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Abstract

We present an exponential-time algorithm approximating the minimal lookahead necessary to

win an ω-regular delay game.

1 Introduction

Games can be found in the standard toolkit for many areas of theoretical computer science and mathe-
matics, e.g., set theory and logic, automata theory, and complexity theory. Here, we are concerned with
two-player zero-sum games of infinite duration and perfect information. In their most abstract form,
these are known as Gale-Stewart games [2], played between Player I and Player O in rounds i ∈ N: In
each round i, first Player I picks some letter ai from an alphabet ΣI , then Player O picks a letter bi from
an alphabet ΣO. Thus, after ω rounds, they have produced an infinite sequence w =

(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · · of
letters. Now, Player O wins such a play, if w satisfies some given winning condition, e.g., w ∈ L for some
given set L of infinite words. In this work, we only consider ω-regular L given by deterministic parity
automata.

Note that here both players move in strict alternation and the automaton will process the sequence
in this order. Hosch and Landweber introduced delay games, relaxing this rigid interaction by allowing
Player O to delay her moves in order to obtain a lookahead on Player I’s moves [5].1

Hosch and Landweber proved that it is decidable whether Player O wins an ω-regular delay game
with some bounded lookahead. In later work, Holtmann, Kaiser, and Thomas showed that such bounded
lookahead is sufficient in the following sense: in an ω-regular delay game, Player O either wins with
doubly-exponential lookahead or not at all (not even with unbounded lookahead) [4]. In subsequent
work, an improved exponential upper bound and matching lower bounds have been proved [6].

Here, we consider the problem of determining the minimal lookahead that is sufficient for Player O
to win an ω-regular delay game. It is trivial to determine this value in doubly-exponential-time by
hardcoding the exponential lookahead into the game, thereby turning the delay game into a classical,
i.e., delay-free, game (see [8], Section 3.1 for details). As the resulting games can be solved in doubly-
exponential time, one obtains the minimal lookahead in doubly-exponential time by exhaustive search.
However, this has to be contrasted with the ExpTime-hardness of determining whether Player O wins
with some lookahead [6], the only known lower bound on the complexity of the optimization problem.

We present the first improvement over the naive algorithm for the lookahead optimization problem
by presenting an exponential-time algorithm approximating the minimal lookahead within a factor of
two. To this end, we show that the exponential-time algorithm for determining whether Player O wins
for some lookahead can be refined into an approximation algorithm with an exponential running time.
Due to the hardness result for the related decision problem, this is the best running time one can hope
for (barring major surprises in complexity theory).

2 ω-regular Delay Games

Given an alphabet Σ, i.e., a non-empty finite set of letters, Σ∗ and Σω denote the set of finite respectively
infinite words over Σ. Given a product alphabet ΣI×ΣO we write

(

a0a1a2···
b0b1b2···

)

for the word
(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · ·

1We refer to the introduction of [4] for a discussion of the history of delay games, including motivation and a connection
to the uniformization of ω-regular relations by continous functions.
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with ai ∈ ΣI and bi ∈ ΣO. Also, we use similar notation for finite words, provided they are of the same
length. We denote the empty word by ε, the power set of a set S by 2S, and the set of non-negative
integers by N.

A delay game (with constant lookahead) Γk(L) consists of a lookahead k ∈ N and a winning condi-
tion L ⊆ (ΣI ×ΣO)

ω . It is played in rounds i ∈ N as follows: In round 0, Player I picks letters a0 · · · ak
from ΣI , then Player O picks a letter b0 from ΣO. In round i > 0, Player I picks a letter ak+i ∈ ΣI and
then Player O picks a letter bi ∈ ΣO. After ω rounds, they have produced an outcome

(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · · .
We say that the outcome is winning for Player O if it is in L.

A strategy for Player O is a mapping σ : Σ∗
I → ΣO. An outcome

(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · · is consistent with
σ, if bi = σ(a0 · · ·ai+k) for all i. A strategy σ is winning, if every outcome that is consistent with σ is
winning for Player O. If Player O has a winning strategy for Γk(L), then we say she wins Γk(L).

Remark 1 ([4], Remark 3.3). If Player O wins Γk(L), then she also wins Γk′(L) for every k′ > k.

In this work, we consider winning conditions L recognized by deterministic parity automata (DPA) A =
(Q,Σ, qι, δ,Ω), where Q is a finite set of states containing the initial state qι, Σ is the input alphabet,
δ : Q× Σ → Q is the transition function, and Ω: Q → N is a coloring of the states. As usual, we extend
δ to finite words by defining δ∗ : Q×Σ∗ → Q via δ∗(q, ε) = q and δ∗(q, wa) = δ(δ∗(q, w), a) for all q ∈ Q,
w ∈ Σ∗, and a ∈ Σ. Given a word a0a1a2 · · · ∈ Σω, the run of A on α is the unique sequence q0q1q2 · · · of
states given by qi = δ∗(qι, a0 · · · ai−1). A run q0q1q2 · · · is accepting, if lim supi→∞ Ω(qi), i.e., the max-
imal color occurring infinitely often, is even. The language L(A) recognized by A is the set containing
all words whose run is accepting.

It is known that one can determine in exponential time whether Player O wins a delay game for some
lookahead k, if the winning condition L is recognized by a DPA.

Proposition 1 ([6], Theorem 4.4). The following problem is ExpTime-complete: Given a DPA A, does

Player O win Γk(L(A)) for some k?

Furthermore, there is an exponential upper bound on the lookahead necessary to win a delay game.

Proposition 2 ([6], Theorem 4.8). Let A be a DPA with n states and c colors, and define kmax = 2n
2c+1.

Player O wins Γk(L(A)) for some k if, and only if, she wins Γkmax
(L(A)).

Finally, the exponential upper bound on the necessary lookahead is tight.

Proposition 3 ([6], Theorem 3.2). For every n > 1, there is a language Ln recognized by a DPA with

O(n) states and two colors such that Player O wins Γk(Ln) for some k, but she does not win Γ2n(Ln).

In this work, we consider the following problem: Given a DPA A over ΣI×ΣO, determine the smallest
k such Player O wins Γk(L(A)) (or that there is no such k). Due to Proposition 2, the search space for

the smallest such k is bounded by kmax = 2n
2c+1.

Now, one can easily transform a game Γk(L(A)) (for some fixed k) into an equivalent classical parity
game (see, e.g., [3] for an introduction to parity games) encoding a queue of k letters from ΣI imple-
menting the lookahead ([8], Section 3.1). Thus, one can construct the equivalent parity game for each
k ≤ kmax and determine the smallest k such that Player O wins the resulting parity game. This is also
the smallest k such that Player O wins Γk(L(A))).

However, if k is exponential in the size of A (i.e., close to kmax), then the resulting parity game
is of doubly-exponential size in the size of A, as one encodes a queue of exponential length. Due to
Proposition 3, considering an exponential k is, in general, unavoidable. Hence, the resulting algorithm
has doubly-exponential running time.

In the following, we show that the minimal lookahead can be approximated within a factor of two
in exponential time. As the related decision problem is ExpTime-hard (Proposition 1), one cannot do
better than exponential time (barring major surprises in complexity theory).

3 The Algorithm

Given a DPA A over ΣI × ΣO and a k > 0, we define a game Gk played between Player I and O with
the following properties:
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1. If Player O wins Γk(L(A)), then she wins Gk (Lemma 1).

2. If Player O wins Gk, then she wins Γ2k−1(L(A)) (Lemma 2).

3. Given A and k ≤ 2n
2c+1, one can construct Gk and determine its winner in exponential time in n,

where n and c are the number of states and colors of A (Lemma 3).

Now, consider Algorithm 1.

Algorithm 1 Approximating the minimal lookahead necessary to win a delay game with winning con-
dition L(A), where A is a given DPA with n states and c colors

1: for k = 1 to 2n
2c+1 do

2: if Player O wins Gk then

3: return 2k − 1
4: return “Player O does not win for any lookahead k”

.

It is obvious that the algorithm runs in exponential time, as the calls in Line 2 can be executed in
exponential time (Property 3) and the loop terminates after an exponential number of iterations (which
can obviously be reduced to a polynomial number of iterations using binary search).

Now, fix an input A. If Player O does not win Γk(L(A)) for any k, then she does not win any
Gk (Property 2), i.e., the algorithm returns the correct output in Line 4. So, consider the case where
Player O wins Γk(L(A)) for some k. Further, let kopt be the minimal k such that Player O wins Γk(L(A)).

Proposition 2 yields kopt ≤ 2n
2c+1. Hence, Player O wins Gk for some k ≤ 2n

2c+1 due to Property 1.
We pick k∗ minimal with this property, i.e., 2k∗ − 1 is the output of the algorithm. Due to Property 2,
the output 2k∗ − 1 allows Player O to win the delay game with winning condition L(A). Finally, the
algorithm indeed approximates the minimal lookahead within a factor of two: Due to Property 1, we
have k∗ ≤ kopt, which implies that the approximation ratio between the algorithm’s output 2k∗ − 1 and
the optimal value kopt is indeed bounded by two:

2k∗ − 1

kopt
≤

2k∗

kopt
≤

2kopt
kopt

≤ 2.

Altogether, we obtain our main result.

Theorem 1. The following problem can be approximated within a factor of two in exponential time:

Given a DPA A, determine the smallest k such that Player O wins Γk(L(A)).

Note that we do not consider the computation of a strategy realizing the approximation, as the notion
of finite-state strategies for delay games comes with some technical complications [8].

In the remainder of this section, we present the construction of Gk and prove Properties 1, 2, and 3.

3.1 The Game Gk

The construction of Gk is a refinement of a similar game used to prove Proposition 1 [6, 8]. For a detailed
explanation of the construction, we refer the reader to these works.

Throughout this section, we fix A = (Q,ΣI × ΣO, qι, δ,Ω), some 0 < k ≤ 2n
2c+1, and let C = Ω(Q)

denote the set of colors of A.
First, we modify the transition function of A so that it keeps track of the maximal color occurring

along a (partial) run of A. Formally, we define δT : (Q × C)× (ΣI × ΣO) → (Q × C) via

δT

(

(q, c),

(

a

b

))

=

(

δ

(

q,

(

a

b

))

,max

{

c,Ω

(

δ

(

q,

(

a

b

)))})

for all q ∈ Q, c ∈ C, and
(

a

b

)

∈ ΣI × ΣO.
Next, we project away the ΣO-component of the letter and perform a power set construction by

defining δP : 2Q×C × ΣI → 2Q×C via

δP(S, a) =
⋃

(q,c)∈S

⋃

b∈ΣO

δT

(

(q, c),

(

a

b

))
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for all S ⊆ Q × C and a ∈ ΣI . We extend δP to non-empty words via δ∗P(S, ε) = S and δ∗P (S,wa) =
δP (δ

∗
P(S,w), a) for all w ∈ Σ∗

I and a ∈ ΣI .
Finally, for every non-empty D ⊆ Q× C and w ∈ Σ∗

I , we define the function rDw : D → 2Q×C via

rDw (q, c) = δ∗P({(q, c)}, w)

for all (q,Ω(q)) ∈ D. Note that the first argument of δ∗P is (q,Ω(q)) and not (q, c), the argument of rDw .

Remark 2. (q′, c′) ∈ rDw (q, c) if and only if there is a word w over ΣI × ΣO whose projection to ΣI is

w and such that the run of A processing w from q leads to q′ and has maximal color c′.

We call w ∈ Σk
I a witness for a partial function r : Q × C → 2Q×C if we have r = r

dom(r)
w , where

dom(r) denotes the domain of r. Note that we require a witness to have length k. Let R be the set of
all such functions that have a witness.

Now, we define Gk, which is played in rounds i ∈ N between Player I and Player O. In each round i,
Player I has to pick some ri ∈ R and then Player O picks (qi, ci) ∈ Q × C subject to the following
constraints:

• For Player I: dom(r0) = {(qι,Ω(qι))} and dom(ri) = ri−1(qi−1) for all i > 0.

• For Player O: qi ∈ dom(ri) for all i ≥ 0.

It is straightforward to verify that both players always have at least one move available in every round.
A play of Gk is a sequence r0(q0, c0)r1(q1, c1)r2(q2, c2) · · · . It is winning for Player O if the sequence of
colors satisfies the parity condition, i.e., if lim supi→∞ ci is even.

A strategy σ for Player O maps a sequence r0(q0, c0) · · · ri to a pair (qi, ci) ∈ dom(ri). A play
r0(q0, c0)r1(q1, c1)r2(q2, c2) · · · is consistent with σ if (qi, ci) = σ(r0(q0, c0) · · · ri) for all i ≥ 0. We say
that σ is a winning strategy for Player O if every play that is consistent with σ is winning for her.
Finally, Player O wins Gk if she has a winning strategy.

3.2 Correctness

Lemma 1. If Player O wins Γk(L(A)), then she wins Gk.

Proof. Let σ be a winning strategy for Player O in Γk(L(A)). We construct a winning strategy σ′ for
Player O in Gk, which will simulate σ.

So, let r0 ∈ R be the first move of Player I. This has to be answered by Player O by picking
(q0, c0) = (qι,Ω(qι)), as this is the only legal move for her. Hence, we define σ′(r0) = (qι,Ω(qι)). Now,
Player I picks some r1 ∈ R.

We simulate this in Γk(L(A)) as follows. Pick witnesses w0 and w1 for r0 and r1, respectively. If
Player I uses w0w1 during the first k rounds of Γk(L(A)), then σ yields k letters w′

0 ∈ Σk
O as response.

Thus, we are in the following situation for i = 1:

• In Gk, we have a play prefix r0(q0, c0) · · · (qi−1, ci−1)ri, and

• in Γk(L(A)), Player I has picked w0 · · ·wi and Player w′
0 · · ·w

′
i−1, where each wj is a witness for rj

(and thus is in Σk
I ) and each w′

j is in Σk
O.

Now, consider an arbitrary i ≥ 1. Let qi be the unique state of A that is reached from qi−1 by process-
ing

(

wi−1

w′

i−1

)

, and let ci be the maximal color on the induced run infix. We have (qi, ci) ∈ ri−1(qi−1, ci−1),

i.e., (qi, ci) is a legal move for Player O in Gk to extend the play prefix r0(q0, c0) · · · (qi−1, ci−1)ri. Ac-
cordingly, we define σ′(r0(q0, c0) · · · (qi−1, ci−1)ri) = (qi, ci). Player O reacts by picking some ri+1 ∈ R,
which has some witness wi+1. In Γk(L(A)) we let Player I pick the letters of wi+1 during the next k

rounds, which yield k letters w′
i ∈ Σk

O determined by σ. Thus, we are in the situation above for i + 1,
i.e., we have concluded the definition of σ′.

It remains to show that σ′ is indeed winning. Fix a play r0(q0, c0)r1(q1, c1)r2(q2, c2) · · · that is consis-
tent with σ′, and let

(

w0w1w2···
w′

0
w′

1
w′

2
···

)

be the play in Γk(L(A)) constructed during the simulation. By construc-

tion, each wi is a witness of ri. An induction shows that qi+1 is the unique state of A reached when pro-
cessing

(

wi

w′

i

)

when starting at qi, and that ci+1 is the maximal color encountered on this run infix. As the
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unique run of A on
(

w0w1w2···
w′

0
w′

1
w′

2
···

)

is accepting (as it is, by construction, an outcome consistent with the win-

ning strategy σ), we conclude that lim supi→∞ ci is even. Hence, the play r0(q0, c0)r1(q1, c1)r2(q2, c2) · · ·
is winning for Player O. As the play was chosen arbitrarily, σ′ is indeed a winning strategy for Player O
in Gk.

Lemma 2. If Player O wins Gk, then she wins Γ2k−1(L(A)).

Proof. Let σ′ be a winning strategy for Player O in Gk. We construct a winning strategy σ for Player O
in Γ2k−1(L(A)), which will simulate σ′.

So, let Player I pick letters a0 · · ·a2k−1 in round 0 and define w0 = a0 · · · ak−1 and w1 = ak · · · a2k−1.

Furthermore, let (q0, c0) = (qι,Ω(qι)), r0 = r
{(q0,c0)}
w0

, and r1 = r
r0({(q0,c0)})
w1

. Then, r0(q0, c0)r1 is a play
prefix in Gk that is consistent with σ′. Then, we are in the following situation for i = 1:

• In Γ2k−1(L(A)), Player I has picked w0 · · ·wi and Player O has picked w′
0 · · ·wi−2 (which is empty

for i = 1), and

• in Gk, we have a play prefix r0(q0, c0) · · · (qi−1, ci−1)ri that is consistent with σ′ and where each wj

is a witness for rj . Note that being a play prefix implies (qj , cj) ∈ dom(rj) = rj−1(qj−1).

Now, pick some arbitrary i ≥ 1 and consider (qi, ci) = σ′(r0(q0, c0) · · · (qi−1, ci−1)ri). As σ′ is a
strategy for Gk, we have again (qi, ci) ∈ dom(ri) = ri−1(qi−1). Furthermore, as wi−1 is a witness for
ri−1, there is some w′

i−1 ∈ Σk
O such that qi is the unique state A reaches when processing

(

wi−1

w′

i−1

)

from

qi−1, and ci is the maximal color occurring in this run infix.
Now, we define σ such that it picks the k letters of w′

i−1 during the next k rounds (independently
of the choices of Player I). During these rounds, Player I again determines some wi+1 ∈ Σk

I , inducing

ri+1 = r
ri(qi,ci)
wi+1

. Then, we are in the situation above for i+1, i.e., we have concluded the definition of σ.
It remains to show that σ is winning. To this end, fix an outcome

(

w0w1w2···
w′

0
w′

1
w′

2
···

)

that is consistent with

σ, where each wi is in Σk
I and each w′

i is in Σk
O. Further, let r0(q0, c0)r1(q1, c1)r2(q2, c2) · · · the play of

Gk constructed during the simulation. By construction, each wi is a witness of ri.
As r0(q0, c0)r1(q1, c1)r2(q2, c2) · · · is consistent with σ′ by construction, it is winning for Player O,

i.e., lim supi→∞ ci is even. Now, an induction shows that qi+1 is the unique state reached by A when
processing

(

wi

w′

i

)

starting in qi, and ci+1 is the maximal color on this run infix. From these two properties,

we conclude that the run of A on
(

w0w1w2···
w′

0
w′

1
w′

2
···

)

is accepting, i.e., the outcome is winning for Player O. As

the outcome was chosen arbitrarily, σ is indeed a winning strategy for Player O in Γ2k−1(L(A)).

3.3 Running Time

Lemma 3. Given A and k ≤ 2n
2c+1, one can construct Gk and determine its winner in exponential time

in n, where n and c are the number of states and colors of A.

Proof. We argue that Gk can be expressed as an arena-based parity game (see, e.g., [3] for a definition)
of exponential size in n with the same colors as A. Such a game can be solved in exponential time in
n [1]. Thus, it remains to argue that one can construct the parity game in exponential time.

First, we argue that for each partial function r : Q×C → 2Q×C one can construct a deterministic finite
automaton recognizing the set of witnesses of r. The construction is based on a powerset construction
(mirroring the definition of δT and δP) and a counter checking that only inputs of length k are accepted.
As there are only exponentially many such functions, one can effectively determine R, i.e., the set of
functions whose associated automaton has a non-empty language, in exponential time.

Now, it is straightforward to construct a parity game (VI , VO, E, vι,Ω
′) in a graph (VI ∪ VO, E) of

exponential size with the following components:

• VI = {vι} ∪R× (Q × C): vertices of Player I, where vι is a fresh initial vertex.

• VO = R: vertices of Player O.

• E is the union of the following sets of edges:

– {(vι, r) | dom(r) = {qι,Ω(qι)}}: initial moves of Player I, allowing him to pick some r ∈ R

with dom(r) = {qι,Ω(qι)}.
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– {((r, (q, c)), r′) | dom(r′) = r(q, c)}: non-initial moves of Player I allowing him to pick some
r′ satisfying dom(r′) = r(q, c), where r and (q, c) were previsouly picked by the players.

– {(r, (r, (q, c))) | (q, c) ∈ dom(r)}: moves of PlayerO allowing here to pick some (q, c) ∈ dom(r),
where r was previously picked by Player I.

• Ω′(v) =

{

c if v = (r, (q, c)) ∈ VI ,

minC otherwise.
. Note that the color minC is neutral in the following

sense: Whether a play is winning or not only depends on the colors of the vertices in VI \ {vι}, but
not on vertices in VO ∪ {vι}.

The resulting parity game implements exactly the rules of the abstract game Gk and is therefore won by
Player O if and only if she wins Gk.

4 Conclusion

We have presented an exponential-time algorithm approximating the minimal lookahead necessary to win
a delay game. Here, we only considered the case of ω-regular winning conditions given by deterministic
parity automata.

In the literature, several other types of winning conditions have been considered, e.g., quantitative
parity [9] and (quantitative) Linear Temporal Logic [7]. For these types, one can also exhibit an approx-
imation algorithm for the minimal lookahead that has the same complexity as an algorithm deciding the
existence of some lookahead using techniques very similar to those introduced here.

Unfortunately, the complexity of the exact optimization problem for games with winning conditions
given by deterministic parity automata remains open. Let us conclude by mentioning another open
problem on delay games: There is an exponential gap between the upper and lower bounds on the
necessary lookahead in delay games with winning conditions given by deterministic Muller automata.
The same is true for deciding whether Player O wins the game for some lookahead.
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