
expresses that every request is answered within an aybibnatr fixed number of steps(x). Here,a is
a variable valuation, a mapping of variables to natural nrensibTypically, one is interested in whether
a PLTL formula is satisfied with respect to some variable a@atuwn. For example, the model checking
problem asks whether a given transition system satisfiegem @?LTL specificationp with respect to
someaq, i.e., whether every path satisfig¢swvith respect tax. Similarly, solving infinite games amounts
to determining whether there is ansuch that Player 0 has a strategy such that every play thahgs:
tent with the strategy satisfies the winning condition wéhpect tax. Alur et al. showed that the PLTL
model checking problem is P&ce-complete. Kupferman et al. later considered PROMPT-ILT&],[1
which can be seen as the fragment of PLTL without the paraimetbalways operator, and showed that
PROMPT-LTL model checking is still BF8ce-complete and that PROMPT-LTL realizability, an ab-
stract notion of infinite game, is 28 TIME-complete. While the results of Alur et al. relied on invalve
pumping arguments, the results of Kupferman et al. wherbaaed on the so-called alternating-color
technique, which basically allows to reduce PROMPT-LTL Td_L Furthermore, the result on realiz-
ability was extended to infinite games on graphs [29], agsingithe alternating-color technique.

Another serious shortcoming of LTL (and its parameterizadants) is their expressiveness: LTL is
equi-expressive to first-order logic with order and thusamexpressive as-regular expressions. This
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shortcoming was addressed by a long line of temporal oG4 s19/ 26, 27, 28] with regular expressions,
finite automata, or grammar operators to obtain the full esgivity of thew-regular languages. One of
these logics is Linear Dynamic Logic (LDL), which has tenmgdaperators(r) and[r], wherer is a
regular expression. For example, the formuld (q — (r1) p) holds in a wordw, if for every request at
a positionn such thatvg - - - w, matches, there is a positiom’ > n such thatp holds at’ andwy, - - - wyy
matcheg . Intuitively, the diamond operator corresponds to the ity of LTL, but is guarded by a
regular expression. Dually, the box-operator is a guartiedys. Although LDL is more expressive than
LTL, its algorithmic properties are similar: model chedkiis P S ACE-complete and solving games is
2EXPTIME-complete([26].

All these logics tackle one shortcoming, but not both siamdiously. This was achieved for the
first time by adding parameterized operators to LDL. Thedpgalled parameterized LDL (PLDL) [15,
16], has additional operators)_, and[r]., with the expected semantics: the variables bound the
scope of the operator. And even for this logic, which hasmpatars and is more expressive than LTL,
model checking is still PBACE-complete and solving games is ETIME-complete. Again, these
problems were solved by an application of the alternatimigrctechnique. One has to overcome some
technicalities, but the general proof technique is the sasrfer PROMPT—-LTL.

The decision problems for the parameterized logics meaticebove are boundedness problems,
e.g., one asks for an upper bound on the waiting times betwazprests and responses in case of the
formulaG(q — F<xp). Recently, more general boundedness problems in logicsuatothata received
a lot of attention to obtain decidable quantitative extensiof monadic second-order logic and better
synthesis algorithms. In general, boundedness problemsiratecidable for automata with counters,
but become decidable if the acceptance conditions cantefsrundedness properties of the counters,
but the transition relation has no access to counter vaRiesent advances include logics and automata
with bounds|[3|_6], satisfiability algorithms for these logii4,5] 7| 25], and regular cost-functions|[13].
However, these formalisms, while very expressive, araatéble and thus not suitable for verification
and synthesis. Thus, less expressive formalisms wereestullat appear more suitable for practical
applications, e.g., finitary parity [11], parity with co§i¥]], energy-parity([10], mean-payoff-parity [12],
consumption games|[8], and the use of weighted automataémifging quantitative properties|[2, 9].
In particular, the parity condition with cost is defined iraghs whose edges are weighted by natural
numbers (interpreted as costs) and requires the existérceonndb such that almost every occurrence
of an odd color is followed by an occurrence of a larger evdorcauch that the cost between these
positions is at modi. Although strictly stronger than the classical parity atind, solving parity games
with costs is as hard as solving parity games [20].

Our contribution:  We investigate parameterized temporal logics in a weigh&tting similar to
the one of parity conditions with costs: our graphs are qurdpwith cost-functions that label the edges
with natural numbers and parameterized operators are nalwaged with respect to cost instead of time,
i.e., the parameters bound the accumulated cost insted@ @lapsed time. Thus, the formuEq —
F<xp) requires that every requegtis answered with cost at moatx). We show the following results
about PLTL with costs (cPLTL):

First, we refined the alternating-color technique to the-sesting, which requires to tackle some
technical problems induced by the fact that accumulatet] codike time, does not increase in every
step, e.g., if an edge with cost zero is traversed.

Second, we show that Kupferman et al.'s proofs based on thenating-color technique can be
adapted to the cost-setting as well. For model-checkingagan obtain PSBacE-completeness while
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solving games is still 2EPTIME-complete.

Third, we consider PLDL with costs (cPLDL), which is defineslexpected. Again, the complexity
does not increase: model checking isFRSE-complete while solving games is RETIME-complete.

Fourth, we generalize both logics to a setting with multigdst-functions. Now, the parameterized
temporal operators have another parametirat determines the cost-function under which they are
evaluated. Even these extensions do not increase complddel checking is again P&CE-complete
while solving games is still 2EPTIME-complete.

Fifth, we also investigate model checking and solving gaasean optimization problem, which is
a very natural view on the problems, i.e., we are interestembmputing the optimal variable valuation
such that a given system satisfies a given specification. FdFlcand cPLDL, we show that the model
checking optimization problem can be solved in polynomgdce while the optimization problem for
infinite games can be solved in triply-exponential time. S¢heesults are similar to the ones obtained
for PLTL [29]. In particular, the exponential gap between ttecision and the optimization variant of
solving infinite games exists already for PLTL.

All proofs omitted due to space restrictions can be foundhénftll version [[30].

2 Parametric LTL with Costs

Let 7 be an infinite set of variables and tbe a set of atomic propositions. The formulae of cPLTL
are given by the grammar

¢:=p|-Pl¢ AP [dVP[XP[PUP[PRY [F<zp |Gz,

wherep e Pandze ¥. We use the derived operatots :=pV —p andff:=pA —p for some fixed
peP,F¢:=ttU¢d, andG¢ :=£ffR¢. Furthermore, we usp— ¢ and—p — ¢ as shorthand forpVv ¢
andpV ¢, respectively. Additional derived operators are intraetlon pagé 147.

The set of subformulae of a cPLTL formugais denoted by ¢kp) and we define the size df to
be the cardinality of ¢). Furthermore, we define vap) = {z€ ¥ | F<. € cl(¢)} to be the set of
variables parameterizing eventually operatorgjivaic(¢) = {z€ ¥ | G i € cl(¢)} to be the set of
variables parameterizing always operatorg jrand set vaig) = varg(¢) Uvars(¢).

cPLTL is evaluated on so-called cost-traces (traces fortsbbthe formw = woCowi CiWoCp - - - €
(2P- N)®, which encode the evolution of the system in terms of the @tqmopositions that hold true
in each time instance, and the cost of changing the system Stae cost of the trace is defined as
cst(w) = ¥ ;>0 Cj, which might be infinite. A finite cost-trace is required t@bveand end with an element
of 2P. The cost cgtw) of a finite cost-tracev = WoCow1Cy - - - Cn_1Wiy is defined as cév) = z?;é Cj.

Furthermore, we require the existence of a distinguishethiat propositionk such that all cost-
traces satisfg; > 0 if and only ifk € wj1, i.e.,k indicates that the last step had non-zero cost. We use
the propositiork to reason about costs: for example, we are able to expreghevteetrace has cost zero
or oo, In the following, we will ensure that all our systems onlioal traces that satisfy this assumption.

Also, to evaluate formulas we need to instantiate the verigharameterizing the temporal operators.
To this end, we define a variable valuation to be a mapping — N. Now, we can define the model
relation between a cost-trage = wgCoWw1C1WoC; -+ -, a positionn of w, a variable valuatioror, and
a cPLTL formula as follows:

e (w,n,a) = pifand only if p € wy,
e (w,n,a) = —pifand only if p ¢ w,
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w,n,a) =@ Ayifandonly if (wn,a) = ¢ and(w,n,a) = ¢,
w,n,a) = ¢ Vvyifandonly if (wn,a) = ¢ or (w,n,a) = g,
w,n,a) = X¢ ifand only if (wn+1,0) = ¢,
w,n,a) = Uy if and only if there exists ¢ > 0 such thafw,n+ j,a) = ¢ and(w,n+k, o) = ¢
for everykin the range X k < j,
e (Ww,n,a) = @Ry if and only if for everyj > 0: either(w,n+ j,a) = Y or there exists & in the
range O< k < j such thatw,n+k,a) = ¢,
e (W,n,a) = F<,¢ if and only if there exists & > 0 with CS(WnCn - - - Cnt j—1Wnyj) < a(2) such that
(wn+j,a) = ¢, and
o (W,n,a) = G<,¢ if and only if for every j > 0 with CS{WnCn---Cntj—1Wn+j) < a(2): (W,n+
j,a) = ¢.
Note that we recover the semantics of PLTL as the specialwhsee eveng, is equal to one.
For the sake of brevity, we writev, a) = ¢ instead of(w,0,a) = ¢ and say thatv is a model ofp
with respect tax. For variable-free formulas, we even drop thend writew = a.

As usual for parameterized temporal logics, the use of bka$ahas to be restricted: bounding even-
tually and always operators by the same variable leads to@acidable satisfiability problem][1].

Definition 1. A cPLTL formulag is well-formed, ifvars(¢) Nvarg(¢) = 0.

In the following, we only consider well-formed formulas amahit the qualifier “well-formed”. Also,
we will denote variables in vatg) by x and variables in vay(¢) by y, if the formula¢ is clear from
context.

We consider the following fragments of cPLTL. Lg¢¢tbe a cPLTL formula:

e ¢ isan LTL formula, if val¢) = 0.

e ¢ isacPLTL: formula, if vais (¢) = 0.

e ¢ isacPLTlg formula, if vaik(¢) = 0.
Example 1.

1. The formulaG(q — F<xp) is satisfied with respect ta, if every request (a position where q
holds) is followed by a response (a position where p holdsh $at the cost of the infix between
the request and the response is at noét).

2. The (max-) parity condition with cosis |17] can be expegss cPLTL via

A~~~ — —

where d is the maximal color, which we assume w.l.0.g. to ba.eldowever, the Streett condi-
tion with costs[[17] cannot be expressed in cPLTL, as it isnéefiwith respect to multiple cost
functions, one for each Streett pair. We extend cPLTL toiphelicost functions in Sectidn 7.

As for PLTL, one can also parameterize the until and the selegerator and also consider bounds
of the form “> Z’. However, this does not increase expressiveness of the [dgus, we introduce these
operators by defining them usifgx andG<y:

° d)USX(,U::d)Ul,U/\FSXl,U [] G>X¢::F§XGX(—|K\/G¢)
* PRy :=9RYV Gy o QU =Gy (¢ AFX(KAPUY))
o Foyp:=GFX(kNF®) o PR Y:=F«(¢ VGX(—KV ORY))
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Note that we defined cPLTL formulae to be in negation normahfoNevertheless, a negation can
be pushed to the atomic propositions using the duality obfferators. Thus, we can define the negation
of a cPLTL formula.

Lemma 1. For every cPLTL formula there exists an efficiently constructible cPLTL formul@ s.t.
1. (w,n,a) = ¢ if and only if(w,n,a) = —¢ for every w, every n, and eveo,
=0l =191.

3. If ¢ is well-formed, then so is¢.

N

4. If ¢ isan LTL formula, then so is¢.

5. If ¢ is a cPLTL formula, then—¢ is a cPLTLlg formula and vice versa.

Another important property of parameterized logics is monitity: increasing (decreasing) the
values of parameterized eventuality operators (parametkalways operators) preserves satisfaction.
Lemma 2. Let¢ be a cPLTL formula and let and 3 be variable valuations satisfying(x) > a(x) for
every xe varg(¢) andB(y) < a(y) for every ye varg(¢). If (w,a) = ¢, then(w,B) = ¢.

Especially, if we are interested in checking whether a fdensisatisfied with respect to some we
can always recursively replace every subform@la,y by ¢ v X(=kU(—k A (), as this is equivalent
to Gy with respect to every variable valuation mappin zero, which is the smallest possible value
fory. Note that we have to ignore the current truth value dds it indicates the cost of the last transition,
not the cost of the next one.

3 The Alternating-Color Technique for Costs

Fix a fresh atomic propositiop ¢ P. We say that a cost-tracé = wycyw;ciwie, - - € (2PU(PH. N)“ is
a coloring of a cost trace = WpCoW1C1W»Cp - - - € (2P . N)w, if w, NP =w, andc;, = c, for everyn, i.e.,
w andw only differ in the truth values of the new propositign A positionn is a changepoint of/, if
n= 0 or if the truth value ofp in w,_; andw, differs. A block ofw'is an infixwjcy,- - W, j of W such
thatnandn+ j + 1 are successive changepoints. If a coloring has only finitelny changepoints, then
we refer to its suffix starting at the last changepoint asaitsite., the coloring is the concatenation of a
finite number of blocks and its tail.

Let k e N. We say that is k-bounded if every block and its tail (if it has one) has cosmaist
k. Dually, we say thatv is k-spaced, if every block has cost at lekstNote that we do not have a
requirement on the cost of the tail in this case.

Given a cPLTIl formula ¢, let rel(¢) denote the LTL formula obtained frogh by recursively re-
placing every subformul&xy by

(p— pU(=pUrel(y))) A (=p— —pU(pUrel(y))).
Intuitively, the relativized formula requires (gl) to be satisfied within at most one changepoint. On
bounded and spaced coloringsand re(¢) are “equivalent”.
Lemma 3 (cp. Lemma 2.1 of [18]) Let w be a cost-trace and Igt be a cPLTI formula.

1. Let(w,a) = ¢ for some variable valuation. Then, Wi=rel(¢) for every(k+ 1)-spaced coloring
W of w, where k= maXcyar(9) a (X).

2. Let W [=rel(¢) for some k-bounded coloring’wef w. Then,(w,a) = ¢, wherea(x) = 2k for
every X.
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4 Model Checking

A transition system” = (S5, E, ¢,cst) consists of a finite directed graggB E), an initial states € S,
a labeling functior?: S— 2°, and a cost functidhcst: E — N. We assume that every state has at least
one successor to spare us from dealing with finite paths. IRegarequirement on cost-traces having
a distinguished atomic proper# indicating the sign of the cost of the previous transitiorhug, we
require.s to satisfy the following property: ik € ¢(V), then cstv,V') > 0O for every edggv,V) € E
leading tov'. Dually, if k ¢ ¢(V'), then cstv,V') = O for every edgév,V) € E.

A path through? is a sequencer = %515, - - - satisfyingsy = § and(sn, sh+1) € E for everyn. Its
cost-trace tfm) is defined as

tr(1m) = £(so)cst(o, S1)l(S1)Cst(s1, S2)¢(S2)CSt (2, %3) -+

which satisfies our assumption on the propositon

The transition systeny” satisfies a cPLTL formulg with respect to a variable valuatian, if the
trace of every path througly’ satisfiesp with respect tax. The cPLTL model checking problem asks,
given a transition systen¥’ and a cPLTL formulap, whethers satisfiesp with respect to some.

Theorem 1. The cPLTL model checking problemRS~ACE-complete.

The proof we give below is a generalization of the one for PROMLTL by Kupferman et al[ [18].
We begin by showing PcE-membership. First note that we can restrict ourselvesltdcPformulas:
given a cPLTL formulap, let ¢’ denote the formula obtained by recursively replacing esetformula
Gy by v X(—=kU(—k A)). Due to Lemmal2 and the discussion below it, every trans#jmtems”
satisfiesp with respect to some if and only if .7 satisfiesp’ with respect to some’.

Recall thatp is the distinguished atomic proposition used to relatiaP&TL formulas. A colored
Buchi graph with cost$V,v;,E,¢,cst F) consists of a finite direct grapfv,E), an initial vertexv;, a
labeling function?: V — 2{P}, a cost-function cstE — N, and a seF C V of accepting vertices. A
pathvgviVvs - - - is pumpable, if each of its blocks induced pyontains a vertex repetition such that the
cycle formed by the repetition has non-zero Bostote that we do not have a requirement on the cost of
the tail, if the path has one. The path is fair, if it visignfinitely often. The pumpable non-emptiness
problem asks, given a colored Biichi graph with costs, wérdtthas an initial pumpable fair path.

Lemma 4. If a colored Bichi graph with costs has an initial pumpable fair path, treso one of the
form i with |erm| € 0(n?), where n is the number of vertices of the graph.

Let.” = (S s,E,/,cst) be atransition system and igtbe a cPLTI formula. Furthermore, consider
the LTL formulax = (GFpA GF—-p) ++» GFk, which is satisfied by a cost-trace, if the trace has infipitel
many changepoints if and only if it has cest Now, let2 = (Q, 2PUtP) 1, 8, F) be a nondeterministic
Buchi automaton recognizing the models of the LTL formuleel(¢) A x, which we can pick such
that its number of states is bounded exponentiallygih Now, define the colored Biichi graph with
costs.” x A = (Sx Q x 2P} (s,q;,0),E’, ¢, cst,F’) where

e ((s,0,C),(s,q,C")) e E'ifand only if (s,s') € E andd € d(q,¢(s) UC),
e /(s,q,C) =C,
e cst((sq,C),(s,q,C')) =cstss), and

1We encode the weights in binary, although the algorithms resemt are oblivious to the exact values of the weights.
2Note that our definition is more involved than the one of Kupfan et al., since we require a cycle with non-zero cost
instead of any circle.
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e F/ =SxF x2ip,

Lemma 5. [cp. Lemma 4.2 of [18]} does not satisfy with respect to any if and only if.# x 2 has
an initial pumpable fair path.

Now, we are ready to prove Theorém 1.

Proof. PSrAcE-hardness holds already for LTL [24], which is a fragment BLEL. Membership is
witnessed by the following algorithm: check whether theooetl Buchi graphy” x 2l has an initial
pumpable fair path, which is correct due to Lenitha 5. But agthph is of exponential size, it has to be
constructed and tested for non-emptiness on-the-fly.

Due to LemmaH, it suffices to check for the existence of amaltely periodic pathr° such that
o] <ne 0(l.7 x ), i.e.,nis exponential in the size @f and linear in the size of”. To this end,
one guesses a vertgxthe first vertex offg) and checks the following reachability properties:

1. Isvreachable fronv, via a path where each block contains a cycle with non-zert?cos

2. Isvreachable fronvvia a non-empty path that visits an accepting vertex and hwvither has no
changepoint or where each block contains a cycle with noo-@est? In this case, we also require
thatv and the last vertex on the path framto v guessed in itefn 1.) differ on their third component
in order to makey a changepoint. This spares us from having a block that siraasd 7z

All these reachability problems can be solved in non-deigistic polynomial space, as a successor of a
vertex of.¥ x 2 can be guessed and verified in polymonial time and the lerfgtiregaths to be guessed
is bounded by, which can be represented with polynomially many bits. O

Furthermore, from the proof of Lemnia 5, we obtain an expaakenopper bound on the values
of a satisfying variable valuation, if one exists. This igraptotically tight, as one can already show
exponential lower bounds for PROMPT-LTIL [18].

Corollary 1. Fix a transition systen” and a cPLTL-formulap such that¥ satisfiesp with respect to
somea. Then,¥ satisfiesp with respect to a valuation that is bounded exponentiallyhi size ofp
and linearly in the number of states.of and in the maximal cost it¥.

Dually, using pumping arguments one can show the existehaa exponential variable valuation
that witnesses whether a given cPld kpecification is satisfied with respect to every variableatbn.

Lemma 6. Fix a transition system” and a cPLTlg-formula ¢ such that¥ does not satisfy with
respect to evergr. Then, does not satisfyp with respect to a valuation that is bounded exponentially
in the size ofp and linearly in the number of states .6f and in the maximal cost irv.

The proof of the preceding Lemma is similar to the one of LenTnma[16].

5 Infinite Games

An arenas = (V,Vp,V1, V|, E, ¢, cst) consists of a finite directed graghl,E), a partition(Vo, V1) of V,

an initial vertexv, € V, a labeling¢: V — 2P, and a cost functitﬁwcst: E — N. Again, we assume that
every vertex has at least one successor to avoid dealingfiwite paths. Also, we again ensure our
requirement on the propositian to indicate the sign of the costs in a cost-tracex & ¢(V), then we
require cstv,V') > 0 for every edgdv,V) € E leading tov. Dually, if k ¢ ¢(V), then cstv,v') = O for
every edgdv,V) € E.

3Again, we encode the weights in binary, although the aljoritwe present are oblivious to the exact values of the weight
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A play p = pop1p2--- is a path through# starting inv; and its cost-trace ¢p) is defined as

tr(p) = £(po) cst(po, p1) £(p1) cStp1, P2) £(P2) CS P2, P3) - - -

A strategy for Player € {0,1} is a mappingr: V*Vi — V satisfying(v, o(wv)) € E for everyw € V*
andv € Vi. A play p is consistent witho if pn1 = 0(po---pn) for everyn with p, € .

A cPLTL game¥ = (<7, ¢) consists of an arena& and a winning conditior, which is a cPLTL
formula. A strategyo for Player O is winning with respect to some variable vahmaty, if the trace of
every play that is consistent with satisfies the winning conditio with respect tax.

We are interested in determining whether Player 0 has a mgnstrategy for a given cPLTL game,
and in determining a winning strategy for her if this is theea

Theorem 2. Determining whether Playdrhas a winning strategy in a given cPLTL gam@BxPTIME-
complete. Furthermore, a winning strategy (if one exis#s) lse computed in doubly-exponential time.

Our proof technique is a generalization of the one for indigames with PLTL winning condi-
tions [29], which in turn extended Kupferman et al.'s sauotfor the PROMPT-LTL realizability prob-
lem [18]. First, we note that it is again sufficient to consideLTLr formulas, as we are interested in the
existence of a variable valuation (see the discussion belEwma2). Next, we apply the alternating-
color technique: to this end, we modify the arena to allowy@®#® to produce colorings of plays of the
original arena and use the relativized winning conditiom., we reduce the problem to a game with LTL
winning condition. The winner (and a winning strategy) otlsa game can be computed in doubly-
exponential time [21, 22].

To allow for the coloring, we double the vertices of the areditionally label one copy witp and
the other not, and split every move into two: first, the playhiose turn it is picks an outgoing edge,
then Player 0 decides in which copy she wants to visit theetatgereby picking the truth value pf

Formally, givene = (V,Vp, V1,V E, £, cst), the extended arena’ = (V',V;,V/,v|,E’, ¢ cst) con-
sists of

e V' =V x{0,1} UE,

e V) =Vox{0,1} UE andV{ =V x {0,1},

o Vi =(w,0),

o E'={((%0).8),((%1).€),(e (V,0)), (e (V. 1)) | e= (wV) € E},
£(v) if b=0,
(vyu{p} ifb=1,

e cst((v,b),(v,V)) =cstv,V) and cst((v,V), (V,b)) =0.

A path throughe?’ has the form(po, bo)eo(p1,b1)e1(p2,b2) - - - for some pathpppip2- - - through.e?,
wheree, = (pn, Pn.1) andby, € {0,1}. Also, we have.«?’| € €(|.<7|?). Note that we use the costs.ir’
only to argue the correctness of our construction, not toxdefie winning condition for the game.i’.

Also note that the additional choice vertices of the faers E have to be ignored when it comes
to evaluating the winning condition on the trace of a play.ug,hwe consider games with LTL win-
ning conditions under so-calldalinking semanticsPlayer 0 wins a play = pgp102--- under blinking
semantics, i¥(po)l(p2)¢(ps)--- satisfies the winning conditiogi; otherwise, Player 1 wins. Winning
strategies under blinking semantics are defined as expdattdrmining whether Player 0 has a winning
strategy for a given game with LTL winning condition undenking semantics is 2, TIME-complete,
which can be shown by a slight variation of the proof for LTlhggs under classical semantics![21, 22].

e /'(e) =0 for everye € E and/'(v,b) = {
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Furthermore, if Player 0 has a winning strategy for such aegahen also a finite-state one of at most
doubly-exponential size ifp|.

Such a strategy for an aref\, Vp, V1, v, E, ¢, cst) is given by a memory structure? = (M, m;, upd)
with a finite setM of memory states, an initial memory staite € M, and an update function updiA x
V — M, and by a next-move function nxtf, x M — V satisfying(v, nxt(v,m)) € E for everymand every
v. The function upd: V* — M is defined via upt{v) = m; and upd(wv) = upd(upd‘(w),v). Then, the
strategyo implemented by# and nxt is defined by (wv) = nxt(v,upd*(wv)). The size ofo is (slightly
abusively) defined a/|.

Given a gamé.«/, ¢ ) with cPLTLg winning conditiong, define<«”’ as above and lef’ =rel(¢) A x,
wherex = (GFp A GF—p) «+» GFk. Recall thaty is satisfied by a cost-trace, if the trace has infinitely
many changepoints if and only if it has cost
Lemma 7. [cp. Lemma 3.1 of [18]] PlayeD has a winning strategy fof<7, ¢ ) with respect to some
if and only if she has a winning strategy fo#’, ) under blinking semantics.

Now, we are able to prove Theorérn 2.

Proof. Hardness follows immediately from the RETIME-hardness of determining the winner of an
LTL game [21]22], as LTL is a fragment of cPLTL.

Membership in 2EPTIME follows from the reductions described above: first, we tinewinning
condition into a cPLTE formula and construct the LTL game under blinking semardissined from
expanding the arena and relativizing the winning conditibhis game is only polynomially larger than
the original one and its winner (and a winning strategy) impotable in doubly-exponential time. [J

From the proof of Lemmia 7, we obtain a doubly-exponentialeufmound on the values of a satisfying
variable valuation, if one exists. This is asymptoticaifjht, as one can already show doubly-exponential
lower bounds for PROMPT-LTL [29].

Corollary 2. Fix a cPLTL game¥ = (<7, ¢) such that PlayeiO has a winning strategy fo# with
respect to somer. Then, PlayerO has a winning strategy fo# with respect to a valuation that is
bounded doubly-exponentially in the sizegofind linearly in the number of vertices of and in the
maximal cost ine.

6 Parametric LDL with Costs

Linear Dynamic logic (LDL) [14| 26] extends LTL by temporgberators guarded with regular expres-
sions, e.g.{r) ¢ holds at positiom, if there is aj such that holds at positiom-+ j and the infix between
positionsn andn+ j matches. The resulting logic has the full expressiveness oftheegular languages
while retaining many of LTL's desirable properties like nple syntax, intuitive semantics, a polyno-
mial space algorithm for model checking, and a doubly-egptial time algorithm for solving games.
Parametric LDL (PLDL)[[15] allows to parameterize such @pers, i.e.(r)_, ¢ holds at positiom with
respect to a variable valuatian, if there is aj < a(x) such thatp holds at positiom+ j and the infix
between positiona andn+ j matches. Model checking and solving games with PLDL specifications
is not harder than for LTL, although PLDL is more expressind has parameterized operators. In this
section, we consider cPLDL where the parameters bound gteotthe infix instead of the length.
Formally, formulas of cPLDL are given by the grammar

¢u=p[-Pl¢AG[OVEI()P[[r]|(r),9[[r],¢
re=@o?(r4r|rr|rr
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wherep € P, z€ ¥, and wherep ranges over propositional formulas owr As for cPLTL, cPLDL
formulas are evaluated on cost-traces with respect tobhlaneluations. Satisfaction of atomic formulas
and of conjunctions and disjunctions is defined as usualfarttie four temporal operators, we define

e (w,n,a) = (r) ¢ if there existsj > 0 such thatn,n+ j) € Z(r,w,a) and(w,n+ j,a) = ¢,
e (Wn,a) [=[r]¢ifforall j>0with (n,n+j) € Z(r,w,a) we have(w,n+ j,a) = ¢,

e (Wn,a) = (r).,¢ ifthere existsj > 0 with CS{WnCn - - - Cny j—1Wnj) < a(2) such tha(n,n+ j) €
Z(r,w,a)and(w,n+ j,a) = ¢, and

e (wn,a) = [r].,¢ if for all j >0 with cS{WnCn---Cntj-1Wn+j) < a(2) and with (n,n+ j) €
Z(r,w,a) we have(w,n+ j,a) = ¢.

Here, the relationZ(r,w,a) C N x N contains all pairgm,n) such thatwp,---w,_1 matches and is
defined inductively by

o Z(p,w,a)={(n,n+1) | wy, = ¢} for propositionalg,

o Z(W?w,a)={(nn)[(wn,a) =y},

o Z(ro+r1,w,a)=2Z(ro,w,a)JZ(r,w,a),

o Z(ro;r1,w,a)={(ng,n2) | 3ng s.t. (ng,n1) € Z(ro,w,a) and(ny,nz) € Z(r1,w,a)}, and

o Z(r*,w,a)={(nn) |neN}U{(no,Nks1)|3Nng,...,nks.t. (nj,nj;1) € Z(r,w,a) for all j <k}.

Again, we restrict ourselves to formulas where the set ofaldas parameterizing diamond operators
and the set of variables parameterizing box operators ajamti Analogues of Lemnid 1 and Lemiia 2
hold for cPLDL, too.

The alternating-color is applicable to PLDL [15]: to thisdemne introduces changepoint-bounded
variants of the diamond- and the box-operator whose seosantily quantify over infixes with at most
one changepoint. LDL formulas with changepoint-boundedrafors can be translated into Bichi au-
tomata of exponential size. This allows to extend the allyors for model-checking and realizability
based on the alternating-color techniquel [18] to PLDL. Ewveme so, the algorithms presented in Sec-
tion[4 and Sectiohl5 can easily be adapted to cPLDL as welinaglying on the translation to Biichi
automata via changepoint-bounded operators.

Theorem 3. The cPLDL model checking problemR<SPACE-complete and determining the winner of
games with cPLDL winning conditions 2&xPTIME-complete.

7 Multiple Cost Functions

In this section, we consider parameterized temporal logitts multiple cost-functions. For the sake of
simplicity, we restrict our attention to cPLTL, although @sults hold for cPLDL, too.

Fix some dimension € N. The syntax of mult-cPLTL is obtained by equipping the pasterized
temporal operators by a coordindte {1,...,d}, denoted byF<,x andG<,y. In this context, a cost-
trace is of the formwyTow; C1Ws Ty - - - Wherew, € 2P andt, € NY. Thus, for everyi ¢ {1,...,d}, we
can define cstwoCTo - - - Th_1Wn) = ZT;é(Cj)i for every finite cost-tracgCy- - - Th_1Wn. Furthermore, we
require for every coordinatiea propositiork; such that; € wy 1 if and only if (Cy); > 0.

The semantics of atomic formulas, boolean connectivesuapdrameterized temporal operators are
unchanged and for the parameterized operators, we define
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e (W,n,a) = F<¢ if and only if there exists § > 0 with CS{(WnCTh - - - Tnyj—1Wnyj) < a(2) such that
(w,n+j,a) = ¢, and
o (W,n,a) = G<z¢ if and only if for every j > 0 with CS{(WnCh- - Cntj—1Wn+j) < 0(2): (W,n+
j,a) = 9.
Again, we restrict ourselves to formulas where no variatdeameterizes an eventually- and an
always-operator, but we allow a variable to parameterizgaiprs with different coordinates. Analogues
of Lemmd and Lemmnid 2 hold for mult-cPLTL as well.

G (/\ie{l ..... o (Q— Fsixpl)) -

In this setting, we consider the model checking problemramgition systems witll cost functions
and want to solve games in arenas wdthost functions.

The alternating-color technique is straightforwardlyesxtable to mult-cPLTL: one introduces a
fresh propositiorp; for each coordinateand definegy = A%, ((GFpi AGF—pi) ++ GFk;). Furthermore,
the notions ofi-blocks, k-boundedness in coordinateandk-spacedness in coordinatare defined as
expected. Then, the proofs presented in Se€fion 4 and 8&temain valid in this setting, too.

In the case of model-checking, the third component of thereadl Biichi graph¥” x 2 has the

propositionsp;. The resulting game has an arena of exponential size (inizeo§ the original arena
and of the original winning condition) and an LTL winning aition under blinking semantics. Such a
game can still be solved in doubly-exponential time. To #nd, one turns the winning condition into
a deterministic parity automaton of doubly-exponentiaksiith exponentially many colors, constructs
the product of the arena and the parity automaton, whicllyialparity game of doubly-exponential size
with exponentially many colors. Such a game can be solvediblg-exponential time [23].

Theorem 4. The mult-cPLTL model checking problenPiSPAce-complete and determining the winner
of games with mult-cPLTL winning conditions2EXPTIME -complete.

Again, the same results hold for mult-cPLDL, which is defiasdexpected.

8 Optimization Problems

It is natural to treat model checking and solving games wpicgications in parameterized linear tem-
poral logics as an optimization problem: determine dptimal variable valuation such that the system
satisfies the specification with respect to it. For paranegdreventualities, we are interested in mini-
mizing the waiting times while for parameterized alwaysg are interested in maximizing the waiting
times. Due to the undecidability results for not well-defifermulas one considers the optimization
problems for the unipolar fragments, i.e., for formulasihgweither no parameterized eventualities or
no parameterized always'. In this section, we present glgos for such optimization problems given
by cPLTL specifications. In the following, we encode the viatsgof the transition system or arena un-
der consideration in unary to obtain our results. Whethesetresults can also be shown for a binary
encoding is an open question.

For model checking, we are interested in the following fototpems: given a transition systesf
and a cPLTI formula¢r and a cPLTlg formula¢g, respectively, determine
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min{a\y satisfiespr w.r.t. o} minxevarp((pp) C{(X),
min{a\y satisfiespr w.r.t. o} ma)&evarp((bp) C{(X),
MaX q|.7 satisfiesps w.r.t. a} MAW:yevarg (¢c) a(y), and

- MaX |7 satisfiesps w.rt. o} mmyevarc;((p(;) (Y)

Applying the monotonicity of the parameterized operatos @n the first case) the alternating-color
technique to all but one variable reduces the four optiringbroblems to ones where the specification
has a single variable. Furthermore, the upper bounds gezsenCorollanf1 and in Lemnmid 6 yield an
exponential search space for an optimal valuation: if th&ce is empty, then there is mosuch that
satisfiespr with respect tax in the first two cases. On the other hand, if the search spatains every
sucha, then.¥ satisfiespg with respect to every in the latter two cases.

Thus, it remains the check whether the specification isfeadisvith respect to some valuation that is
bounded exponentially. In this setting, one can constmebdg@onentially sized non-deterministic Bichi
automaton recognizing the models of the specification vagipect to the given valuation (using a slight
adaption of the construction presentedLin [29] accountongHe fact that we keep track of cost instead
of time). This automaton can be checked for non-emptinegmoliynomial space using an on-the-fly
construction. Thus, an optimal can be found in polynomial space by binary search.

Theorem 5. The cPLTL model checking optimization problems can be datvpolynomial space.
A similar approach works for infinite games as well. Here, weiaterested in computing

P wbdpE

1. mm{a\PI 0 has winning strategy fofr w.r.t. o} mmxevarp (¢F) (X)
2. mm{a\PI 0 has winning strategy fofr w.r.t. o} ma)&evarp (¢r) (X)
3. mm{a\PI 0 has winning strategy fo&fg w.r.t. a} mmxevarc, (9c) ( ) and

4. mm{a\PI. 0 has winning strategy fofs w.r.t. a} M@evarg () A ( )
and witnessing winning strategies for given cPLTL garfesvith cPLTLg winning conditiongg and
%s with cPLTLg winning conditiongg.

Again, one can reduce these problems to the case of winnimgjtans with a single variable and
by applying determinacy of games with respect to a fixed ¥mloait even suffices to consider the case
of cPLTLg winning conditions with a single variable, due to dualitygs#fmes: swapping the players
in a game with cPLTE winning condition yields a game with cPLFlwinning condition. Corollary2
gives a doubly-exponential upper bound on an optimal vhrighluation. Hence, one can construct a
deterministic parity automaton of triply-exponentialesizith exponentially many colors recognizing the
models of the specification with respect to a fixed variableation o that is below the upper bound
(again, see [29] for the construction). Player 0 wins thétparame played in the original arena but
using the language of the automaton as winning conditiomdf @nly if she has a winning strategy for
the cPLTL: game with respect ta. Such a parity game can be solved in triply-exponential {233.
Theorem 6. The cPLTL optimization problems for infinite games are dallvén triply-exponential time.

Furthermore, the same results hold for cPLDL using appat@adaptions of the automata construc-
tions presented in [15, 16].

Theorem 7. The cPLDL model checking optimization problems can be ddlvpolynomial space and
the cPLDL optimization problems for infinite games can bgebin triply-exponential time.

However, for parameterized logics with multiple cost-ftimgs, these results do not remain valid,
as one cannot reduce the optimization problems to ones vitfigde variable, as a variable may bound
operators in different dimensions. Thus, one has to keek traultiple costs, which incurs an exponential
blow-up when done naively. Whether this can be improved isg@n question.
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9 Conclusion

We introduced parameterized temporal logics whose opsrémund the accumulated cost instead of
time as usual: cPLTL and cPLDL as well as their variants mBItTL and mult-cPLDL with multiple
cost functions retain the attractive algorithmic propertof LTL like a polynomial space model check-
ing algorithm and a doubly-exponential time algorithm folving infinite games. Even the optimization
variants of these problems are not harder for cPLTL and cPtiain for PLTL: polynomial space for
model checking and triply-exponential time for solving geanHowever, it is open whether these prob-
lems are harder for logics with multiple cost functions. #r@ open question concerns the complexity
of the optimization problem for infinite games: can thesédfmms be solved in doubly-exponential time,
i.e., is finding optimal variable valuations as hard as sgj\james? Note that this question is already
open for PLTL. Finally, one could consider weights from soanitrary semiring and corresponding
weighted parameterized temporal logics.
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