
Robotics and Autonomous Systems
Lecture 12: Navigation

Terry Payne

Department of Computer Science
University of Liverpool

1 / 1



Today

• Navigation — how the robots gets around the world.

2 / 1



Navigation

• We started this course with three questions:

?

• Where am I ?
• Where am I going ?
• How do I get there ?

• We are now at a point where we can answer the last two.

3 / 1



What counts as navigation

• Navigation is concerned with how a robot gets around the world.
• So what is new?

• Assume that the robot:
• Knows where it is.
• Knows where it wants to go.

• Concerned with getting from one place to another.

4 / 1



What counts as navigation

• Distinguish two kinds of navigation
• Global navigation
• Local navigation

5 / 1



What counts as navigation

• Global navigation is about deciding how to get from some start point
to a goal point.

• The robot plans in some sense.

• We will look at methods for path planning.
• In short, the robot comes up with a “plan”.

• A sequence of way points
• We’ll look at a couple of different methods that are appropriate for

different map representations.
• Remember them?

6 / 1



What counts as navigation

• Local navigation is about obstacle avoidance.
• If there are objects in the way, make sure you don’t hit them.

• Range of different approaches depending on what kind of information
we have about the world.
• Depends on sensors

7 / 1



What counts as navigation

• One way to think about the difference between the two is in terms of
the relationship between the robot’s start point and the goal point.

• If there is a clear line of sight between the start point and the goal
then we are into obstacle avoidance.
• Just avoiding some debris that isn’t on the map

8 / 1



What counts as navigation

• However, if there is no line of sight from start to goal:

then we have to find a path.
• Typically path segments will be between two points between which

there is a line of sight.
• We call these waypoints

9 / 1



Visibility graph

• Direct implementation of line-of-sight.

• Connect up all the vertices in the map.

10 / 1



Visibility graph

• Given the line segments, we can find the shortest path from start to
goal.
• We’ll talk about this later.

• Can then translate the path into a series of waypoints.
• Waypoints are the end points of the line segments.

• Given the visibility graph above, there is an obvious problem with
using the lines as a guide for where the robot should go.

• Problem.

11 / 1



Visibility graph

• Given the line segments, we can find the shortest path from start to
goal.
• We’ll talk about this later.

• Can then translate the path into a series of waypoints.
• Waypoints are the end points of the line segments.

• Given the visibility graph above, there is an obvious problem with
using the lines as a guide for where the robot should go.

• No room for the robot.

12 / 1



Visibility graph

• Routes at the moment run arbitrarily close to the vertices of objects.
• Problems with collisions

• Fix this by expanding objects by enough that the robot will still clear
them.
• More than half the diameter of the robot.

• Still not a good solution.

13 / 1



Voronoi diagram

• A Voronoi diagram is a way to divide up a plane (a map).

• Given a set of points P, a Voronoi diagram is a set of polygons such
that the points inside each polygon are closer to one member of P
than any other.

14 / 1



Voronoi diagram

• Here the points in P are big red dots.

• The polygons then contain all points closer to one red dot than
another.

15 / 1



Voronoi diagram

• Can extend this to cases where P is a set of objects.

• Treat the line segments exactly like the edges in the visibility graph.

16 / 1



Voronoi diagram

• The lines are not necessarily lines of sight
• As above they may bend.

• However, they are object free, and so can be followed just like lines of
sight can.

17 / 1



Voronoi diagram

• Voronoi diagrams also have a nice property in terms of path-following
• That is when you get the robot to follow the “plan”.

• A robot that is maximising its distance from objects will follow the lines
in the Voronoi diagram.
The standard kind of thing to do to follow corridors etc.

• Means that we can again reduce the path to a set of waypoints.
• Head to the next waypoint while maximising distance from objects.

18 / 1



Asides

• Voronoi diagrams work in 3D also:

19 / 1



Asides

• They were also famously used by John Snow to identify the source of
the 1854 cholera epidemic in London

20 / 1



• They were also famously used by John Snow to identify the source of
the 1854 cholera epidemic in London

21 / 1



Cell-based maps

• Last time we saw a variety of different cell-based maps.

• Exact cell decomposition

22 / 1



Cell-based maps

• Fixed cell decomposition

23 / 1



Cell-based maps

• Adaptive cell decomposition.

24 / 1



Cell-based maps

• Given the maps, we still want to figure out a sequence of line
segments.

• Not quite so straightforward for cell-based maps.
• We will look at two general approaches to do path-finding:

• Explicit search of a connectivity graph.
• Wavefront planning

• These are really the same thing in different guises.

25 / 1



Connectivity graph

• Identify which cells are next to which other cells.

26 / 1



Connectivity graph

• The question is how to figure out a path from the graph.

• When the graph is complex, we need to use search techniques.

• This is also the case for the connectivity graphs we get automatically
from the visibility graph or Voronoi diagram approaches.

• Standard approaches to search:
• Depth first
• Breadth first
• A*

• Plus there are robotics-specific approaches like D*.

27 / 1



Search

• A general algorithm for search is:

agenda = initial node;

while agenda not empty do{

state <- node from agenda;

new nodes = nodes connected to state;

if goal in new nodes

then {

return solution;

}

add new nodes to agenda;

}

• Note that this doesn’t generate a set of waypoints, it just looks for the
goal state.

28 / 1



Search

• Let’s think about how this would work on the connectivity graph:

29 / 1



Search

• To use the algorithm we need to decide how to do the selection in

state <- node from agenda;

and how to do the addition in:

add new nodes to agenda;

• Depth-first search:
• Takes the first node on the agenda;
• Adds new nodes to the front of the agenda.

• Leads to a search that explores “vertically”.

30 / 1



Depth-first search

1

31 / 1



Depth-first search

1

2

7

32 / 1



Depth-first search

1

2

7 8

33 / 1



Depth-first search

1

2

7 8 9

34 / 1



Depth-first search

1

2

7 8 9

6

10

35 / 1



Breadth-first search

• Breadth-first search
• Takes the first node on the agenda;
• Adds new nodes to the back of the agenda.

• Explores all the nodes at one “level” before looking at the next level.

36 / 1



Breadth-first search

1

37 / 1



Breadth-first search

1

2

7

38 / 1



Breadth-first search

7

2

1

3

39 / 1



Breadth-first search

7 8

2

1

3

40 / 1



Breadth-first search

7 8

2

1

3 4

41 / 1



Breadth-first search

7 8 9

2

1

3 4

42 / 1



Breadth-first search

7 8 9

2

1

3 4

5

6

43 / 1



Breadth-first search

7 8 9

6

10

2

1

3 4

5

6

44 / 1



A* search

• A* search focuses the search by giving each node a pair of weights:
• How far it is from the start; and
• How close it is to the goal.

• The cost of the node is then the sum of the weights.

• We pick from the agenda by choosing the node with the lowest cost.
(Choosing like this means we don’t have to worry about what order
we put nodes onto the agenda).

• Generalization of Dijkstra’s algorithm.

45 / 1



A* search

• In some domains we have to design clever functions to determine
what “far” is.

• In robotics we can just use Euclidean or Manhattan distance between
points:
• Euclidean distance

de
s,g “

b

pxg ´ xsq
2 ` pyg ´ ysq

2

• Manhattan distance

dm
s,g “ |pxg ´ xsq| ` |pyg ´ ysq|

• Of course the distance to the goal may be an underestimate
• may be no route through (common in Manhattan)

but it turns out that this is a good thing for A*.

46 / 1



A* search

47 / 1



A* search

48 / 1



D* search

• Often in robotics we need to replan
• D* is a version of A* that keeps track of the search that led to a plan

and just fixes the bits that need to be fixed.
• Dynamic A*

• Quicker than replanning from scratch.
• Usually have to replan from the robot to the goal and the only change

is near the robot.
• That is where the robot senses failure.

49 / 1



Waypoints

• In all these approaches we have to extract the waypoints after we find
the goal.

• First we identify the sequence of cells.
• As we search we can build a plan for each node we visit.
• The plan for each node is the route to its parent plus the step to the

node.
• When we get to the goal we have the plan.

• Then we build a waypoint from each grid cell.
• Typically the center of gravity of the cell.

50 / 1



Wavefront planning

• Also known as Grassfire, Wildfire or NF1.

• Essentially breadth-first search in a convenient form for application to
grid-based maps.

• Works like this:
1 Start at the cell containing the goal and label it 0.
2 Take every unlabelled cell that is next to a cell labelled n and label it

n ` 1.
3 Repeat until the cell containing the start is labelled.

• Then read the sequence of cells to traverse by following the labels
down from the start.

51 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

free cell

52 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

53 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

54 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2

55 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

56 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

4

4

57 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

4

4

5

5

58 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

4

4

5

5

6

6

59 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

4

4

5

5

6

6

7

7

60 / 1



Wavefront planning

• Here’s an example:

obstacle

G

S

0

0 cell with

distance

1

1

2

2 3

4

4

5

5

6

6

7

7

88

61 / 1



Wavefront planning

• Works especially well with occupancy grids, where the obstacles are
already factored into the map.

62 / 1



Vector field histogram

• Approach that uses sensor readings to tell the robot how to avoid
obstacles.

• Representing the area around the robot as a grid, compute the
probability that any square has an obstacle.
• Robot-centric grid.

• Provides a local map to decide how the robot should move.

63 / 1



Vector field histogram

• The local map is reduced to a 1 DOF histogram.
• Probability of occupancy:

• Then compute the steering angle for the best gap.
• “Best” selected using function G which combines:

G = a. target-direction + b. wheel-orientation
+ c. previous-direction

64 / 1



VFH+

• An issue with VFH is that it doesn’t take account of how the robot can
really move.

• The best gap could be one that the robot has to stop and do some
complex maneuver to go through.

65 / 1



VFH+

• VFH+ considers motion on trajectories.

• Any turn that has a trajectory that intersects an
obstacle is blocked

66 / 1



VFH+

• VFH+ in action.

• http://www.youtube.com/watch?v=84tPPOUjvSA

67 / 1



Summary

• In this lecture we looked at issues to do with navigation.
• Global navigation is about finding a path.
• Local navigation is about avoiding obstacles.

• We looked at several examples of both.

68 / 1


