
Poster: Adaptive Strategies for rLTL Games
Satya Prakash Nayak

Chennai Mathematical Institute, India
Daniel Neider

MPI-SWS, Germany
Martin Zimmermann
University of Liverpool, UK

ABSTRACT
We consider the problem of synthesizing themost robust controllers
using the Abstraction-Based Controller Design (ABCD). First, we
perform a finite-state abstraction of the continuous dynamic system.
We then synthesize a most robust control strategy in the finite
space by formulating it as a two-player game. Finally, we refine
the strategy to a controller for the original problem. To preserve
robustness, we consider the specifications for the controllers to be
expressed in Robust Linear Temporal Logic (rLTL ), which allows
the reasoning about how robust the specification is. However, the
current algorithms for rLTL synthesis do not compute optimally
robust controllers. It only considers the worst-case analysis for
reactive synthesis. Hence, we develop two new notions of adaptive
strategies. One is Weakly Adaptive strategy, which, in response
to the opponent’s bad choices, adaptively changes the degree of
satisfaction we want to achieve to ensure the optimality w.r.t. the
current stage. The second one is Strongly adaptive strategy, which
is weakly adaptive that also maximizes the chances of the opponent
making a bad choice. We show that the computability problem for
both the strategies is not harder than the classical one and can be
solved in doubly-exponential time.

CCS CONCEPTS
•Theory of computation→Modal and temporal logics;Logic
and verification.
ACM Reference Format:
Satya Prakash Nayak, Daniel Neider, and Martin Zimmermann. 2021. Poster:
Adaptive Strategies for rLTL Games. In 24th ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’21), May 19–21, 2021,
Nashville, TN, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3447928.3457210

1 INTRODUCTION
Nowadays, formal methods are being used extensively to specify-
ing control system requirements. One way to construct controllers
for continuous dynamic systems with temporal specifications is
Abstraction-Based Controller Design (ABCD) [1]. The ABCD prin-
ciple first computes a finite and discrete-time abstraction of the
continuous dynamic system. Then using reactive synthesis, it com-
putes a discrete controller for the finite system with the temporal
specification. And finally, it refines the discrete controller to a con-
troller for the original continuous system. This methodology has
recently been implemented in various algorithms and tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’21, May 19–21, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8339-4/21/05.
https://doi.org/10.1145/3447928.3457210

This paper addresses the problem of synthesizing the controller
with specifications expressed in Robust Linear Temporal Logic
(rLTL ) [4]. Robust LTL was introduced by Tabuada and Neider [4]
to capture the concept of robustness in temporal logics. It was
observed that the difference between “minor” and “major” violations
of a formula cannot be distinguished in a two-valued semantics.
For example, consider the formula φ = p, which demands that p
holds at all positions of a word. Clearly, φ is violated even if p does
not hold at only a single position, which is a very minor violation.
However, the two-valued semantics of LTL does not distinguish
between this case and the case wherep does not hold at any position,
which is a major violation. To distinguish these various degrees of
violations, rLTL adopts a 5-valued semantics. The set of truth values
for rLTL is B4 = {1111, 0111, 0011, 0001, 0000} and the values are
ordered naturally. Intuitively, 1111 corresponds to true, and the
rest to different shades of false. For the above example, the robust
version of the formula φ is written as p, then, the five truth values
distinguish the various degree of violations of the property:

• The value is 1111 if p holds at all positions (no violation).
• The value is 0111 if p holds eventually always, i.e., p holds
at all but finitely many positions.

• The value is 0011 if p holds at infinitely many positions.
• The value is 0001 if p holds at finitely many positions.
• The value is 0000 if p does not hold at any position.

We focus on the problem of synthesizing themost robust controllers,
i.e., the optimal controllers w.r.t. the natural ordering on B4 in a
finite state space. Such problems can be formulated as finite-state
graph-based games between the environment and the controller,
called rLTL games [4]. However, the classical controllers computed
by Tabuada and Neider are not optimal. It considers the environ-
ment to be antagonistic, which is not very realistic. In order to
solve this inefficiency, we introduce two new notions of adaptive
strategies: weakly adaptive strategy and strongly adaptive strategy.
First one is a strategy that adapts its moves to ensure the optimal-
ity once the environment has made a bad move. Second one is a
stronger version of first one that also maximizes the chances of the
environment making bad moves. We show that both the strategies
can be computed (if exist) in doubly-exponential time, and hence
are not harder than the classical ones.

0
{p}

1
{q}

4
{q}

5
{p,q}

2
{p}

3
{q}

Figure 1: Game graph for Example 1

https://doi.org/10.1145/3447928.3457210
https://doi.org/10.1145/3447928.3457210
https://doi.org/10.1145/3447928.3457210


HSCC ’21, May 19–21, 2021, Nashville, TN, USA S. P. Nayak et al.

2 COMPUTING ADAPTIVE STRATEGIES
In this section, we motivate our work with an example of a game.
We first show what a classical strategy would do in that game and
why that is not optimal. Moreover, we present a weakly adaptive
strategy and describe why it is better than the classical one. We also
present a strongly adaptive strategy and describe its importance
and existence.

2.1 Motivating Example
Consider a game played between two players: Player C (controller)
and Player E (environment), as shown in Figure 1. Player E’s vertices
are shown as squares and Player C’s vertices are shown as circles.
Each vertex is labeled by a set of propositions, e.g., vertex 5 is labeled
by propositions p and q. Suppose a token is initially placed at the
vertex 0. At any stage, if the token is in a vertex of Player i , then he
has to move the token to a neighboring vertex along an edge. An
infinite play is an infinite path in the graph starting from 0, whose
labels induce an infinite word consisting of sets of propositions,
e.g., the play 012323 . . . induces to word {p}{q}{p}{q}{p}{q} . . .
Suppose the rLTL specification is p for Player C , which means
he wants p to hold at all positions of (the word induced by) the
infinite play (which is not possible in this game). Then he would
prefer a play where p holds eventually always (e.g., 01455 . . .) over
a play where p holds at infinitely many positions (e.g., 012323 . . .)
Similarly, he would prefer a play where p holds at infinitely many
positions over a play where p holds at finitely many positions
(e.g., 01233 . . .). Hence, Player C’s objective is to maximize the
value of p on the play. Since reactive synthesis performs a worst-
case analysis, the environment is considered antagonistic, and the
objective of Player E is to minimize the value on any play.

2.2 Weakly Adaptive Strategy
A strategy for Player i is a function σ , which assigns to each possible
finite path ending in a vertex of Player i to a neighbour of that vertex.
Intuitively, it prescribes the next move of Player i depending on
the finite play played thus far. Considering Player E plays his best
moves, the best possible scenario for PlayerC in the above example
is to enforce a play where p holds at infinitely many positions.
As the classical problem only considers the worst-case analysis, a
classical strategy for PlayerC is to try to visit the vertex 2 infinitely
often. That can be done by moving the token along one of the
following edges every time the token reaches his vertices: {0 →

1; 3 → 2; 4 → 1}. As we can see that, if Player E makes a bad
move by moving along 1 → 4, then Player C can force the play to
eventually just stay at the vertex 5, and hence, p holds eventually
always. However, the above classical strategy for Player C moves
it back to the vertex 0 from which p might not hold eventually
always. Therefore, a better strategy for Player C is to move along
4 → 5 if the token reaches the vertex 4 to get a play where p holds
eventually always; otherwise, try to get a play where p holds at
infinitely many positions as earlier by moving along 0 → 1 and
then 3 → 2 repeatedly. We call such a strategy weakly adaptive.
Intuitively, it adapts its moves to achieve the best possible outcome
after each bad move of the environment.

It can be shown that a weakly adaptive strategy for a player
in an rLTL game can be computed in doubly-exponential time by

reducing the problem to parity games [2]. As we know that the
classical synthesis problems for the controllers for an rLTL (even
for LTL) specification also take doubly-exponential time [4], we
conclude that computing weakly adaptive strategies is not harder
than the standard ones.

2.3 Strongly Adaptive Strategy
Another weakly adaptive strategy for Player C is to move along
0 → 2 directly in his first move and then moving along 3 → 2
every time. Then the token can never reach the vertex 4. However,
it also means that there cannot be a play where p holds eventually
always; whereas if Player C moves along 0 → 1, there is a chance
of getting such plays. Therefore, the earlier strategy of moving the
token to 1 is definitely better. Therefore, we also consider another
type of strategy, which is weakly adaptive, as well as it maximizes
the chances of the environment making a bad move. We call such a
strategy strongly adaptive. However, such a strategy may not even
exist for some cases, whereas it is easy to see that a weakly adaptive
strategy always exists. We illustrate this in the following example.

0
{q}

1
{q}

2
{p}

3
{q}

4
{p}

Figure 2: Game graph for Example 2

Consider another game with the same objectives played in the
game graph shown in Figure 2. Suppose the token is initially placed
at the vertex 0. If Player E plays his best moves, then the best
possible play Player C can enforce is the one where p holds at
infinitely many positions (e.g., a play with suffix 03434 . . .). So
unless Player E makes a bad move by moving along 1 → 2, any
weakly adaptive strategy for Player C will eventually make him
move the token to 3. But if PlayerC moves along 0 → 1, then there
is a chance of Player E making a bad move of 1 → 2, and hence the
token stays at the vertex 2, inducing a play wherep holds eventually
always. So, if σk is a strategy for Player C , which makes him move
along 0 → 1 the first k times it reaches 0 and then moves to 3;
then σk+1 is always a better strategy than σk . Hence, no strongly
adaptive strategy exists.

It can be shown that a strongly adaptive strategy, if one exists
at all, can also be synthesized in doubly-exponential time by a
reduction to a series of parity games [2] and obliging games [3].
Hence, computing strongly adaptive strategy is also not harder
than the classical ones.

REFERENCES
[1] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. 2017. Formal methods for

discrete-time dynamical systems. Vol. 15. Springer.
[2] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.

2017. Deciding Parity Games in Quasipolynomial Time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (Montreal, Canada)
(STOC 2017). Association for Computing Machinery, New York, NY, USA, 252–263.
https://doi.org/10.1145/3055399.3055409

[3] Krishnendu Chatterjee, Florian Horn, and Christof Löding. 2010. Obliging Games.
In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 284–296.

[4] Paulo Tabuada and Daniel Neider. 2016. Robust Linear Temporal Logic. In CSL
(LIPIcs, Vol. 62). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:21.

https://doi.org/10.1145/3055399.3055409

	Abstract
	1 Introduction
	2 Computing Adaptive Strategies
	2.1 Motivating Example
	2.2 Weakly Adaptive Strategy
	2.3 Strongly Adaptive Strategy

	References

