Cost-Parity and Cost-Streett Games*

Nathanaél Fijalkow!? and Martin Zimmermann?

1 LIAFA, Université Paris 7. nath@liafa.univ-paris-diderot.fr
2 Institute of Informatics, University of Warsaw. zimmermann@mimuw.edu.pl

—— Abstract

We consider two-player games played on finite graphs equipped with costs on edges and introduce
two winning conditions, cost-parity and cost-Streett, which require bounds on the cost between
requests and their responses. Both conditions generalize the corresponding classical w-regular
conditions as well as the corresponding finitary conditions.

For cost-parity games we show that the first player has positional winning strategies and that
determining the winner lies in NP NcoNP. For cost-Streett games we show that the first player
has finite-state winning strategies and that determining the winner is EXPTIME-complete.
This unifies the complexity results for the classical and finitary variants of these games. Both
types of cost games can be solved by solving linearly many instances of their classical variants.

1998 ACM Subject Classification D.2.4 Software/Program Verification
Keywords and phrases Parity Games, Streett Games, Costs, Scoring Functions

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In recent years, boundedness problems arose in topics pertaining to automata and logics
leading to the development of novel models and techniques to tackle these problems. Although
in general undecidable, many boundedness problems for automata turn out to be decidable if
the acceptance condition can refer to boundedness properties of variables, but the transitions
cannot access variable values. A great achievement was made by Hashiguchi [15] who
proved decidability of the star-height problem by reducing it to a boundedness problem
for a certain type of finite automaton and by solving this problem. This led the path to
recent developments towards a general theory of bounds in automata and logics, comprising
automata and logics with bounds [1, 3], satisfiability algorithms for these logics [2, 4], and
regular cost-functions [10].

In this work, we consider boundedness problems in turn-based two-player graph games
of infinite duration. Using the acceptance condition of the automata models of [3] (namely
wB- and wS automata) yields games that are equivalent to w-regular games. Hence, we
take a different route and introduce cost-parity and cost-Streett conditions which generalize
the (classical) w-regular parity- respectively Streett condition, as well as the finitary parity-
respectively finitary Streett condition [8]. While both finitary variants strengthen the classical
conditions by adding bounds, the complexity of solving these games diverges: (in the state
of the art) finitary parity games are simpler than parity games, while finitary Streett games
are harder than Streett games. Indeed solving finitary parity games can be carried out in
polynomial time [8], while no polynomial-time algorithm for parity games is yet known, and

* The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 259454 (GALE) and n° 239850 (SOSNA).

@@@@ © N. Fijalkow and M. Zimmermann;
G licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1-16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Cost-Parity and Cost-Streett Games

the decision problem is in NP N coNP. The situation is reversed for Streett games, since
solving them is coNP-complete [13] while solving finitary Streett games is EXPTIME-
complete. The latter result is shown in unpublished work by Chatterjee, Henzinger, and
Horn: by slightly modifying the proof of EXPTIME-hardness of solving request-response
games presented in [9] they prove EXPTIME-hardness of solving finitary Streett games.

A cost-parity game is played on an arena whose vertices are colored by natural numbers,
and where traversing an edge incurs a non-negative cost. Player 0 wins a play if there is a
bound b such that almost all odd colors (which we think of as requests) are followed by a
larger even color (which we think of as responses) that is reached with cost at most b. The
definition of (cost-) Streett games goes along the same lines, but the requests and responses
are independent and not hierarchically ordered as in parity conditions. The cost of traversing
an edge can be used to model the consumption of a resource. Thus, if Player 0 wins a play
she can achieve her goal along an infinite run with bounded resources. On the other hand,
Player 1’s objective is to exhaust the resource, no matter how big the capacity is.

We show that cost-parity games enjoy two nice properties of parity and finitary parity
games: Player 0 has memoryless winning strategies, and determining the winner lies in
NP N coNP. Furthermore, we show that solving cost-parity games can be algorithmically
reduced to solving parity games, which allows to solve these games almost as efficiently
as parity games. We then consider cost-Streett games and prove that Player 0 has finite-
state winning strategies, and that determining the winner is EXPTIME-complete. Our
complexity results unify the previous results about finitary parity and Streett games and the
results about their classical variants.

To obtain our results, we present an algorithm to solve cost-parity games that iteratively
computes the winning region of Player 0 employing an algorithm to solve parity games. As
a by-product, we obtain finite-state winning strategies for Player 0. We improve this by
showing how to transform a finite-state winning strategy into a positional winning strategy.
This construction relies on so-called scoring functions (which are reminiscent of the simulation
of alternating tree-automata by nondeterministic automata presented in [18]) and presents
a general framework to turn finite-state strategies into positional ones, which we believe
to be applicable in other situations as well. Finally, we present an algorithm that solves
cost-Streett games by solving Streett games. Here, we show the existence of finite-state
winning strategies for Player 0 in cost-Streett games.

In our proof, we reduce games with boundedness winning conditions to games with
w-regular winning conditions. This is reminiscent of the solution of the domination problem
for regular cost-functions on finite trees [11]. In contrast to this work, which is concerned
with proving decidability, we are interested in efficient algorithms. Hence, we need a more
sophisticated reduction and a careful analysis of the memory requirements.

Adding quantitative requirements to qualitative winning conditions has been an active field
of research during the last decade. Just recently, there has been a lot of interest in so-called
energy games, whose winning conditions are boundedness requirements on the consumption
of resources. Solving energy games with multiple resources is in general intractable [14] while
so-called consumption games, a subclass of energy games, are shown to be tractable in [5].
Furthermore, energy parity games, whose winning conditions are a conjunction of an (single
resource) energy and a parity condition, can be solved in NP N coNP and Player 0 has
positional winning strategies [7]. Although the first two results are similar to our results on
cost-parity games, the energy parity condition does not relate the energy consumption to the
parity condition. In contrast, the costs in cost-parity games give a qualitative measure of the
satisfaction of the parity condition.

Nathanaél Fijalkow and Martin Zimmermann

2 Definitions

Infinite Games. A (cost) arena A = (V,Vy, V1, E,Cst) consists of a finite, directed
graph (V) E), a partition {Vp, V1} of V, and an edge-labeling Cst: F — {e,i}. An edge with
label ¢ is called increment-edge, edges labeled by ¢ are called accordingly e-edges. We extend
the edge-labeling to a cost function over finite and infinite paths obtained by counting the
number of increment-edges traversed along the path. A play in A starting in v € V is an
infinite path p = pgp1p2 -+ such that pg = v. To avoid the nuisance of dealing with finite
plays, we assume every vertex to have an outgoing edge.

A game G = (A, Win) consists of an arena A and a set Win C V¥ of winning plays
for Player 0. The set of winning plays for Player 1 is V¥ \ Win. A strategy for Player ¢
is a mapping o: V*V; — V such that (v,o(wv)) € E for all wv € V*V;. We say that o is
positional if o(wv) = o(v) for every wv € V*V;. A play pop1ps2 ... is consistent with o if
Pnt1 = 0(po- - pn) for every n with p, € V;. A strategy o for Player i is a winning strategy
from a set of vertices W C V if every play that starts in some v € W and is consistent with o
is won by Player i. The winning region W;(G) of Player ¢ in G is the set of vertices from which
Player i has a winning strategy. We say that a strategy is uniform, if it is winning from all
v € W;(G). We always have Wy(G) N W1(G) = 0. On the other hand, if Wy (G) UW1(G) =V,
then we say that G is determined. All games we consider in this work are determined. Solving
a game amounts to determining its winning regions.

A memory structure M = (M, Init, Upd) for an arena (V,V, Vi, E, Cst) consists of a
finite set M of memory states, an initialization function Init: V' — M, and an update
function Upd: M x V — M. The update function can be extended to Upd*: V* — M in
the usual way: Upd*(pg) = Init(po) and Upd*(po - - - prpnt1) = Upd(Upd*(po - - - pn)s prr1)-
A next-move function (for Player i) Nxt: V; x M — V has to satisfy (v,Nxt(v,m)) € E
for all v € V; and all m € M. It induces a strategy o for Player ¢ with memory M
via o(pg...pn) = Nxt(pn, Upd*(po...pn)). A strategy is called finite-state if it can be
implemented by a memory structure.

An arena A = (V, Vy, V1, E, Cst) and a memory structure M = (M, Init, Upd) for A induce
the expanded arena Ax M = (V x M, Vo x M, Vi x M, E', Cst") where ((v, m), (v',m’)) € E’
if and only if (v,v’) € E and Upd(m,v’) = m’, and Cst'((v,m)(v',m’)) = Cst(v,v’). Every
play p in A has a unique extended play p’ = (po, mo)(p1,m1)(p2,m2) ... in A x M defined
by mg = Init(po) and m, 11 = Upd(my, pni1), i-e., m, = Upd*(po - - - prn). Note that every
infix of p and the corresponding infix of p’ have the same cost.

A game G = (A, Win) is reducible to G’ = (A, Win’) via M, written G < G, if
A" = A x M and every play p in G is won by the player who wins the extended play p’ in G,
i.e., p € Win if and only if o’ € Win'.

» Lemma 1. Let G be a game with vertex set V and W C V. If G <y G’ and Player i
has a finite-state winning strategy for G' from {(v,Init(v)) | v € W}, then she also has a
finite-state winning strategy for G from W.

Let A= (V,Vy, V1, E,Cst) and let ¢ € {0,1}. The i-attractor of F' C V in A, denoted by
Attrf(F), is the set of vertices from which Player i has a strategy such that every play that
starts in this set and is consistent with the strategy visits F'.

Cost-Parity Games. Let A = (V,V, V4, E,Cst) be an arena and let Q: V — N be a
coloring of its vertices. In all games we are about to define, we interpret the occurrence of
a color as request, which has to be answered by visiting a vertex of larger even color at a
later position. By imposing conditions on the responses, we obtain three different types of

Cost-Parity and Cost-Streett Games

winning conditions. To simplify our notation, let Ans(c) = {¢ € N| ¢ > c and ¢’ even} be
the set of colors that answer a request of color ¢. Note that Ans(c) C Ans(c’) for ¢ > ¢’ and
¢ € Ans(c) if ¢ is even.

The parity winning condition, denoted by Parity(£2), requires that almost all requests
are eventually answered. Equivalently, p € Parity(Q) if and only if the maximal color that
occurs infinitely often in p is even. The finitary parity condition [8] is a strengthening of
the parity condition; it requires the existence of a bound b such that almost all requests are
answered within b steps. Formally, given a play p = pop1p2 - - and k € N, we define

Dist(p, k) = inf{k' — k | k' > k and Q(px/) € Ans(Q(px))}

where we use inf) = co. Hence, Dist(p, k) is the number of steps between the request at
position &k and its earliest response. The finitary parity winning condition is FinParity(Q) =
{p € V¥ | limsup,_, ., Dist(p, k) < co}.

Note that both the parity and the finitary parity condition do not depend on the cost
function. Finally, by not bounding the number of steps between the requests and their
responses, but by bounding the cost between requests and responses, we obtain the cost-parity
condition. Given a play p = ppp1p2--- and k € N, we define the cost-of-response by

Cor(p, k) = inf{Cst(p - - - pr) | k' > k and Q(px’) € Ans(Q(px))} -

The cost-parity winning condition is CostParity(Q) = {p € V¥ | lim sup;,_,., Cor(p, k) < oo}.
» Remark 2. FinParity(€2) C CostParity(€2) C Parity(2).

A game G = (A, CostParity(Q2)) is called cost-parity game. In a similar way, we define
parity and finitary parity games. Note that if 4 contains no increment-edges, then we have
CostParity () = Parity(£2), and if A contains no e-edges, then CostParity(Q2) = FinParity(12).
Hence, cost-parity games generalize both parity and finitary parity games.

Since cost-parity conditions can be shown to be on the third level of the Borel hierarchy,
we obtain the following result as a consequence of the Borel determinacy theorem [17].

» Remark 3. Cost-parity games are determined.

Fix a play p. We say that a request at position k is answered with cost ¢, if Cor(p, k) = c.
Note that a request at a position k with an even color is answered with cost 0. Furthermore,
we say that a request at position k is unanswered with cost ¢, if there is no position k' > k
such that Q(pr) € Ans(Q(px)), but we have Cst(prpr+1---) = ¢, i.e., there are exactly ¢
increment-edges after position k. Finally, we say that a request at position k is unanswered
with cost oo, if there is no position &’ > k such that Q(pr) € Ans(Q(px)) and we have
Cst(prpr+1-) = 00, i.e., there are infinitely many increment-edges after position k. We
say that a request is unanswered, if it is unanswered with cost in NU {oco}. We often use the
following equivalence.

» Remark 4. A play p has only finitely many unanswered requests if and only if p € Parity(2).

» Example 5. Consider the cost-parity game depicted in Figure 1 where all vertices belong
to V1, and the label of a vertex denotes its name (in the upper part) and its color (in the
lower part). Player 1 wins from {a,b,c} by requesting color 1 at vertex a infinitely often
and staying at vertex b longer and longer, but also visiting ¢ infinitely often (and thereby
answering the request). Note that this strategy is not finite-state. Indeed, one can easily
prove that Player 1 does not have a finite-state winning strategy for this game. Player 0
wins from every other vertex, since Player 1 can raise only finitely many requests from these
vertices, albeit these requests are unanswered with cost oc.

Nathanaél Fijalkow and Martin Zimmermann

3

/b
0

U
1

Figure 1 A cost-parity game.

1 €

. (o o

3 Solving Cost-Parity Games

In this section, we show how to determine the winning regions in a cost-parity game. Our
algorithm proceeds in two steps: in Subsection 3.1, we show that it suffices to solve games
whose winning condition is a strengthening of the cost-parity condition, the so-called bounded
cost-parity condition. Then, in Subsection 3.2, we show how to solve bounded cost-parity
games by solving w-regular games. The main result of this section is the following theorem.
Here, n is the number of vertices, m is the number of edges, and d is the number of colors in
the cost-parity game.

» Theorem 6. Given an algorithm that solves parity games in time T (n,m,d), there is an
algorithm that solves cost-parity games in time O(n-T(d-n,d-m,d + 2)).

3.1 From Cost-Parity Games to Bounded Cost-Parity Games
The cost-parity condition can be rephrased as follows: p € CostParity(2) if and only if

there exists a b € N such that all but finitely many requests are answered or unanswered
with cost less or equal than b and there are only finitely many unanswered requests.

Note that this allows a finite number of unanswered requests with cost co. By disallowing
this, we obtain a strengthening of the cost-parity condition. Formally, we define the bounded
cost-parity condition BndCostParity(€2) to be the set of plays p satisfying the following:

there exists a b € N such that every request is answered or unanswered with cost less
or equal than b and there are only finitely many unanswered requests.

A game (A, BndCostParity(€2)) is called bounded cost-parity game.

» Example 7. Consider the game in Figure 1, this time with the bounded cost-parity
condition: Player 1 wins from every vertex but g by moving to g and then staying there ad
infinitum. Every such play contains a request of color 1 that is unanswered with cost co.

Since bounded cost-parity conditions are on the third level of the Borel hierarchy, bounded
cost-parity games are determined. Furthermore, the bounded cost-parity condition is indeed
a strengthening of the cost-parity condition.

» Remark 8. BndCostParity(Q2) C CostParity(2).

The following lemma implies that being able to solve bounded cost-parity games suffices
to solve cost-parity games.

» Lemma 9. Let G = (A, CostParity(2)) and let G’ = (A, BudCostParity(Q2)).
1. Wo(G') € Wo(G).
2. [f Wo(g/) = @, then Wo(g) = @

Cost-Parity and Cost-Streett Games

Proof. 1. This follows directly from Remark 8: a winning strategy for Player 0 in G’ from v
is also a winning strategy for her in G from v.

2. Due to determinacy, if Wy(G') = (), then we have W1(G’) =V, i.e., from every vertex v,
Player 1 has a winning strategy 7,. Consider a play consistent with 7, starting in v: either,
for every b, there is a request that is not answered with cost at most b, or the maximal color
seen infinitely often is odd (i.e., there are infinitely many unanswered requests).

We define a strategy 7 for Player 1 as follows: it is guided by a vertex ve,, and a
counter be,,. Assume a play starts in vertex v. Then, we initialize vc,, by v and bey, by 1.
The strategy plays the strategy 7, until a request is not answered with cost bey,. If this is
the case, then vy, is set to the current vertex, b.y,, is incremented, and 7 plays according to
Toen. (forgetting the history of the play constructed so far).

We show that 7 is winning (in the cost-parity game) from every vertex, which implies
Wo(G) = 0. Let p be a play that is consistent with 7 and distinguish two cases: if the
counter is incremented infinitely often, then p is winning for Player 1 in the cost-parity game.
On the other hand, if bey, is incremented only finitely often (say to value b), then there is
a suffix p’ of p with some first vertex v that is consistent with the strategy 7,. Since the
counter is not incremented during p’, every request in p’ is either answered or unanswered
with cost at most b. As p’ is nevertheless winning for Player 1, the maximal color seen
infinitely often during p’ is odd. As p’ and p only differ by a finite prefix, the maximal color
seen infinitely often during p is the same as in p’ and therefore odd. Thus, p is winning for
Player 1 in G. <

To conclude this subsection, we show how Lemma 9 can be used to solve cost-parity games,
provided we are able to solve bounded cost-parity games (which is the subject of the next
subsection). Let A be an arena and € a coloring of its vertices, and let G = (A, CostParity(£2)).
The following algorithm proceeds by iteratively removing parts of .4 that are included in the
winning region of Player 0 in G. In each step, one computes the winning region of the current
arena w.r.t. the bounded cost-parity condition. Due to Lemma 9.1, this is included in the
winning region of Player 0 in G. Furthermore, the attractor of this region also belongs to the
winning region in G, since the cost-parity condition is prefix-independent. This continues
until Player 0’s winning region of the current arena w.r.t. the bounded cost-parity condition
is empty. In this situation, Player 1 wins everywhere w.r.t. the cost-parity condition in the
current arena due to Lemma 9.2. Since Player 0 cannot leave this region (in the original
arena A), it is also winning for Player 1 in the original game G.

In Section 4, we prove that Player 0 has uniform positional winning strategies for bounded
cost-parity games. Composing such strategies for the regions X; with positional attractor
strategies, we obtain a positional winning strategy for Player 0 in a cost-parity game. In
Example 5, we have already seen that Player 1 needs infinite memory to win.

Algorithm 1 A fixed-point algorithm for cost-parity games.
J0 W 0, A« A
repeat
j+—J+1
X; + Wo(Aj—1,BndCostParity(£2))
W; « W,_1 UAttrl 9 (X;)
Aj e Ajq \ Attr) (X))
until X; =0
return W;

Nathanaél Fijalkow and Martin Zimmermann

3.2 From Bounded Cost-Parity Games to w-regular Games

Next, we show how to solve bounded cost-parity games. Let A be an arena. In this subsection,
we assume that no vertex of A has both incoming increment- and e-edges. This can be
achieved by subdividing every increment-edge e = (v,v’): we add a new vertex sub(e) and
replace e by (v,sub(e)) (which is an increment-edge) and by (sub(e),v’) (which is an e-edge).
Now, only the newly added vertices have incoming increment-edges, but they do not have
incoming e-edges. Furthermore, it is easy to see that Player ¢ wins from v in the original
game if and only if she wins from v in the modified game (where we color sub(e) by Q(v')).

Assuming this convention, we say that a vertex is an increment-vertex, if it has an
incoming increment-edge (which implies that all incoming edges have an increment). Let F
be the set of increment-vertices and denote the set of plays with finite cost by coBiichi(F).
Furthermore, let RR(2) denote the set of plays p in which every request is answered (no
matter at which cost). Using these definitions, let

PCRR () = (Parity(2) N coBiichi(F)) U RR() .

As PCRR(?) is w-regular, a game with winning condition PCRR({) is determined and
both players have uniform finite-state winning strategies [6]. Furthermore, PCRR(£?) is
weaker than BndCostParity(€2).

» Remark 10. V¢ \ PCRR(Q?) C V¢ \ BndCostParity(€2).

Note that the converse implication is false, as the request-response condition does not
bound the cost between requests and their responses. However, every finite-state winning
strategy bounds the distance between requests and their responses, and thereby also the cost.

» Lemma 11. Let G = (A, BndCostParity(Q2)), and let G’ = (A,PCRR(Q)). Then, W;(G) =
Wi(G') forie{0,1}.

Proof. We have W1 (G') C W1(G) due to Remark 10. Thus, it suffices to show Wy(G') C
Wo(G). So, let o be a uniform finite-state winning strategy for Player 0 for G’ (which exists,
since PCRR(Q) is w-regular). We argue that o is also a uniform winning strategy for Player 0
for G: let p be consistent with o, which implies p € PCRR((2).

If p satisfies Parity(Q2) and has only finitely many increments, then every request is
answered or unanswered with bounded cost and there are only finitely many unanswered
requests, i.e., p is winning for Player 0 in G. To conclude, we consider the case p €
RR(Q) \ (Parity(Q2) N coBiichi(F)). Since o is a finite-state winning strategy, there is a
bound b (which only depends on the size of o and the size of the arena) such that every
request in p is answered with cost at most b (if not, then there would also be a play consistent
with o with an unanswered request and with cost co. This play would not satisfy PCRR((Q),
which yields the desired contradiction). Hence, p is winning for Player 0 in G. |

So, to determine the winning regions of a bounded cost-parity game it suffices to solve an
w-regular game with winning condition PCRR (). This condition can be reduced to a parity
condition using a small memory structure that keeps track of the largest unanswered request
and goes to a special state L if this request is answered. Using this memory structure, the
RR(Q)-condition reduces to a Biichi condition requiring the state L to be visited infinitely
often. We are now left with the union of a Biichi condition and an intersection of a parity
and a co-Biichi condition. First, by coloring the increment-vertices of A by an odd color that
is larger than max (V) (and leaving the colors of all other vertices unchanged), we obtain
a new parity condition that is equivalent to the intersection of Parity(£2) and coBiichi(F).

Cost-Parity and Cost-Streett Games

Using a similar construction, we can turn the union of the new parity condition and of the
Biichi condition into an equivalent parity condition. Thus, to determine the winning regions
of a game with winning condition PCRR(2), if suffices to solve a linearly larger parity game.
This also concludes the proof of Theorem 6: Algorithm 1 terminates after at most n iterations
and solves a small parity game in each iteration.

Furthermore, from the previous observations we obtain an upper bound on the memory
requirements for both players, which we improve in the next section.

» Remark 12. In every bounded cost-parity game, both players have uniform finite-state
winning strategies with ¢ + 1 memory states, where £ is the number of odd colors in Q(V).

The winning regions of parity games can be determined in non-deterministic polynomial
time by guessing both regions W;(G) and positional strategies o; for both players and then
verifying in (deterministic) polynomial time whether o; is a uniform winning strategy for
Player i from W;(G). Algorithm 1 solves cost-parity games by solving at most n parity games,
which have at most (¢ + 1) - n vertices, (¢ + 1) - m edges, and d + 2 colors, where n, m, d, and
£ denote the number of vertices, edges, colors, and odd colors in the cost-parity game. Thus,
the algorithm runs in non-deterministic polynomial time. Together with a dual argument
this implies the following result.

» Theorem 13. The following problems are in NP N coNP:
1. Given a bounded cost-parity game G and a vertex v, is v € Wo(G) ?
2. Given a cost-parity game G and a vertex v, is v € Wy(G)?

4 Half-Positional Determinacy of (Bounded) Cost-Parity Games

Next, we show that Player 0 has positional winning strategies in (bounded) cost-parity games.
» Theorem 14. In cost-parity games, Player 0 has uniform positional winning strategies.

As we have already explained while proving the correctness of Algorithm 1, the existence
of positional winning strategies for bounded cost-parity games implies Theorem 14. Thus,
the remainder of this section is devoted to proving the following lemma.

» Lemma 15. In bounded cost-parity games, Player 0 has uniform positional winning
strategies.

For bounded cost-parity games we have already proved the existence of uniform finite-
state winning strategies (see Remark 12). Hence, it remains to show how to eliminate the
memory. To this end, we define a so-called scoring function for bounded cost-parity games
that measures the quality of a play prefix (from Player 0’s vantage point) by keeping track of
the largest unanswered request, the number of increment-edges traversed since it was raised,
and how often each odd color was seen since the last increment-edge.

In the following, fix an arena (V, Vp, V4, E, Cst) and a coloring function Q: V — N. Let
Q(V) € {0,...,d}, where we assume d to be odd, and define £ = %L to denote the number
of odd colors in {0,...,d}. The (score-) sheet of a play prefix w, denoted by Sh(w), is a
vector (¢,m,54,54—2,--,51) € N>T containing the following information:

¢ denotes the largest unanswered request in w, i.e., the largest odd color in w that is not

followed by a color in Ans(c).

n denotes the cost of the suffix starting with the first unanswered occurrence of ¢ in w.

se (here, ¢’ is odd) denotes the number of times ¢’ occurred in w since the first unanswered

occurrence of ¢, since the last increment-edge was traversed, or since the last time a color
larger than ¢’ occurred in w, depending on which happened last.

Nathanaél Fijalkow and Martin Zimmermann

Finally, we use the empty sheet | for play prefixes without unanswered requests.

The reversed ordering of the score values sg, ..., s; in the sheets is due to the max-parity
condition, in which larger colors are more important than smaller ones. This is reflected by
the fact that we compare sheets in the lexicographical order induced by < on its components
and add L as minimal element. For example, (3,3,0,1,1) < (3,3,1,0,7) and L < s for
every sheet s # 1. As usual, we write s < &/, if s = s’ or s < s’. We say that a sheet
(¢,n,84,...,581) is bounded by b € N, if we have n < b and s. < b for every c. Also, L is
bounded by every b. The following lemma shows that Sh is a congruence w.r.t. <. Here
Lst(x) denotes the last vertex of the non-empty finite play .

» Lemma 16. If Lst(x) = Lst(y) and Sh(x) < Sh(y), then Sh(zv) < Sh(yv) for everyv € V.

We begin the proof of Lemma 15 by noting that the sheets of a play p being bounded is
a sufficient condition for p satisfying the bounded cost-parity condition.

» Lemma 17. If there exists a bound b such that the sheets of all prefizes of a play p are
bounded by b, then p € BndCostParity ().

The next lemma shows that finite-state winning strategies uniformly bound the sheets.

» Lemma 18. Let o be a uniform finite-state winning strategy o (of size m) for Player 0 in
a bounded cost-parity game G = (A, BndCostParity(£2)). Furthermore, let p be starting in
Wo(G) and be consistent with o. Then, the sheets of all prefizes of p are bounded by m - |V|.

Now we are able to prove our main technical result of this section: Player 0 has a uniform
positional winning strategy in every bounded cost-parity game (and therefore also in every
cost-parity game).

Proof of Lemma 15. Fix some uniform finite-state winning strategy ¢’ for Player 0 in a
bounded cost-parity game G. For every v € Wy(G), let P, denote the set of play prefixes that
begin in Wy(G), are consistent with ¢, and end in v. Due to Lemma 18, the sheets of the
prefixes in P, are bounded by some b. Thus, for every v the set {Sh(w) | w € P,} is finite.
Hence, there exists a play prefix max, € P, such that Sh(w) < Sh(max,) for every w € P,.

We define a uniform positional strategy o by o(wv) = ¢’(max,) and claim that it is a
uniform winning strategy for G. An inductive application of Lemma 16 shows that we have
Sh(po - - - pn) < Sh(max,,) for every n and every play p that is consistent with o. Hence, the
sheets of p are bounded by b, which implies p € BndCostParity(2) due to Lemma 17. <

5 Cost-Streett Games

In this section, we introduce cost-Streett games which generalize both Streett games and
finitary Streett games [8]. We first present an algorithm to solve these games following
the same ideas as in the previous sections, and prove EXPTIME-completeness of the
corresponding decision problem. From our algorithm, we deduce finite-state determinacy for
Player 0, while Player 1 needs infinite memory in general.

To simplify our notation, let [d] = {0,...,d —1}. A d-dimensional cost-arena has the
form A = (V, Vo, V1, E, (Csty) () where the first four components are as usual and where
each Csty is a mapping from F to {e,7}. Again, each of these functions induces a cost on
(infixes of) plays, denoted by Cst, as well. Let I' = (Q¢, Pr)¢cja) be a collection of (Streett)
pairs of subsets of V', i.e., Q¢, P C V. We define

0 lfpk ¢QZ7

StCory(p, k) =<]
inf{Cste(pr - pr') | prv = pr and ppr € Pp} i p € Q,

10

Cost-Parity and Cost-Streett Games

where we use inf) = oo, and StCor(p, k) = max{StCor¢(p, k) | £ € [d]}. Using this, we define
the following three winning conditions:
the (classical) Streett condition Streett(I') requires for every £ that Py is visited infinitely
often if Q) is visited infinitely often.
the request-response condition RR(T") requires for every £ that every visit to Q, is answered
by a later visit to Py.
the cost-Streett condition CostStreett(I') = {p | lim sup;_, ., StCor(p, k) < oo}.

A cost-Streett game (A,T") consists of a d-dimensional arena and a collection I' of d
Streett pairs. Streett and request-response games are defined accordingly. As for cost-parity
games, a cost-Streett game in which every edge is an increment-edge (w.r.t. all Csty) is a
finitary Streett game and a cost-Streett game in which every edge is an epsilon-edge (w.r.t.
all Csty) is a Streett game. Furthermore, just as classical Streett games subsume parity
games, cost-Streett games subsume cost-parity games.

» Remark 19. Cost-Streett games are determined.

Our main theorem is proved along the same lines as Theorem 6.

» Theorem 20. To solve a cost-Streett game with n vertices, it suffices to solve n Streett
games which are exponentially larger (but only in the number of Streett pairs).

We say that the requests at position k are answered with cost ¢, if StCor(p, k) = ¢; that
the requests are unanswered with cost ¢, if StCor(p, k) = oo, but there are at most ¢ many
increment-edges after position k (w.r.t. all Cst, such that py € Qp); and that the requests are
unanswered with cost oo, if StCor(p, k) = oo and there are infinitely many increment-edges
after position k (w.r.t. some Csty such that px € Qy).

As in the case of cost-parity games, we begin by introducing a strengthening of the
cost-Streett condition. The bounded cost-Streett condition, denoted by BndCostStreett(I'),
is the set of plays p that satisfy the following condition:

there exists a b such that all requests are answered or unanswered with cost at most
b, and there are only finitely many unanswered requests.

» Lemma 21. Let G = (A, CostStreett(T)), and let G’ = (A, BndCostStreett(T')).
1. Wo(G') € Wo(9).
2. If Wo(g,) - (Z), then Wo(g) = @

The proof is analogously to the one for Lemma 9. Also, Algorithm 1 (where X is now
Player 0’s winning region in the bounded cost-Streett game) works for this pair of winning
conditions as well. To solve bounded cost-Streett games, we again assume for every ¢ that
no vertex has both an incoming increment-edge (w.r.t. Csty) and an incoming epsilon-edge
(again, w.r.t. Csty). Assuming this, let Fy denote the vertices with incoming increment-edges
w.r.t. Csty. Then, coBiichi(Fy) = {p | Cste(p) < oo} is the set of plays with finitely many
increment-edges w.r.t. Csty. Finally, we define the w-regular condition

SCRR(T) = ﬂeem [(Streett(Qq, Py) N coBiichi(Fy)) U RR(Qe, Pr)] -

» Lemma 22. Let G = (A, BndCostStreett(I')), and let G’ = (A, SCRR(T")). Then, W;(G) =
W;(G') forie{0,1}.

The proof is again analogously to the one for Lemma 11 and relies on finite-state
determinacy of w-regular games. To solve (A,SCRR(T")) one can reduce this game to a

Nathanaél Fijalkow and Martin Zimmermann

classical Streett game with 2d Streett pairs using a memory structure of size 2 to keep track
of open requests. Hence, using the algorithm for Streett games from [19], we can solve the
resulting game in exponential time (in the size of (A, SCRR(T"))), even though the arena
is of exponential size (but only in d). Together with the EXPTIME-hardness of solving
finitary Streett games!, which are a special case, we obtain the following result.

» Theorem 23. The problem “Given a cost-Streett game G and a vertex v, is v € Wy(G) ?”
is EXPTIME-complete.

Furthermore, the reduction described above (and the memory requirements for Streett
games [12]) yields upper bounds on the memory requirements in (bounded) cost-Streett.
Player 1 needs in general infinite memory in cost-Streett games.

» Corollary 24.
Player 0 has finite-state winning strategies of size 2¢ - (2d)! in bounded cost-Streett games
and cost-Streett games.
Player 1 has finite-state winning strategies of size 2¢ in bounded cost-Streett games.

6 Conclusion

We introduced infinite games with cost conditions, generalizing both classical conditions and
finitary conditions. For cost-parity games, we proved half-positional determinacy and that
solving these games is not harder than solving parity games. Furthermore, the corresponding
decision problem is in NP N coNP. For cost-Streett games, we showed that Player 0
has finite-state winning strategies and that solving these games is not harder than solving
finitary Streett games and can be done by solving linearly many (classical) Streett games of
exponential size (in the number of Streett pairs). Our results unify the previous results on
both classical and finitary variants. Table 1 sums up all these results.

winning condition computational complexity memory Player 0 memory Player 1
parity NP N coNP positional positional
finitary parity PTIME positional infinite
cost-parity NP N coNP positional infinite

Streett coNP-complete finite positional
finitary Streett EXPTIME-complete finite infinite
cost-Streett EXPTIME-complete finite infinite

Table 1 Overview of results

There are at least three directions to extend these results: first, our winning conditions do
not cover all acceptance conditions (for automata) discussed in [3, 20]. In ongoing research,
we investigate whether our techniques are applicable to these more expressive conditions and
to winning conditions specified in weak-MSO with the unbounding quantifier [2, 4]. Second,
one could consider infinite arenas, e.g., configuration graphs of pushdown systems. This is
already open for finitary games and requires new ideas, since our techniques rely heavily on
the finiteness of the arena. Finally, one could add decrement-edges.

! Shown in unpublished work by Chatterjee, Henzinger, and Horn, obtained by slightly modifying the
proof of EXPTIME-hardness of solving request-response games [9].

11

12

Cost-Parity and Cost-Streett Games

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Mikolaj Bojanczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki,
editors, CSL, volume 3210 of LNCS, pages 41-55. Springer, 2004.

Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554-576, 2011.

Mikolaj Bojariczyk and Thomas Colcombet. Bounds in w-regularity. In LICS [16], pages
285-296.

Mikotaj Bojanczyk and Szymon Toruriczyk. Weak MSO+U over infinite trees. In Christoph
Diirr and Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 648—660. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Tomés Brézdil, Krishnendu Chatterjee, Antonin Kucera, and Petr Novotny. Efficient con-
troller synthesis for consumption games with multiple resource types. In P. Madhusudan
and Sanjit A. Seshia, editors, CAV, volume 7358 of LNCS, pages 23-38. Springer, 2012.

J. Richard Biichi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:pp. 295-311, 1969.
Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In Samson Abramsky,
Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,
editors, ICALP (2), volume 6199 of LNCS, pages 599-610. Springer, 2010.

Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in
w-regular games. ACM Trans. Comput. Log., 11(1), 2009.

Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity of
request-response games. In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Martin-
Vide, editors, LATA, volume 6638 of LNCS, pages 227-237. Springer, 2011.

Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, ICALP (2), volume 5556 of LNCS, pages 139-150. Springer,
2009.

Thomas Colcombet and Christof Léding. Regular cost functions over finite trees. In LICS,
pages 70-79. IEEE Computer Society, 2010.

Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is
needed to win infinite games? In LICS, pages 99-110, 1997.

E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. SIAM J. Comput., 29(1):132-158, 1999.

Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirf Srba. Energy games in multiweighted
automata. In Antonio Cerone and Pekka Pihlajasaari, editors, ICTAC, volume 6916 of
LNCS, pages 95-115. Springer, 2011.

Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233-244, 1982.

21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006,
Seattle, WA, USA, Proceedings. IEEE Computer Society, 2006.

Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363-371, 1975.

David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondeter-
ministic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theor. Comput. Sci., 141(1&2):69-107, 1995.

Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. In LICS [16],
pages 275-284.

Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak and
Piotr Sankowski, editors, MFCS, volume 6907 of LNCS, pages 580-591. Springer, 2011.

Nathanaél Fijalkow and Martin Zimmermann

A Appendix

In the appendix, we give the proofs omitted in Section 4.
We begin by defining the sheet of a play prefix formally: let the initial sheet of a vertex v
be defined by

(v) = 1 if Q(v) is even,
TN @),0,0,...,0) i Q(v) is odd.

The effect of traversing the edge (v,v’) on a sheet is defined by L @ (v,v") = i(v') and

(¢,n,84,-..,81) ® (v,v") is given by the following case distinction, where we denote Q(v’) by
¢
1 if ¢ € Ans(c),
(¢,n+1,0,...,0) if ¢ < ¢ and even, and Cst(v,v") = ¢,
(¢,n,84y---38s41,0,...,0) if ¢ < ¢ and even, and Cst(v,v’) = ¢,
(c,0,0,...,0) if ¢ > ¢ and odd,
(¢,n+1,0,...,0) if ¢ < c and odd, and Cst(v,v’) =1,
(¢,nySdy -y Sert2, 8¢ +1,0,...,0) if ¢ < cand odd, and Cst(v,v') =e.

Now, we define Sh(v) = i(v) for every v € V, and Sh(wvv') = Sh(wv) @ (v,v") for every
w € V* and every (v,v’) € E.

Before we begin the proof of Lemma 16, we introduce some notation and state some
useful facts. Let Sh(w) = (¢,n,sq,...,51): we define Req(w) = ¢, ReqCst(w) = n, and
Sce (w) = 8. For w with Sh(w) = L we leave these functions undefined.

» Remark 25.

1. If Sce(w) > 0, then ¢ < Req(w).

2. If Sh(w) = L, then Sh(wv) = Sh(v).

If Req(wv) # Req(w), then Sh(wv) = Sh(v).
4. Let Q(v) be odd. Then, Sh(wv) > Sh(v).

w

Proof of Lemma 16. If Sh(xz) = Sh(y), then Sh(zv) = Sh(yv), since the sheets of zv and
yv only depend on the sheets of and y (which are equal) and the last edges of xv and yv
(which are also equal).

So, consider the case Sh(xz) < Sh(y). First, assume we have Sh(x) = L, which implies
Sh(zv) = Sh(v) due to Remark 25.2. If Q(v) is even, then Sh(v) = L and we are done, since

L is the minimal element. Otherwise, applying Remark 25.4 to yv yields the desired result.

So, assume we have Sh(x) # L, which implies Sh(y) # L. We proceed by case distinction
over the first position where the sheets differ:
1. if Req(z) < Req(y), we have to consider three subcases:

a. If Q(v) € Ans(Req(y)), then Sh(yv) = Sh(zv) = L, since Q(v) € Ans(Req(y)) C
Ans(Req(z)).

b. If Q(v) ¢ Ans(Req(y)) and £2(v) is even, then we have Req(y) = Req(yv) and Sh(xv) =
L (if Q(v) € Ans(Req(x))) or Req(av) = Req(x) (if Q(v) ¢ Ans(Req(x))). In both
cases, we have Sh(zv) < Sh(yv).

c. If Q(v) ¢ Ans(Req(y)) and Q(v) is odd, then we again distinguish three subcases:

i. If Q(v) > Req(y), then we have Sh(yv) = Sh(zv) = (2(v),0,0,...,0), since Q(v) is
larger than Req(y) and Req(z).

13

14

Cost-Parity and Cost-Streett Games

ii. If Q(v) = Req(y), then we have Req(zv) = Q(v). Thus, we have Req(zv) # Req(z)
and an application of Remark 25.3 and 25.4 to yv concludes this case.
iii. If Q(v) < Req(y), then we have

Req(zv) = max{Req(z), 2v)} < Req(y) = Req(yv) ,

and therefore Sh(zv) < Sh(yv).

2. So, assume we have Req(z) = Req(y) and ReqCst(z) < ReqCst(y). If Sh(yv) = L, then

also Sh(zv) = L, since their Req-values are equal. Hence, we may assume Sh(yv) # L,
which implies Sh(zv) # L and Req(yv) = Req(zv). We consider two subcases:

a. Req(yv) # Req(y), which implies Req(zv) # Req(z) due to Req(z) = Req(y), we have
Sh(zv) = Sh(yv) = Sh(v) due to Remark 25.3.

b. If Req(yv) = Req(y), which implies Req(zv) = Req(x), then we have

ReqCst(zv) =ReqCst(z) + Cst(Lst(x),v)
< ReqCst(y) 4+ Cst(Lst(y),v) = ReqCst(yv) ,

due to Lst(x) = Lst(y).

. Finally, we consider the case where Req(x) = Req(y) and ReqCst(z) = ReqCst(y), which

implies Req(zv) = Req(yv) and ReqCst(zv) = ReqCst(yv). Then, there exists an odd ¢
in the range {1,...,d} such that Sc. (z) = Sc. (y) for every ¢’ > ¢ and Sc.(z) < Sc.(y).
If Req(yv) # Req(y), then we again have Sh(zv) = Sh(yv) due to Remark 25.3. Further-
more, if the Reg-values do not change, but ReqCst(yv) # ReqCst(y), then all scores of
yv and zv are set to zero. Thus, we have Sh(yv) = Sh(zv) in this case as well.

So, assume both the Reqg-values and the ReqCst-values are unchanged. There are again
three subcases:

a. If Q(v) € Ans(c), then we have Sc. (xv) = Sc (yv) = 0 for every ¢ < Q(v) and
Scer (zv) = Scer(x) = Scer (y) = Sce (yv)
for every ¢ > Q(v) > ¢, i.e., the scores of xv and yv are equal, and therefore
Sh(zv) = Sh(yv).
b. If Q(v) = ¢, then we have
Sce(zv) = Sce() + 1 < Sce(y) + 1 = Sce(yv)
and

Sce (xv) = Sce(x) = Scer(y) = Scer (yv)

for every ¢’ > ¢. Thus, Sc. again witnesses Sh(zv) < Sh(ywv).
c. If Q(v) ¢ Ans(c) and Q(v) # ¢, then we have Sco (zv) = Sco (yv) for every ¢ > ¢ and
Sce(zv) < Sce(yv). Thus, Sc. again witnesses Sh(zv) < Sh(yv). <

Nathanaél Fijalkow and Martin Zimmermann

Proof of Lemma 17. Let all sheets be bounded by b. Then, every request is answered or
unanswered with cost at most b- (¢ — 1) (recall that ¢ denotes the number of odd colors),
since the ReqCst-value is updated along every increment-edge that is traversed. Hence, after
b increments, the Req-value has to be increased, which can only happen ¢ — 1 times. Thus, if
there are infinitely many increment-edges in p, then every request is answered with cost at
most b (¢ — 1), i.e, the bounded cost-parity condition is satisfied. If there are only finitely

many increment edges, then we have to show that the parity condition is satisfied by p.

Assume the maximal color that appears infinitely often in p, call it ¢, is odd. Then, after the
last increment-edge is traversed and after the vertices that appear only finitely often do not
appear any more, Sc. is incremented with each occurrence of the color ¢, but never reset to
0. This contradicts the boundedness of the sheets. Thus, p satisfies the parity condition. <«

Proof of Lemma 18. Assume the sheets are not bounded by b = m - |V/|. First, we assume
there is a prefix w such that ReqCst(w) > b+ 1. Then, there is a vertex with odd color ¢ in
w that is followed by b+ 1 increment-edges, but no vertex of larger even color before the
end of the (b+ 1)-th increment-edge after the request of ¢. Hence, there are two positions
in this interval that have the same vertex, the memory structure implementing o assumes
the same state after both positions, and there is at least one increment-edge between these
positions. Hence, there is also a play consistent with o and starting in Wy(G) that contains
an unanswered request with cost co. However, this contradicts the fact that ¢ is a winning
strategy.

Now, assume we have a prefix w with Sc.(w) > b+ 1. In this case, there is an infix
between two positions of w that have the same vertex, the memory structure implementing o
assumes the same state after both positions, and the maximal color between these positions
is ¢. This implies the existence of a play consistent with o and starting in Wy(G) whose
maximal color seen infinitely often is odd. Such a play has infinitely many unanswered
requests, which again contradicts the fact that ¢ is a winning strategy. |

15

	Introduction
	Definitions
	Solving Cost-Parity Games
	From Cost-Parity Games to Bounded Cost-Parity Games
	From Bounded Cost-Parity Games to -regular Games

	Half-Positional Determinacy of (Bounded) Cost-Parity Games
	Cost-Streett Games
	Conclusion
	Appendix

