
A Dialogue Game for Coalition Structure
Generation with Self-Interested Agents

Luke RILEY a,1, Katie ATKINSON a and Terry R. PAYNE a

a Department of Computer Science, University of Liverpool, UK.

Abstract. Since the seminal work of Dung, Argumentation Frameworks have been
shown to find solutions to n-person cooperative games. In multi-agent systems,
decentralised methods for multi-agent system coalition structure generation have
been proposed. This paper offers the first dialogue game that utilises argumenta-
tion frameworks to find a coalition structure and a payoff vector in a decentralised
manner. The payoff vector found is in the core set of stable solutions if the core
is non-empty. This dialogue game also puts restrictions on the payoff vectors that
can be proposed so that the most unfair ones are discarded. Lastly an algorithm is
described that allows the agents to find out if the core is empty.

Keywords. Dialogue games, argumentation, cooperative game theory

1. Introduction

Coalition formation is the process of agents recognising that cooperation between other
agents can occur in a mutually beneficial manner and then choosing an appropiate set
of agents, named a coalition, to collaborate with to achieve some goal (or complete
some task). Forming coalitions in multi-agent systems (MAS) has been shown to be
an important topic; for example, [9] details that it has proved useful in areas such as
e-commence (where coalitions can take advantage of price discounts) and distributed
sensor networks (where coalitions can form to track targets). The cost of finding the best
coalitions that satisfy all agents can be high, both computationally, and in terms of the
necessary communication overhead due to the exponential number of possible coalitions
and the possible self-interested behaviour of agents.

Coalition formation takes place in n-person cooperative games originally defined
in [8]. The payoff for a coalition is traditionally measured numerically in characteristic
function games where the value of a coalition is not influenced by the other coalitions
in the system [3,6,8]. In transferable utility characteristic function games (TU games), a
payoff vector x is used to distribute the group’s payoff. A coalition structure (CS) is a set
of coalitions in a system and finding an optimal coalition structure (CS∗) that maximises
social welfare is known as the coalition structure generation (CSG) problem [9].

As a general overview, the coalition formation process for a n-person cooperative
game can be described as 3 stages [9]:

1. Coalition value calculations - This involves computing the expected payoff of
each possible coalition (usually each subset of n agents - an exponential number).

2. Coalition structure generation - Agents are then organised into a coalition
structure (preferably an optimal one that maximises social welfare).
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3. Determining the payoff distribution - If the n-person cooperative game is a
TU game then the payoff of each coalition in the coalition structure is divided
between the agents of the system in a stable manner (see Section 2.2).

There has been a lack of focus in MAS on decentralized protocols for CSG with
self-interested agents. The field of cooperative game theory (CGT) is used to find the
stable payoff vectors when a system is full of self-interested agents, but many CGT
solution concepts, make the assumption that the coalitions have already formed and offer
no methods to form them from a MAS perspective [9].

The use of dialogue games has been shown to be a valid method to constrain the
communication of self-interested agents [12]. Dialogue games are based on the theory of
speech acts [11] and are rule-governed interactions where each player moves by making
utterances (in the form of locutions) according to a defined set of rules but in a flexi-
ble manner [7]. In environments that contain self-interested agents a protocol is needed
to set the rules as to what agents can or cannot do. In [12], dialogue games are identi-
fied as a satisfactory method for describing to agents what is forbidden and allowed in
environments with self-interested agents.

The dialogue game proposed in this paper, named the CSG dialogue game, allows
agents to build, in a decentralised manner, argumentation frameworks (AFs) [5] that have
previously been shown to enable CSG (e.g. [1]). The advantage of using AFs for CSG
is that the preferred extension of an AF always holds the best coalition structure for the
agents given the dialogue history (as the for a dialogue example in Section 3.6 demon-
strates). Argumentation schemes, which are patterns of reasoning that when instantiated
provide presumptive justification for the particular conclusion of the scheme [2], are also
used in the CSG dialogue game. The argumentation schemes allow the agents in the CSG
dialogue game to assert arguments for different coalitions and payoff vectors.

The main significance of this paper is to propose a dialogue game that finds a coali-
tion structure and a payoff vector in a static TU game (a TU game where the coalition’s
payoffs do not change). The result of this dialogue will be an optimal coalition structure
and a stable outcome for the participating dialogue agents when the core is non-empty
(given enough time and utterences). To find a stable solution of a static TU game that has
an empty core is outside the scope of this paper and left for future work.

The rest of the paper is structured as follows: Section 2 describes the relevent back-
ground of the CGT and argumentation fields. Section 3 details the CSG dialogue game
including the AF, the new argumentation scheme, the restrictions placed on the core, a
description of an algorithm to find when the core is empty and an example. Section 4
discusses related work and concludes the paper.

2. Background

2.1. Transferable Utility Games
An n-person cooperative game [8] is: G = 〈N,v〉 where N is the set of agents and v is
the characteristic function (v(2N)→ R), which assigns every possible coalition a real
numeric payoff [8]. An outcome of a TU game is a CS and payoff vector pair, denoted:
〈CS,x〉 where CS is a set of coalitions, denoted {C1, ...,Ck}. Static TU games are TU
games where a coalition’s payoff does not change during the coalition formation process.
In TU games an agent can only be a member of one coalition, so a TU game coalition
structure takes the form [3] CS = {C1, ...,Ck} such that:

⋃k
j=1 C j =N; and Ci∩C j = /0 for

any i, j ∈ {1, ...,k}, i 6= j. The payoff vector is then fully denoted [3]: x = (x1, ...xn) ∈Rn



where xi ≥ 0 for all i∈N and xi denotes the individual payoff for agent i. Throughout the
paper x〈C〉 is written to denote the part of x that has individual payoffs only for agents of
C.

2.2. Cooperative Game Theory Solution Concepts

The most popular solution concept to find stability in the CGT field is known as the core,
which corresponds to the set of feasible payoff vectors where no subset of agents of the
system have an incentive to deviate from the current coalition game outcome [3,6]. The
core for a set of agents N can be defined using the following [3,6]:
Definition 1: The core: A payoff vector x = (x1, ...,xn) and a coalition Structure CS
= (C1, ...,Ck) is in the core iff: ∀C ⊆ N, ∑i∈C xi ≥ ν(C); and for any C j ∈ CS then
∑i∈C j xi = ν(C j).

If the first condition does not hold for some group of agents, C, then they have a rea-
son to deviate and divide the payoff of ν(C) between themselves. The second condition
restricts the agents so that no side payments between coalitions are allowed.

Two problems with the core are that it can sometimes be empty and some core
outcomes can be classified as unfair [3,6]. The protocol detailed in this paper will find a
solution in the core (if the core is non-empty). Also the core payoffs found will follow
certain fairness principles (see Section 3.4.1) so that the most unfair payoff vectors in
the core are not found. If the core is empty, the alternative CGT solution concept of the
ε-core will have to be used to stabilise the game. This is left for future work.

2.3. Argumentation Frameworks

In the CSG dialogue game, an agent can propose arguments for a coalition and a payoff
vector. To evaluate all the instantiated arguments in the CSG dialogue game to determine
their acceptability, they will be organised into an Argumentation Framework (AF). AFs
are a means to represent and reason with different, possibly conflicting, data. AFs use
graphs of nodes and arcs, where the nodes represent abstract arguments, having no inter-
nal structure, and the arcs represent attacks between the arguments [5]. An AF is defined
as:
Definition 2: An Argumentation Framework is a tuple AF = (Args, R) where Args is a
set of arguments and R is a binary attack relation R⊆ Args×Args.

In an AF, where Args = {a1, ...,an}, an attack a1Ra2 is said to defeat a2 if a1 has
not been defeated by another argument in the AF. A set of arguments S is acceptable iff
∀ax ∈ Args if ax attacks an argument ay where ay ∈ S there ∃az ∈ S where az defeats ax.
S is a preferred extension of the AF if S is the maximal acceptable set of arguments.

3. The CSG Dialogue Game

3.1. The CSG Dialogue Game Overview

The CSG dialogue game can be used by self-interested agents willing to partake in a
static TU game. The most pertinent locutions available to the players of the game, in-
spired by [2], are join, assert and close (outlined in Table 1) and the pre/post conditions
of the full set of dialogue moves are fully defined in [10]. The CSG dialogue game is
designed to be turn based, so that an algorithm to check if the core is empty can be devel-
oped. This paper assumes that a suitable enforcement mechanism, in the form of another



Table 1. The informal meaning of the main dialogue moves

Move Format Meaning
join 〈i, join,an〉 Agent i wants to be included in the dialogue and is willing to form the best coali-

tion it can with any other agents in the dialogue. To join, the agent must assert its
individual payoff.

assert 〈i,assert,an〉 Agent i believes the coalition and payoff vector proposed in an will improve on i’s
current payoff.

close 〈i,close〉 An agent closes the dialogue if it does not believe it has any more moves available.
If every agent’s last move was a close move, without another move in-between, then
the dialogue is over.

argumentation scheme and dialogue move, is used to ensure the agent’s assertions are
truthful (the details of which are presented in [10]).

For an agent i to assert an argument for a coalition C, the condition i ∈C must hold.
This condition is used as self-interested agents cannot be trusted to assert coalitions when
only others would benefit2. So even though the outcome of this CSG dialogue consists of
a CS and payoff vector pair, individual agents will only be able to argue over the subsets
of both that involve it. As a consequence, each agent can assert 2n−1 coalitions; thus CSG
dialogue games will only be feasible for small sets of agents or n-person cooperative
games with restrictions.

The dialogue, based on [2], is denoted Ds
r where r is the timepoint of the first move

of the dialogue and s the timepoint of the last, where r,s ∈N. Every time an agent makes
an utterence of an argumentation scheme in the dialogue, this information is stored in
a publicly readable commitment store (CoSt)[2]: An individual commitment store for
a CSG dialogue (Ds

r), for every agent i ∈ N a commitment store of agent i at time-
point s is denoted CoSts

i . A combined commitment store for a CSG dialogue (Ds
r) with

participants N and time-point s is denoted CoSts
N where CoSts

N =
⋃
∀i∈N CoSts

i . If s = 0
then CoSts

N = /0.

3.2. The Coalition Argumentation Schemes

Abstract arguments themselves are not always useful for representing instantiated argu-
ments, that is, arguments with some internal structure or content. To reason on the best
coalitions to form from a game theoretic perspective, argumentation schemes are used,
instantiated and then the generated arguments are placed in an argumentation frame-
work. Instantiations of argumentation schemes attack other instantiations of argumenta-
tion schemes under pre-defined conditions, which attack either the premises, inference
rules or conclusions of the scheme. In the CSG dialogue game, all attacks focus on the
conclusions of the argumentation schemes (that is, whether to form the coalition or not).
The new argumentation scheme used in this paper is a C -Argument, which is for the
traditional static TU game and makes use of the concepts defined earlier, in Section 2.

A C -argument should be instantiated when an agent wants a coalition C to form. At
timepoint s a C -Argument is informally described as:

C -Argument: Agent i asserts that coalition C should form, since given the current
payoff of the agents of C, denoted xs−1〈C〉, and the coalition payoff of vs(C), then the
payoff vector of xs〈C〉 should be implemented since xs〈C〉 offers an equal or better, fairer
payoff for all of C.

2Unless a sufficient enforcement mechanism is used, but this is outside the scope of this paper.



The attack rule for the instantiated argumentation scheme is: A newly asserted ar-
gument as about a coalition C, attacks any other argument ap previously asserted in the
dialogue, that shares a member of C. This attack is used so that agents can only be part of
one coalition. The following functions operate over any an; Coal(an) returns the coalition
C proposed in an; Vect(an) returns the section of the new payoff vector xn〈C〉 proposed
in an; Val(an) returns the value vn(C) of the coalition proposed in an.

3.3. Coalition Argumentation Framework

Now to find the outcome of the CSG dialogue game (〈CS,x〉), firstly the preferred exten-
sion (PE) of the AF is found. Then the agents systematically consider the internal struc-
ture of the abstract arguments in the PE by looking at the instantiated versions of these
abstract arguments. The CS is then the collection of all the coalitions proposed by the
instantiated versions of the arguments in the PE and x is the conjunction of all the payoff
vectors that are proposed by the same C -arguments.

The following functions are used to find the outcome of the CSG dialogue game
(additional minor functions are detailed in [10]). While only the PayVect and CoalStruct
functions directly find the outcome, all other functions are used to help the agents work
towards finding a core stable outcome, if one exists.

• PE(CoSt) = Φ. Where Φ is the preferred extension of CoSt given the attacks taken
from the instantiated argumentation schemes of CoSt.

• CoalStruct(CoSt) = λ . ∀an ∈ PE(CoSt), Coal(an) ∈ λ . This function returns the
set of all the coalitions in the instantiated argumentation schemes of the preferred
extension of the given CoSt.

• PayVect(CoSt) = x, where x = (xp, ...,xq). ∀an ∈ PE(CoSt),∀x′j ∈ Vect(an) then
x j = x′j. This function returns as one tuple the payoffs of all the individual agents
in the instantiated schemes of the preferred extension of the given CoSt.

• CoalStructVal(CoSt) = ∑an∈PE(CoSt) Val(an) . This function finds the value of the
coalition structure of the given CoSt.

• BestCoal(CoSt, i) =C. ∀C′ ∈ CoalStruct(CoSt), if i ∈C′ then C =C′. This func-
tion returns the best coalition for the given agent i.

• FairPayDist(CoSt,an, i). This function restricts the most unfair payoffs from be-
ing asserted. If a payoff that is deemed unfair is found in the given an then ⊥ is
returned, else > is returned. Further details are given in Section 3.4.1.

In the CSG dialogue game only one PE can exist, as no attack cycles can be made.
This is because of the argumentation scheme attack rule, which states that no argument
can ever attack another argument asserted after it. This rule is in place as newer argu-
ments should have fairer payoff vectors and so will attack older arguments that have
less fair payoff vectors (according to Section 3.4.1). Therefore computing the preferred
extension of this CSG dialogue game takes time linear in the number of arguments [5].

3.4. Formalising the Argumentation Schemes

As the functions of Section 3.3 are now defined, the formal definition can now be pre-
sented of the new argumentation scheme (informally described in Section 3.2) at time-
point s in dialogue Ds

r:
Definition 3: A C -argument C = 〈i, C, xs−1〈C〉, vs(C), xs〈C〉〉 s.t: i ∈ C, C ⊆ N;
xs−1〈C〉 ∈ PayVect(CoSts−1

N ); and FairPayDist(CoSts−1
N , C ) =>.

Now the formalised attack rule (described in Section 3.2) for an argument as is: as
attacks every argument ap in CoSts−1

N if Coal(as)∩Coal(ap) 6= /0.



3.4.1. Ensuring Fair Payoff Distributions

The CSG dialogue game finds core payoffs (compared to other CGT solution concepts)
for communication and computation cost reasons; see [10] for a detailed explanation.

During the dialogue, an agent i will only be able to deviate from the current CS by
asserting a new coalition C if i ∈C and all agents of C (including i) receive an incentive.
The actual additional incentive amount agents must receive above their current payoff to
defect to another coalition is set using Defn. 4, which ensures that the CS* is found when
no more moves are possible, as increasing the social welfare does not incur a cost.
Definition 4: inc(CoSt,an, i) = 0 iff

CoalStructVal(CoSt ∪{an})> CoalStructVal(CoSt) or
CoalStructVal(CoSt ∪{an}) == CoalStructVal(CoSt) and
|Coal(an)|> |BestCoal(CoSt, i)|

else inc(CoSt,an, i)> 0
In the CSG dialogue game if an agent wants to assert a new argument an, then an

needs to pass the following test (defined in Defn. 5), which checks if an results in the
payoff vector converging towards core stability. The first bullet point of Defn. 5 ensures
individual rationality and that the new payoff for all agents of C is greater than or equal
to their previous payoff. The second bullet point ensures that no utility is lost out of the
game. The third bullet point negates the unfair payoff criticism of the core by ensuring
all agents get either an equal split of the coalition’s payoff or each agent j that can get
a greater payoff elsewhere is given at least that payoff in this coalition. The additional
pay to agent j (above the equal split of the coalition’s payoff) is taken equally from the
remaining agents (unless this would motivate others to deviate).
Definition 5: The fairPayDist(CoSt,an, i) function, where C = Coal(an), CS = Coal-
Struct (CoSt ∪ {an}), x = PayVect(CoSt ∪ {an}) and x′ = PayVect(CoSt), returns ⊥
unless the following are satisfied, if so the function returns >:

• ∀ j ∈C,x j ≥ ν({ j}) and x j ≥ x′j + inc(CoSt,an, i)
• ∑ j∈C x j = Val(an)
• double split← split’← 0

C′′←C′←C
while C′′ 6= /0 do

boolean equal← true

split← split ′

|C′′|
for all j ∈C′′ where x′j + inc(CoSt,an, i)≥

v(C)

|C|
− split do

x j← x′j + inc(CoSt,an, i)

split’← split’ −v(C)

|C|
+ x j

C′←C′\{ j}
equal← false

if equal == true then
for all k ∈C′′ do

xk←
v(C)

|C|
- split

C′←C′\{k}
C′′←C′



3.5. Checking if the Core is Empty

This dialogue game can only find solutions to a coalition game if the core is not empty
and so a valid question is: how do the agents know if the core is empty? To find the
answer to the question the agents should communicate in stages: Firstly they should
join the dialogue; secondly they should compute the coalition’s values; and thirdly each
agent i should assert either a C -argument where the inc function returns 0 (if one can be
found, as this coalition will improve social welfare) or assert a C -argument where the
inc function returns > 0 (as this coalition will improve the payoff for agent i but not the
social welfare), else the agent should assert a close move.

As communication happens in these stages and agents assert social welfare improv-
ing arguments first, the core can be checked to be non-empty under a certain condition:
for all arguments asserted in the dialogue for the same coalition, if there does not exist
an agent in these arguments that has a strictly increasing or decreasing payoff over time,
then the core is empty. The reasons for this are discussed in [10].

3.6. A Dialogue Example

A full example can now be developed in Table 2 and Figure 1. As can be seen in Table 2,
communication happens in stages: firstly the agents join the dialogue and assert their in-
dividual payoff; secondly the agents assert new coalitions or modify previously asserted
coalitions’ payoff vectors to gain fairer payoffs; finally when each agent can find no other
variables that satisfy the argumentation scheme restrictions they utter a close move.

The AF generated from the example in Table 2 can be seen in Figure 1 where the
argument number corresponds to the move number. Finding the outcome (〈CS,x〉) of the
CSG dialogue after move n requires computing the preferred extension of the AF of Fig-
ure 1 for the arguments: A1 to An. The preferred extension, after the CSG dialogue game
of Table 2 has completed, is: {A1,A8}. When looking at the instantiated argumentation
schemes of A1 and A8 we can see that the CS = {{1},{2,3}} and the payoff vector
is x(4,11,13). As all agents only uttered a close move when no more moves could be
asserted, we find that this CS is the optimal CS of the game and x is inside the core.

Table 2. This table details a CSG dialogue for a G = 〈N,v〉where N = {1,2,3}, v({1})= v({2})= 4, v({3})=
5, v({1,2}) = 8, v({1,3}) = 18, v({2,3}) = 24, v({1,2,3}) = 12. A move at timepoint s is of the following
form: the agent’s identifier; the move type; and (if not a close move) an argumentation scheme instantiation i.e
a C -argument of the form 〈i,C,xs−1〈C〉,vs(C),xs〈C〉〉. The attack rule is apRaq iff Coal(ap) ∩ Coal(aq) 6= /0
and argument ap is asserted after aq. For the dialogue to finish, n close moves need to be asserted consecutively.

Move No. Move CS x
1 〈1, join,〈1,{1},(−),4,(4)〉〉 {{1}} x(4)
2 〈2, join,〈2,{2},(−),4,(−,4)〉〉 {{1},{2}} x(4,4)
3 〈3, join,〈3,{3},(−,−),5,(−,−,5)〉〉 {{1},{2},{3}} x(4,4,5)
4 〈1,assert,〈1,{1,3},(4,−,5),18,(9,−,9)〉〉 {{2},{1,3}} x(9,4,9)
5 〈2,assert,〈2,{2,3},(−,4,9),24,(−,12,12)〉〉 {{1},{2,3}} x(4,12,12)
6 〈3,assert,〈3,{1,3},(4,−,12),18,(5,−,13)〉〉 {{2},{1,3}} x(5,4,13)
7 〈1,close〉 {{2},{1,3}} x(5,4,13)
8 〈2,assert,〈2,{2,3},(−,4,13),24,(−,11,13)〉〉 {{1},{2,3}} x(4,11,13)
9 〈3,close〉 {{1},{2,3}} x(4,11,13)
10 〈1,close〉 {{1},{2,3}} x(4,11,13)
11 〈2,close〉 {{1},{2,3}} x(4,11,13)



Figure 1. The AF generated given the CSG dialogue of Table 2

4. Related Work and Conclusion
So far in the argumentation and dialogue game literature, a few attempts have been made
to detail coalition formation techniques, such as [1,5] but only [5] links argumentation
frameworks to agent payoff vectors (which is the norm in the cooperative game theory
literature). However [5] did not investigate how these solutions can be collaboratively
built by multi-agent systems in a decentralised manner. This issue is investigated here.

Using dialogue games for coalition formation can be traced back to [4], which uses
a dialogue game to form coalitions. However [4] does not show how a coalition structure
can be generated, which can be found with the dialogue game in this paper.

In this paper, an argumentation-based dialogue to find coalition structures has been
proposed, with the novel contribution being: the definition of an n-person dialogue game
for coalition formation that can find the optimal coalition structure combined with a
payoff vector in the core if the core is non-empty. Additionally the paper discusses:
the restrictions placed on the core so that the most unfair core payoffs can never be
suggested; and an algorithm is described that shows how the agents can find out if the
core is empty. This paper outlines the framework that will be built on by future research.
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