
Introduction to Lab Practicals (Lab Intro 3)
Access Control, Synchronisation and Remote Access

1 Introduction
This practical is intended to familiarise you with the file access control mechanisms of Linux file
systems. By default, your own files can only be accessed by yourself. It is important that you
understand why this is so, how you can check who can access your files or the files of others, how
you restrict or open access to files, and how you change what can be done with a file.

In addition, we will consider how you might best synchronise the files in the Linux filestore
with the files you have at home on a PC or laptop and how you can remotely access the Linux
servers.

This document can be found at

https://cgi.csc.liv.ac.uk/∼ullrich/COMP284/notes/labintro03.pdf

While you work through the tasks below compare your results with those of your fellow students
and ask one of the demonstrators for help and comments if required.

2 File Permissions
We will use the Department’s Linux servers for most of the exercises that follow. Use MobaXterm
to connect to one of the departmental Linux servers.

2.1 Overview

Figure 1: Permissions

You have already seen that using ls -l you can get a ‘long
listing’ of the files in the current directory. If you have com-
pleted the exercises of Lab Intro 2, then your home directory
should contain a subdirectory called COMP284 and several files
including out3.txt and test10 in that subdirectory. If you
have used names different from these, then you need to adjust
the exercises accordingly. Executing the commands
I ls -l
I ls -l COMP284
should result in output resembling that shown in Figure 1
(remember: ‘l’ is the letter `, not the number ‘1’).

As you can see, the output of ls -l consists of several columns with the right-most column
obviously containing the names of files and directories. The third column from the left, the one
containing uhustadt in Figure 1, indicates the owner. For your own files, the corresponding
column should show your username. The fourth column from the left, the one containing nobody
in Figure 1, indicates the group. Again, the group shown for your files will be different. A group
is a collection of users/accounts and any user/account belons to one or more groups. The left-
most column, a rather cryptic looking string of characters and dashes, shows the permissions
(alternatively called access rights) for each of the files and directories.

1

https://cgi.csc.liv.ac.uk/~ullrich/COMP284/notes/labintro03.pdf

All modern operating systems use access control lists to control who can do what with a
particular file system object. To this end, each file system object is associated with such an access
control list that contains access control entries, each of which gives an individual user or group the
right to perform an operation such as reading, writing, or executing the file system object.

Linux, like any traditional UNIX operating system, recognises three classes of users with respect
to operations on file system objects: owner, group, and other. Operations are categorised as
read (r), write (w), and execute (x). Finally, the file system categorises file system objects into
various kinds of objects, including files and directories. Having read (r), write (w), and execute (x)
permission takes slightly different meaning for files versus directories:

Permission For a file For a directory
read (r) allowed to view file contents allowed to view directory contents
write (w) allowed to write to file allowed to remove or add new files to directory
execute (x) allowed to execute file allowed to access files in the directory

Some clarification is in order regarding permissions for directories:

• To remove or add a file to a directory, or to otherwise modify an already existing file in a
directory, you actually need both write (r) and execute/access (x) permission for the directory.

• Similarly, while read (r) permission for a directory, without execute (x) permission, does indeed
allow you to see what files are in a directory, you will get an error message for each file telling
you that you do not have access permission for the file. Furthermore, you will not be able to see
any additional information for these files, e.g. their owners or the permissions for these files.

So, what does the information shown in Figure 1, and partially repeated below, tell us about
permissions for the files and directories involved?
drwxr-xr-x. COMP284
-rw-r--r--. out3.txt

• The first character indicates the type of the file: ‘d’ stands for ’directory’, ‘-’ for ‘regular file’,
‘l’ for link, etc.
So, COMP284 is a directory while out3.txt is a regular file.

• The next block of three characters indicates the permissions that the owner of the files has.
So, ‘rwx’ for COMP284 means that the owner has read, write and execute permission.
For out3.txt, ‘rw-’ indicates that the user has read and write permission, but not execute
permission.

• The next block of three characters indicates the permissions for members of the group.
For COMP284, the three characters are ‘r-x’, so the group has read and execute permission for
this directory but not write permission. For out3.txt, the three characters are ‘r--’, so the
group has read permission.

• The next block of three characters indicates the permissions for other users.
As it happens, for the two file system objects considered here, as the third block of three char-
acters is identical to the second block of three characters, other users have the same permissions
as the group.

2

2.2 Changing File Permissions: Symbolic Notation
To change the permissions for file system objects you use the chmod command. In is simplest form,
chmod takes two arguments:

1. A description of the permissions that you want to set or a description of how you want to
change the existing permissions. This description can be given in symbolic notation or numeric
notation.
(a) In symbolic notation, you need to specify for which user or group of users you want to

change the permissions, how you want to change them, and which permissions you want
to change:

Which user? How to change the permission? Which permission?
u user/owner + add this permission r read
g group - remove this permission w write
o other = set exactly this permission x execute
a all (of the above)

For example, ‘u-x’ indicates that you want to remove the execute permission from the
owner, i.e. from yourself, while ‘a+w’ means that you want to add write permission for all
users, including yourself.
Regarding the first and third group, you can pick more than one character. For example,
‘ug+rw’ means that for both user/owner and group you want to add both read and write
permission.

2. A list of file system objects for which you want to change the permissions, with a space separating
the files system objects within the list.

Putting both together,
I chmod u+x ~/COMP284/out3.txt
adds execute permission for the owner of the file ~/COMP284/out3.txt.

Figure 2: chmod (1)

Execute the command above and use
I ls -l ~/COMP284
to see what the effect of the command has been. The output from
ls -l ~/COMP284 should resemble that shown in Figure 2: The
permissions for the owner of the file should have changed from
‘rw-’ to ‘rwx’.

In Figure 1 we have seen that the permissions for the file
out3.txt give read permissions to all users (owner, group, and
others). Such generous read permissions should be avoided if at
all possible as you are required to keep your files secure from
unauthorised access1.

1For example, if a file that is readable by all users would contain your work for a COMP284 assignment, then
all students could potentially see what you have done and one of them could submit a copy as their own work. We
would consider that to be collusion involving both parties, i.e. yourself and the other student, not plagiarism.

3

Figure 3: chmod (2)

To restrict the read permissions for out3.txt use the com-
mand
I chmod og-r ~/COMP284/out3.txt
and see what the effect is using ls -l ~/COMP284 (see Figure 3).

Let us see what the default permissions are for a newly created
file. To create such a file you can use the touch command:
I touch ~/COMP284/newFile.txt
will create a new file called newFile.txt in the directory COMP284.
Execute this command and use
I ls -l ~/COMP284
to see what the permissions for newFile.txt are (see Figure 4).

Figure 4: chmod (3)

As you can see, the file is readable and writable by the owner,
i.e. yourself, and also readable by group and world. If you were
to create a new file under Windows, then by default the execute
permission would also be set.

So far we have not seen an example of an executable file. Let
us create one.

Using your favourite editor, e.g. gedit, create a new file in your
home directory, called myFirstShellScript, with the following
content:
#!/bin/sh

echo "Hello World!"

Here, the first line indicates which interpreter should be used to execute the rest of the file,
namely, the file /bin/sh, the system’s default shell. That will be the GNU Bourne-Again SHell
or bash for short.

Check with ls -l what the permissions are for the file myFirstShellScript once you have
saved it. Not surprisingly, it is readable and writable by the owner, and readable by everyone else.

Figure 5: Executing files

Try to execute the file by using the command
I ./myFirstShellScript
in the same directory where this file is stored. You should get
an error message telling you that you do not have permission to
execute the file. This is correct as so far nobody has execute
permission for this file.

Let us change that using the command
I chmod u+x myFirstShellScript
Then try to execute myFirstShellScript again. This time you
will succeed and the script will produce the output
Hello World!

Now that you know how to change the permissions of a file system object, you can check
whether what has been said on page 2 about permissions for directories is true. Do the following:

1. Make sure that the working directory is your home directory.

4

2. Change the permissions for directory COMP284 to ‘r--------’, i.e. read permission for the owner
only, no other permissions for the owner, no permissions for group or other.
Then use ls -l ~/COMP284 to see whether you can still obtain a long listing of the contents of
the COMP284 directory.

3. Now give yourself execute permission for COMP284 in addition to read permission, i.e. set the
permissions to ‘r-x------’.
Use ls -l ~/COMP284 again to see what the long listing of the contents of the COMP284 directory
looks like.

4. Next, see whether write permission alone allows you to create a file in the the directory COMP284.
To do so, execute the commands

I chmod u=w ~/COMP284
I touch ~/COMP284/testFile

The system should deny you the permission to create testFile.

5. Adding execute permission to the directory should solve this problem:

I chmod u+x ~/COMP284
I touch ~/COMP284/testFile

This time creating the file testFile should succeed.

2.3 Changing File Permissions: MobaXterm
If your files happen to be on a system that can be accessed remotely using MobaXterm, as the files
on the Departmental filestore are, then MobaXterm provides you with an easy-to-use graphical
interface to manipulate file permissions.

1. Open MobaXterm and connect to the Linux server.

2. In the file browser in the left pane of MobaXterm navigate to the directory COMP284, right-click
on the file newFile.txt that you have created in one of the previous exercises. MobaXterm
shows you a context menu and among the operations that you can perform is one called ‘Per-
missions’ (Figure 6a). Select it.

(a) Contex menu for files (b) File permissions menu for files (c) Confirmation of change

Figure 6: Changing File Permissions using MobaXterm

5

3. You then see a table that shows you what the current file permissions for newFile.txt are
(Figure 6b). You see that the file is readable by user, group and others (world-readable). By
clicking on a particular cell you can add or remove permissions. Remove read permissions from
group and others, then click ‘Apply’.

4. MobaXterm will ask you for confirmation (Figure 6c). Confirm that you want the changes to
be applied.

5. Check in the terminal window of MobaXterm that the file permissions have changed as intended
by executing the command

I ls -l ~/COMP284/newFile.txt

6. It is worth pointing out that MobaXterm determines the file permissions of each file in a folder
when the folder is first opened in the file browser. So, if you change permissions on the command
line then MobaXterm might not pick up those changes. Use the ‘Refresh folder’ function of the
file browser to make sure that MobaXterm shows you up-to-date information.

3 Synchronisation
You may have your own PC and/or laptop that you want to use for your studies, in which case
you will have to transfer files between the Linux filestore and your PC/laptop. You might use a
USB pen drive, but students quite often forget these, or forget to copy all the necessary files onto
the pen drive, or the pen drive gets lost or ceases to work. Also, a pen drive only allows you to
copy files onto your Windows filestore and you still then need to get it onto your Linux filestore.

An alternative is the use of MobaXterm or rsync to transfer files between a PC or laptop at
home or the Windows filestore and the Linux filestore.

3.1 MobaXterm
While SFTP is a reasonable way to transfer new directories to and from the Linux filestore,
MobaXterm provides an easier way to transfer just a few files.

To illustrate the process, do the following. Using the Windows file explorer, create a new
directory COMP284 on the M: drive and then text file called fileWindows.txt in the COMP284.
Alternatively, create such a file on your personal PC/laptop. Also, using a MobaXterm SSH
connection to a Linux server create a file fileLinux.txt as follows
I ls -1 $HOME > ~/COMP284/fileLinux.txt
We want to transfer fileLinux.txt from the Linux filestore to the directory COMP284/ on the
Windows filestore. To do so, in the file browser in the left pane of MobXterm, find the directory
COMP284, double-click on it to open the directory in the file browser. Then right-click on the file
fileLinux.txt. This opens a menu (Figure 7a) in which you select “Download”. Another file
browser opens which allows you to select the directory to which you want to download the file to.
Use the file browser to select the directory COMP284 on the M: drive.

Now the reverse direction. To upload the file fileWindows.txt to the directory ~/COMP284/
in the Linux filestore, first select this directory in the file browser of MobaXterm. Then click on
the upward arrow above the file browser pane. Again, another file browser opens which allows
you to select the file or files that you want to upload. Use the file browsers to select the file

6

(a) Download file (b) Upload file (c) Local terminal

Figure 7: Transferring files using MobaXterm

fileWindows.txt, then click on “Open” (Figure 7b). MobaXterm will then transfer the file.
Explore the other options that MobaXterm offers you: You can create directories on the remote
system, delete files, and create new files.

3.2 rsync
rsync is a program that transfers files and directories from one location to another in a way that
minimises the amount of data that needs to be transferred. The two locations do not necessarily
have to be on the same computer. rsync has several advantages over other, simpler, file transfer
programs: (i) rsync can restrict transfers to files that have been changed instead of blindly trans-
ferring all files and (ii) even where a file has to be transferred, rsync will by default only transfer
parts of the file that have changed, not the complete file. This not only minimises the amount of
data that needs to be transferred but also minimises the time the transfer takes.

The protocol that is typically used for the transfer of files between locations on different com-
puters is SSH (Secure Shell), a cryptographic network protocol. SSH uses the client-server model
and requires that on the computer that will act as server for the transfer of files is running a
SSH daemon that accepts connections from a SSH client. This is the case for all Linux servers in
the Department and the server lxfarm.csc.liv.ac.uk is specifically set up to be accessible from
outside the Department.

MobaXterm does not only allow to establish remote connections using various protocols, but
also provides a local terminal that supports a wide range of UNIX commands, including rsync.
In MobaXterm, simply click on the plus symbol in the tab list or click on “Session” and then
on “Shell” among the session types offered. The local terminal (Figure 7c) looks very similar to
a remote SSH session but uses a different prompt that includes your username and the hostname
(though this is customizable). Drives are accessible through the /drives/ path, so your Windows
filestore on the M: drive is accessible via /drives/m. In all likelihood, your files on the Windows
filestore and the Linux filestore are currently in sync, so let us first create a difference.
I cd /drives/m/
I ls -l >> COMP284/fileWindows.txt
Then, to synchronise the contents of the COMP284 directory on the Windows filestore and the
COMP284 directory on the Linux filestore, and all their subdirectories, execute the following com-
mand in the MobaXterm local terminal:
I rsync -auvz -e ssh COMP284/ ’sgxyz@lxfarm.csc.liv.ac.uk:COMP284/’
sgxyz@lxfarm.csc.liv.ac.uk’s password:

7

where you have to replace sgxyz with your own username. After you have entered your University
(MWS) password, modified files will be transferred, for example:
sending incremental file list
COMP284/fileWindows.txt
sent 167 bytes received 25 bytes 20.21 bytes/sec
total size is 338 speedup is 1.70
The options -auvz -e ssh tell rsync:
• to transfer files in archive mode (-a), which ensures that symbolic links, devices, attributes,

permissions, ownerships, etc are preserved in the transfer,
• to skip files that are newer on the receiver (-u),
• to show which files are transferred (-v),
• to compress the data that is to be transferred (-z) and
• to use ssh as network protocol (-e ssh).

Used in this way, rsync does not delete files on the receiver, i.e., your Linux filestore, that have
been deleted on the Windows filestore. In order to delete those files on the receiver, the --delete
option can be used:
I rsync --delete -auvz -e ssh COMP284/ ’sgxyz@lxfarm.csc.liv.ac.uk:COMP284/’
Obviously, this operation can easily lead to the loss of files. To see which files will be deleted on
the receiver, without them being deleted right away, one can ask rsync to perform a dry run by
adding the -n option to the command:
I rsync -n --delete -auvz -e ssh COMP284/ ’sgxyz@lxfarm.csc.liv.ac.uk:COMP284/’
sending incremental file list
deleting HelloWorld.java
sent 23 bytes received 18445 bytes 7387.20 bytes/sec
total size is 417446325 speedup is 22603.76 (DRY RUN)
Finally, if you have changed files on the Linux filestore and want to transfer those files back to the
Windows filestore, you simply have to swap destination and source when using rsync:

I rsync -auvz -e ssh ’sgxyz@lxfarm.csc.liv.ac.uk:COMP284/’ COMP284/
The manual page for rsync provides lots of additional information including a description of

all the options of rsync.
Note also that if you are using MobaXterm at home, you can interact with the Linux server that

you are connected to from a laptop or PC at home in the same way as you can from a Windows
system on campus. So, you can remotely edit files or upload files that you have created at home
and you can execute commands on the departmental Linux servers.

The best way of working remotely will depend on the speed and reliability of your internet
connection. If your connection is fast enough, then you might be able to open an editor with
graphical user interface on lxfarm.csc.liv.ac.uk and edit files directly on our systems. With a
slower connection you might want to use a command line editor instead. Note that you can have
more than one connection / terminal open at the same time. So, you can have one terminal with
a command line editor and other terminal to execute commands such as compiling and running
programs. The third alternative would be to just use the connection to transfer files that you
create on your system.

8

apropos aspell bash cat cd chsh clear cp date
diff diffpp egrep enscript find history kill ln mv
quota rename sort ssh tail tar tcsh time top
uptime vim zile zip

Table 1: Useful Linux commands

4 Remote access
The Linux server lxfarm.csc.liv.ac.uk also provides you with a possibility to remotely access
Departmental computing facilities.

If your own PC/laptop is running Linux and has SSH installed, then executing the command
I ssh lxfarm.csc.liv.ac.uk
in a terminal window will establish a secure terminal session to lxfarm. MacOS also comes with
its own implementation of SSH and the command shown above should also work under MacOS.

If your own PC/laptop is running MS Windows, you will first have to download and install an
SSH client. Obviously, it makes sense to use MobaXterm for this purpose. You can find it at

http://mobaxterm.mobatek.net/download-home-edition.html

After installing a SSH client, you can access one of the Linux servers from home just as you did
from one of the lab PCs.

Note also that if you are using MobaXterm at home, you can interact with the Linux server that
you are connected to from a laptop or PC at home in the same way as you can from a Windows
system on campus. So, you can remotely edit files or upload files that you have created at home
and you can execute commands on the departmental Linux servers.

The best way of working remotely will depend on the speed and reliability of your internet
connection. If your connection is fast enough, then you might be able to open an editor with
graphical user interface on lxfarm.csc.liv.ac.uk and edit files directly on our systems. With a
slower connection you might want to use a command line editor instead. Note that you can have
more than one connection / terminal open at the same time. So, you can have one terminal with
a command line editor and other terminal to execute commands such as compiling and running
programs. The third alternative would be to just use the connection to transfer files that you
create on your system.

5 Further Study
This concludes our short introduction to Linux. There is obviously still a lot to learn, even about
the commands that you have used in these practicals.

To explore the possibilities of Linux further you can first of all take advantage of the manual
pages that are available for almost every Linux command. In a terminal, manual pages can be
read using the command man. In its simplest form man takes a single argument, namely, the name
of the manual page that you would like to read; the name of the manual page is typically identical
to that of the corresponding command or program. So, for example,
I man chmod

9

http://mobaxterm.mobatek.net/download-home-edition.html

will show you the manual page for the command chmod. To display this manual page, man uses
less -s by default. So, you can use the key bindings for less to navigate through a manual page.
Of course, you can use
I man less
to learn what those key bindings are. Table 1 lists a number of other commands that you should
explore by reading their manual pages and experimenting with them.

To learn more about the Linux command line and shell scripting you can refer to the following
e-book available from the library:

W. E. Shotts: The Linux command line: A complete introduction.
No Starch Press, 2012. http://library.liv.ac.uk/record=b2626812∼S8
[last modification 16 December 2012, accessed 26 January 2020]

10

http://library.liv.ac.uk/record=b2626812~S8

	Introduction
	File Permissions
	Overview
	Changing File Permissions: Symbolic Notation
	Changing File Permissions: MobaXterm

	Synchronisation
	MobaXterm
	rsync

	Remote access
	Further Study

