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e Navigation — how the robots gets around the world.
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o We started this course with three questions:

e Wheream 1 ?
e Where am | going ?
e How do | get there ?

e We are now at a point where we can answer the last two.
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What counts as navigation

e Navigation is concerned with how a robot gets around the world.
e So what is new?

e Assume that the robot:
e Knows where it is.
e Knows where it wants to go.

e Concerned with getting from one place to another.



What counts as navigation

e Distinguish two kinds of navigation

¢ Global navigation
e Local navigation



What counts as navigation

Global navigation is about deciding how to get from some start point
to a goal point.

The robot plans in some sense.

We will look at methods for path planning.
In short, the robot comes up with a “plan”.
e A sequence of way points

We’ll look at a couple of different methods that are appropriate for
different map representations.

e Remember them?



What counts as navigation

e Local navigation is about obstacle avoidance.
o |f there are objects in the way, make sure you don't hit them.

¢ Range of different approaches depending on what kind of information
we have about the world.

e Depends on sensors



What counts as navigation

e One way to think about the difference between the two is in terms of
the relationship between the robot’s start point and the goal point.

start

goal

e If there is a clear line of sight between the start point and the goal
then we are into obstacle avoidance.

¢ Just avoiding some debris that isn’t on the map



What counts as navigation

e However, if there is no line of sight from start to goal:

start

goal |

then we have to find a path.

e Typically path segments will be between two points between which
there is a line of sight.

o We call these waypoints



Visibility graph

¢ Direct implementation of line-of-sight.

start

e Connect up all the vertices in the map.



Visibility graph

Given the line segments, we can find the shortest path from start to
goal.

o We'll talk about this later.
Can then translate the path into a series of waypoints.
e Waypoints are the end points of the line segments.

Given the visibility graph above, there is an obvious problem with
using the lines as a guide for where the robot should go.

Problem.



Visibility graph

Given the line segments, we can find the shortest path from start to
goal.

o We'll talk about this later.
Can then translate the path into a series of waypoints.
e Waypoints are the end points of the line segments.

Given the visibility graph above, there is an obvious problem with
using the lines as a guide for where the robot should go.

No room for the robot.



Visibility graph

¢ Routes at the moment run arbitrarily close to the vertices of objects.
e Problems with collisions

e Fix this by expanding objects by enough that the robot will still clear
them.
¢ More than half the diameter of the robot.

e Still not a good solution.



Voronoi diagram

e A Voronoi diagram is a way to divide up a plane (a map).

e Given a set of points P, a Voronoi diagram is a set of polygons such
that the points inside each polygon are closer to one member of P
than any other.



Voronoi diagram

e Here the points in P are big red dots.

e The polygons then contain all points closer to one red dot than
another.




Voronoi diagram

e Can extend this to cases where P is a set of objects.

syt

8 goal

o Treat the line segments exactly like the edges in the visibility graph.



Voronoi diagram

e The lines are not necessarily lines of sight
¢ As above they may bend.

e However, they are object free, and so can be followed just like lines of
sight can.



Voronoi diagram

¢ Voronoi diagrams also have a nice property in terms of path-following
e That is when you get the robot to follow the “plan”.
¢ A robot that is maximising its distance from objects will follow the lines
in the Voronoi diagram.
The standard kind of thing to do to follow corridors etc.
e Means that we can again reduce the path to a set of waypoints.
¢ Head to the next waypoint while maximising distance from objects.



e Voronoi diagrams work in 3D also:
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e They were also famously used by John Snow to identify the source of
the 1854 cholera epidemic in London
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P

e They were also famously used by John Snow to identify the source of
the 1854 cholera epidemic in London
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Cell-based maps

e Last time we saw a variety of different cell-based maps.

e Exact cell decomposition
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Cell-based maps

¢ Fixed cell decomposition
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Cell-based maps

start

o Adaptive cell decomposition.
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Cell-based maps

Given the maps, we still want to figure out a sequence of line
segments.

Not quite so straightforward for cell-based maps.

We will look at two general approaches to do path-finding:

o Explicit search of a connectivity graph.
e Wavefront planning

These are really the same thing in different guises.
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Connectivity graph

e |dentify which cells are next to which other cells.
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Connectivity graph

The question is how to figure out a path from the graph.

When the graph is complex, we need to use search techniques.

This is also the case for the connectivity graphs we get automatically
from the visibility graph or Voronoi diagram approaches.
Standard approaches to search:

e Depth first
e Breadth first
o A*

Plus there are robotics-specific approaches like D*.
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e A general algorithm for search is:
agenda = initial node;
while agenda not empty dof{
state <- node from agenda;
new nodes = nodes connected to state;
if goal in new nodes
then {
return solution;
3
add new nodes to agenda;

}

¢ Note that this doesn’t generate a set of waypoints, it just looks for the
goal state.
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e Let’s think about how this would work on the connectivity graph:
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e To use the algorithm we need to decide how to do the selection in
state <- node from agenda;
and how to do the addition in:

add new nodes to agenda;
e Depth-first search:

o Takes the first node on the agenda
¢ Adds new nodes to the front of the agenda.

e Leads to a search that explores “vertically”.
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Depth-first search



Depth-first search



Depth-first search
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Depth-first search



Breadth-first search

e Breadth-first search

o Takes the first node on the agenda;
o Adds new nodes to the back of the agenda.

e Explores all the nodes at one “level” before looking at the next level.
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Breadth-first search



Breadth-first search



Breadth-first search



Breadth-first search
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Breadth-first search



Breadth-first search



A* search

e A* search focuses the search by giving each node a pair of weights:

e How far it is from the start; and
e How close it is to the goal.

e The cost of the node is then the sum of the weights.

e We pick from the agenda by choosing the node with the lowest cost.
(Choosing like this means we don’t have to worry about what order
we put nodes onto the agenda).

e Generalization of Dijkstra’s algorithm.

45/1



A* search

¢ In some domains we have to design clever functions to determine
what “far” is.

e In robotics we can just use Euclidean or Manhattan distance between
points:
¢ Euclidean distance

o=/ (X — )2 + (Yo — ¥e)?

e Manhattan distance

dsg = |(xg = Xs)[ + [(¥g — s)|

e Of course the distance to the goal may be an underestimate
e may be no route through (common in Manhattan)

but it turns out that this is a good thing for A*.
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A* search




A* search
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D* search

e Often in robotics we need to replan

e D* is a version of A* that keeps track of the search that led to a plan
and just fixes the bits that need to be fixed.

e Dynamic A*
e Quicker than replanning from scratch.

o Usually have to replan from the robot to the goal and the only change
is near the robot.
e That is where the robot senses failure.
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Waypoints

e In all these approaches we have to extract the waypoints after we find
the goal.
o First we identify the sequence of cells.
¢ As we search we can build a plan for each node we visit.
e The plan for each node is the route to its parent plus the step to the
node.
* When we get to the goal we have the plan.

e Then we build a waypoint from each grid cell.
o Typically the center of gravity of the cell.
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Wavefront planning

Also known as Grassfire, Wildfire or NF1.

Essentially breadth-first search in a convenient form for application to
grid-based maps.
Works like this:
© Start at the cell containing the goal and label it 0.
® Take every unlabelled cell that is next to a cell labelled n and label it
n+1.
® Repeat until the cell containing the start is labelled.

Then read the sequence of cells to traverse by following the labels
down from the start.
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Wavefront planning

e Here’s an example:

. obstacle

free cell
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Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance
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Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance
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Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance

55/1



Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance
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Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance
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Wavefront planning

e Here’s an example:

. obstacle

o | cell with
distance
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Wavefront planning

e Here’s an example:

. obstacle

5 o | cell with
distance
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Wavefront planning

e Here’s an example:
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Wavefront planning

e Here’s an example:
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. obstacle

o | cell with
distance
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Wavefront planning

o Works especially well with occupancy grids, where the obstacles are
already factored into the map.
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Vector field histogram

e Approach that uses sensor readings to tell the robot how to avoid
obstacles.

H
e}
N

e R \

\
a%
&

A\
¢ Representing the area around the robot as a grid, compute the

probability that any square has an obstacle.
¢ Robot-centric grid.

e Provides a local map to decide how the robot should move.
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Vector field histogram

e The local map is reduced to a 1 DOF histogram.
e Probability of occupancy:

P

threshold 1 ‘
|I.|,|| u |I|,. al |l —» 0
-180° 0 180°

e Then compute the steering angle for the best gap.
e “Best” selected using function G which combines:

G = a. target-direction + b. wheel-orientation
+ C. previous-direction
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e Anissue with VFH is that it doesn’t take account of how the robot can
really move.

e The best gap could be one that the robot has to stop and do some
complex maneuver to go through.
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e VFH+ in action.

—

e http://www.youtube.com/watch?v=84tPPOUjvSA
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e In this lecture we looked at issues to do with navigation.

¢ Global navigation is about finding a path.
e Local navigation is about avoiding obstacles.

o We looked at several examples of both.
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