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Pro-Active Behaviour
•Previously we looked at: 

• Characteristics of an Agent and its Environment 
• The Intentional Stance 
• Translating the Formal Agent model into a Deductive Logic framework 

•We said: 
• An intelligent agent is a computer system capable of flexible autonomous action in some environment. 
• Where by flexible, we mean: 

• reactive; 
• pro-active; 
• social. 

• This is where we deal with the “proactive” bit, showing how we can program 
agents to have goal-directed behaviour. 
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What is Practical Reasoning?
•Practical reasoning is reasoning directed towards actions — the process of 

figuring out what to do: 

•Distinguish practical reasoning from theoretical reasoning. 

• Theoretical reasoning is directed towards beliefs.

!3

“... Practical reasoning is a matter of weighing conflicting 
considerations for and against competing options, where 
the relevant considerations are provided by what the agent 
desires/values/cares about and what the agent 
believes...”  (Bratman)
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The components of Practical Reasoning
•Human practical reasoning consists of two activities: 

• deliberation: 
• deciding what state of affairs we want to achieve 
• the outputs of deliberation are intentions; 

• means-ends reasoning: 
• deciding how to achieve these states of affairs 
• the outputs of means-ends reasoning are plans. 

• Intentions are a key part of this.  
• The interplay between beliefs, desires and intentions defines how the model 

works 

!4



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Intentions in Practical Reasoning
1. Intentions pose problems for agents, who need to determine ways of achieving 

them. 

2. Intentions provide a “filter” for adopting other intentions, which must not conflict.  

3. Agents track the success of their intentions, and are inclined to try again if their 
attempts fail.  

2.

!5

If I have an intention to φ, you would expect me to devote resources to deciding how to bring 
about φ. 

If I have an intention to φ, you would not expect me to adopt an intention ψ that was 
incompatible with φ.

If an agent’s first attempt to achieve φ fails, then all other things being equal, it will try an 
alternative plan to achieve φ. 
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Intentions in Practical Reasoning
4. Agents believe their intentions are possible. 

5. Agents do not believe they will not bring about their intentions. 

6. Under certain circumstances, agents believe they will bring about their 
intentions. 

•
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That is, they believe there is at least some way that the intentions could be brought about.

It would not be rational of me to adopt an intention to φ if I believed I would fail with φ.

If I intend φ, then I believe that under “normal circumstances” I will succeed with φ.
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Intentions in Practical Reasoning
7. Agents need not intend all the 

expected side effects of their 
intentions. 

• Intentions are not closed under 
implication. 

• This last problem is known as the side effect 
or package deal problem.
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If I believe φ ⇒ ψ and I intend that φ, 

I do not necessarily intend ψ also.

I may believe that going to the dentist 
involves pain, and I may also intend to 
go to the dentist — but this does not 

imply that I intend to suffer pain!
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Intentions are Stronger than Desire

!8

“... My desire to play basketball this afternoon is merely a potential 
influencer of my conduct this afternoon. It must vie with my other 
relevant desires [. . . ] before it is settled what I will do.


In contrast, once I intend to play basketball this afternoon, the matter 
is settled: I normally need not continue to weigh the pros and cons.


When the afternoon arrives, I will normally just proceed to execute my 
intentions...” 


Michael E. Bratman (1990)
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Means-ends Reasoning/Planning
•Planning is the design of a course of 

action that will achieve some desired 
goal.  
• Basic idea is to give a planning system: 

• (representation of) goal/intention to achieve; 
• (representation of) actions it can perform; 
• (representation of) the environment;  

• and have it generate a plan to achieve the goal.  

•This is automatic programming. 
!9

Planner

Task/Goal/ 
Intention

Environment 
State

Possible 
Action

Plan to Achieve 
Goal
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Means-ends Reasoning/Planning

•Don't have to directly tell the system 
what to do!  
• Let it figure out how to achieve the goal on its 

own! 
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Planner

Task/Goal/ 
Intention
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STRIPS Planner

•STRIPS 
• The Stanford Research Institute Problem Solver 
• Used by Shakey, the robot 

• Developed by Richard Fikes and Nils Nilsson in 1971 at SRI 
International

!11
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Representations

•Question: How do we represent. . . 
• goal to be achieved; 
• state of environment; 
• actions available to agent; 
• plan itself. 

•Answer: We use logic, or something that 
looks a lot like logic.

!12
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Blocksworld
•We’ll illustrate the techniques with 

reference to the blocks world.  
• A simple (toy) world, in this case one where we 

consider toys 

•The blocks world contains a robot arm, 
3 blocks (A, B and C) of equal size, and 
a table-top. 

•The aim is to generate a plan for the 
robot arm to build towers out of blocks.

!13

A

B C
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Blocksworld

•The environment is represented by an 
ontology. 

•The closed world assumption is used 
• Anything not stated is assumed to be false. 

•A goal is represented as a set of 
formulae.

!14

Blocksworld Ontology

On(x,y) object x on top of object y

OnTable(x) object x is on the table

Clear(x) nothing is on top of object x

Holding(x) arm is holding x

Representation of the following blocks 
Clear(A) 
On(A, B) 

OnTable(B) 
Clear(C) 

OnTable(C) 
ArmEmpty 

The goal: 
{OnTable(A), OnTable(B), OnTable(C), ArmEmpty}
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Blocksworld Actions
•Each action has: 

• a name: which may have arguments;  
• a pre-condition list: list of facts which must be true for 

action to be executed;  
• a delete list: list of facts that are no longer true after action 

is performed;  
• an add list: list of facts made true by executing the action. 

•Each of these may contain variables.  

•What is a plan? 
• A sequence (list) of actions, with variables replaced by 

constants.
!15
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Blocksworld Actions

!16

The pickup action occurs when the arm 
picks up an object x from the table.

The putdown action occurs when the 
arm places the object x onto the table.

The stack action occurs when the robot 
arm places the object x it is holding is 

placed on top of object y.

Stack(x, y)
pre Clear(y) ^Holding(x)
del Clear(y) ^Holding(x)
add ArmEmpty ^On(x, y)

The unstack action occurs when the 
robot arm picks an object y up from on top 

of another object y.

UnStack(x, y)
pre On(x, y) ^ Clear(x) ^ArmEmpty
del On(x, y) ^ArmEmpty
add Holding(x) ^ Clear(y)

Pickup(x)
pre Clear(x) ^OnTable(x) ^ArmEmpty
del OnTable(x) ^ArmEmpty
add Holding(x)

PutDown(x)
pre Holding(x)
del Holding(x)
add OnTable(x) ^ArmEmpty ^ Clear(x)
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Using Plans

!17

To get from here (left) to here (right)...

...we need this set of actions:
UnStack(A,B) 
Putdown(A) 
Pickup(B) 

Stack(B, C) 
Pickup(A) 
Stack(A, B)

A

B C

B

A

C

Stack(x, y)
pre Clear(y) ^Holding(x)
del Clear(y) ^Holding(x)
add ArmEmpty ^On(x, y)

UnStack(x, y)
pre On(x, y) ^ Clear(x) ^ArmEmpty
del On(x, y) ^ArmEmpty
add Holding(x) ^ Clear(y)

Pickup(x)
pre Clear(x) ^OnTable(x) ^ArmEmpty
del OnTable(x) ^ArmEmpty
add Holding(x)

PutDown(x)
pre Holding(x)
del Holding(x)
add OnTable(x) ^ArmEmpty ^ Clear(x)
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Plan Validity

•Thus, a plan is simply a sequence of 
steps 

•However, how can we: 
• Generate the plan? 
• Ensure that it is correct?

!18
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Formal Representation
•Let’s relate the STRIPS model back to the formal description of an agent we talked 

about before.  
• This will help us to see how it fits into the overall picture.  

•As before we assume that the agent has a set of actions Ac, and we will write 
individual actions as α1, α2 and so on.  

•Now the actions have some structure, each one has  
preconditions Pαi, add list Aαi, and delete list Dαi, for each αi ∈ Ac: 

•A plan is just a sequence of actions, where each action is one of the actions from Ac: 

!19

↵i = hP↵i , D↵i , A↵ii

⇡ = (↵1, . . . ,↵n)
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Formal Representation
•A planning problem is therefore: B0, Ac,  I  

• B0 is the set of beliefs the agent has about the world. 
• Ac is the set of actions, and 
• I is a goal (or intention) 

•Since actions change the world, any rational agent will change its beliefs 
about the world as a result of carrying out actions.  
• Thus, a plan π for a given planning problem will be associated with a sequence of sets of 

beliefs:  

• In other words at each step of the plan the beliefs are updated by removing the items in the 
delete list of the relevant action and adding the items in the add list.

!20

B0
↵1! B1

↵2! · · · ↵n! Bn
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Formal Representation
• A plan π is said to be acceptable with respect to the 

problem B0, Ac,  I  if and only if, for all 1 ≤ j ≤ n, Bj-1 ⊨ Pαj 
• In other words, the pre-requisites for each action have to be true right 

before the action is carried out. 
• We say this because the pre-conditions don’t have to be in Bj-1, we just have to be able to prove 

the pre-conditions from Bj-1.  

• A plan π is correct if it is acceptable, and: Bn ⊨ i 
• In other words, it is correct if it is acceptable and the final state makes the 

goal true. 

!21
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Example - Question 2.b

!22

This is an example 
question from the 

Mock paper
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C
A B

A plan ⇡ is a sequence of actions, where each action results in changing the
set of beliefs the agent has, until the final set of beliefs matches that of the
intentions, such that B0

↵1! B1
↵2! · · · ↵n! Bn. Therefore, a planner will explore

all the di↵erent possible sequences of actions to determine which one will result
in the final set of intentions.
In this solution, only those actions that result in the final solution are given,
with the set of beliefs that result in each step presented. The aim is to start
with an initial set of beliefs, B0, and arrive at a final set of beliefs, Bn which
corresponds to the intentions given in the question - i.e.

Beliefs B0 Intention i

Clear(B) Clear(A)
Clear(C) Clear(B)
On(C,A) On(B,C)
OnTable(A) OnTable(A)
OnTable(B) OnTable(C)
ArmEmpty ArmEmpty

The solution is given on the next slide. In each case, the beliefs that hold prior
to the action are given in bold, and the beliefs that are new after the action are
also presented in bold.
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BA

C

BA C

B

A C

B
A C

The beliefs B4, once rearranged, are now equivalent to the intentions.

Beliefs B0 Action Beliefs B1

Clear(B) Unstack(C,A) Clear(B)
Clear(C) Clear(C)
On(C,A) On(C,A)
OnTable(A) OnTable(A)
OnTable(B) OnTable(B)
ArmEmpty ArmEmpty

Holding(C)
Clear(A)

Beliefs B1 Action Beliefs B2

Clear(B) PutDown(C) Clear(B)
Clear(C) Clear(C)
OnTable(A) OnTable(A)
OnTable(B) OnTable(B)
Holding(C) Holding(C)
Clear(A) Clear(A)

OnTable(C)
ArmEmpty

Beliefs B0 Action Beliefs B1

Clear(B) Unstack(C,A) Clear(B)
Clear(C) Clear(C)
On(C,A) On(C,A)
OnTable(A) OnTable(A)
OnTable(B) OnTable(B)
ArmEmpty ArmEmpty

Holding(C)
Clear(A)

Beliefs B1 Action Beliefs B2

Clear(B) PutDown(C) Clear(B)
Clear(C) Clear(C)
OnTable(A) OnTable(A)
OnTable(B) OnTable(B)
Holding(C) Holding(C)
Clear(A) Clear(A)

OnTable(C)
ArmEmpty

Beliefs B2 Action Beliefs B3

Clear(B) Pickup(B) Clear(B)
Clear(C) Clear(C)
OnTable(A) OnTable(A)
OnTable(B) OnTable(B)
Clear(A) Clear(A)
OnTable(C) OnTable(C)
ArmEmpty ArmEmpty

Holding(B)

Beliefs B3 Action Beliefs B4

Clear(B) Stack(B,C) Clear(B)
Clear(C) Clear(C)
OnTable(A) OnTable(A)
Clear(A) Clear(A)
OnTable(C) OnTable(C)
Holding(B) Holding(B)

ArmEmpty
On(B,C)
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Action Definitions are important!!!

!25

One of these 
definitions works.  
The other doesn’t!
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Implementing Practical Reasoning Agents

•A first pass at an  implementation 
of a practical reasoning agent: 

•For now we will not be concerned 
with stages 2 or 3. 
• These are related to the functions see and 

next from the earlier lecture notes.

!26

Agent Control Loop Version 1
1. while true
2. observe the world;
3. update internal world model;
4. deliberate about what intention

to achieve next;
5. use means-ends reasoning to get

a plan for the intention;
6. execute the plan
7. end while
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Implementing Practical Reasoning Agents
•see is as before: 

• see: E → Percept 

•Instead of the function next… 
• which took a percept and used it to update the 

internal state of an agent 

•…we have a belief revision function: 
• brf: 𝒫{Bel} x Percept → 𝒫{Bel} 

• 𝒫{Bel} is the power set of beliefs 

• Bel is the set of all possible beliefs that an agent might have.
!27

Agent
see action

next state

Environment

percepts actions
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Implementing Practical Reasoning Agents
•Problem: 

• deliberation and means-ends reasoning 
processes are not instantaneous.  

• They have a time cost.  

•Suppose that deliberation is 
optimal 
• The agent selects the optimal intention 

to achieve, then this is the best thing for 
the agent.  

• i.e. it maximises expected utility. 

•So the agent selects an 
intention to achieve that would 
have been optimal at the time it 
observed the world.  
• This is calculative rationality.  

• The world may change in the 
meantime.  
• Even if the agent can compute the right 

thing to do, it may not do the right thing.  
• Optimality is hard.

!28
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Implementing Practical Reasoning Agents
•Let’s make the algorithm more 

formal with the algorithm opposite 
• where I ⊆ Int, i.e the set of intentions, 

• plan() is exactly what we discussed above, 

• brf() is the belief revision function, 

• and execute() is a function that executes 
each action in a plan. 

•How might we implement these 
functions?

!29

Agent Control Loop Version 2
1. B := B0; /* initial beliefs */
2. while true do
3. get next percept ⇢;
4. B := brf(B, ⇢);
5. I := deliberate(B);
6. ⇡ := plan(B, I);
7. execute(⇡)
8. end while
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Deliberation
•How does an agent deliberate? 

• begin by trying to understand what the options available to 
you are; 

• choose between them, and commit to some. 

•Chosen options are then intentions. 

•The deliberate function can be decomposed 
into two distinct functional components: 
• option generation; and 
• filtering.

!30
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Option Generation and Filtering
•Option Generation 

• In which the agent generates a 
set of possible alternatives  

• Represent option generation via a 
function, options(), which takes 
the agent’s current beliefs and 
current intentions, and from them 
determines a set of options 
• desires 

• Filtering 
• In which the agent chooses 

between competing alternatives, 
and commits to achieving them. 

• In order to select between 
competing options, an agent 
uses a filter() function. 
• intentions 

!31

options : 𝒫(Bel) × 𝒫(Int) ➝ 𝒫(Des) filter : 𝒫(Bel) × 𝒫(Des) × 𝒫(Int) ➝ 𝒫(Int)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Implementing Practical Reasoning Agents

!32

Agent Control Loop Version 3

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. execute(⇡)
10. end while
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Under Commitment

!33
P. R. Cohen and H. J. Levesque (1990). Intention is choice with commitment. Artificial intelligence, 42(2), 213-261.

“... Some time in the not-so-distant future, you 
are having trouble with your new household 
robot.  You say “Willie, bring me a beer.”   The 
robot replies “OK boss.”   Twenty minutes later, 
you screech “Willie, why didn’t you bring me 
that beer?”  It answers “Well, I intended to get 
you the beer, but I decided to do something 
else.”  Miffed, you send the wise guy back to 
the manufacturer, complaining about a lack of 
commitment...” 
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Over Commitment

!34

“... After retrofitting, Willie is returned, marked “Model C: 
The Committed Assistant.”   Again, you ask Willie to bring 
you a beer.   Again, it accedes, replying “Sure thing.”   
Then you ask: “What kind of beer did you buy?”  It 
answers: “Genessee.”   You say “Never mind.”  One 
minute later, Willie trundles over with a Genessee in its 
gripper...” 

P. R. Cohen and H. J. Levesque (1990). Intention is choice with commitment. Artificial intelligence, 42(2), 213-261.
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Wise Guy ???

!35

“... After still more tinkering, the manufacturer sends 
Willie back, promising no more problems with its 
commitments.  So, being a somewhat trusting customer, 
you accept the rascal back into your household, but as a 
test, you ask it to bring you your last beer. [. . . ] 

The robot gets the beer and starts towards you.  As it 
approaches, it lifts its arm, wheels around, deliberately 
smashes the bottle, and trundles off.  Back at the plant, 
when interrogated by customer service as to why it had 
abandoned its commitments, the robot replies that 
according to its specifications, it kept its commitments as 
long as required — commitments must be dropped when 
fulfilled or impossible to achieve.  By smashing the bottle, 
the commitment became unachievable...” 

P. R. Cohen and H. J. Levesque (1990). Intention is choice with commitment. Artificial intelligence, 42(2), 213-261.
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Degrees of Commitment
•Blind commitment 

• A blindly committed agent will continue to maintain an intention until it believes the 
intention has actually been achieved. Blind commitment is also sometimes referred to as 
fanatical commitment. 

•Single-minded commitment 
• A single-minded agent will continue to maintain an intention until it believes that either the 

intention has been achieved, or else that it is no longer possible to achieve the 
intention. 

•Open-minded commitment 
• An open-minded agent will maintain an intention as long as it is still believed possible.

!36
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Degrees of Commitment
•An agent has commitment 

both to: 
• ends (i.e., the state of affairs it 

wishes to bring about), and 
• means (i.e., the mechanism via 

which the agent wishes to 
achieve the state of affairs).  

•Currently, our agent control 
loop is overcommitted, 
both to means and ends. 
• Modification: replan if ever a plan 

goes wrong.  
• However, to write the algorithm 

down we need to refine our 
notion of plan execution.

!37
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Degrees of Commitment
•The previous version was blindly 

committed to its means and its ends 

•If π is a plan, then: 
• empty(π) is true if there are no more actions in the 

plan. 
• hd(π) returns the first action in the plan. 
• tail(π) returns the plan minus the head of the plan. 
• sound(π, I, B) means that π is a correct plan for I 

given B.

!38

Agent Control Loop Version 4

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡) do
10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. if not sound(⇡, I, B) then
16. ⇡ := plan(B, I)
17. end-if
18. end-while
19. end-while
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Degrees of Commitment

•Blind Commitment 
• Makes the control loop more reactive, able to 

change intention when the world changes. 
• i.e. it is not committed to its means (line 16)  

•Still overcommitted to intentions 
(ends). 
• Never stops to consider whether or not its 

intentions are appropriate. 

!39

Agent Control Loop Version 4

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡) do
10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. if not sound(⇡, I, B) then
16. ⇡ := plan(B, I)
17. end-if
18. end-while
19. end-while
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Single Minded Commitment
•Modification: 

• stop to determine whether intentions have 
succeeded or whether they are impossible 

•Our agent now gets to reconsider its 
intentions once every time around the 
outer control loop (line 9), i.e., after:  
• it has completely executed a plan to achieve its 

current intentions; or  
• it believes it has achieved its current intentions; or 
• it believes its current intentions are no longer 

possible.
!40

Agent Control Loop Version 5

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡)

or succeeded(I,B)
or impossible(I, B)) do

10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. if not sound(⇡, I, B) then
16. ⇡ := plan(B, I)
17. end-if
18. end-while
19. end-while

(
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Open Minded Commitment

•Open Minded Commitment 
• In the previous version, our agent 

reconsiders its intentions once every time 
around the outer control loop 

• In this new version, our agent also 
reconsiders its intentions after every action 
(lines 15 & 16)  

•But this intention reconsideration is 
costly!

!41

Agent Control Loop Version 6

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡)

or succeeded(I,B)
or impossible(I, B)) do

10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. D := options(B, I);
16. I := filter(B,D, I);
17. if not sound(⇡, I, B) then
18. ⇡ := plan(B, I)
19. end-if
20. end-while
21. end-while

(
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Intention Reconsideration
•A dilemma: 

• an agent that does not stop to reconsider its intentions 
sufficiently often will continue to attempt to achieve its 
intentions even after it is clear that they cannot be 
achieved, or that there is no longer any reason for 
achieving them;  

• an agent that constantly reconsiders its attentions may 
spend insufficient time actually working to achieve 
them, and hence runs the risk of never actually achieving 
them.  

•Solution: incorporate an explicit meta-level 
control component, that decides whether or 
not to reconsider.
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Agent Control Loop Version 7

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡)

or succeeded(I,B)
or impossible(I, B)) do

10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. if reconsider(I,B) then
16. D := options(B, I);
17. I := filter(B,D, I);
18. end-if
19. if not sound(⇡, I, B) then
12. ⇡ := plan(B, I)
21. end-if
22. end-while
23. end-while

(
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Intention Reconsideration
•The possible interactions between meta-level control and 

deliberation are: 

•An important assumption: cost of reconsider(. . .) is 
much less than the cost of the deliberation process itself.
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Situation Chose to Changed Would have reconsider(. . .)
number deliberate? intentions? changed intentions? optimal?

1 No — No Yes
2 No — Yes No
3 Yes No — No
4 Yes Yes — Yes
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Intention Reconsideration

•In situation (1), the agent did not choose to deliberate, and as a consequence, did not choose to change 
intentions. Moreover, if it had chosen to deliberate, it would not have changed intentions. In this situation, the 
reconsider(. . .) function is behaving optimally.  

• In situation (2), the agent did not choose to deliberate, but if it had done so, it would have changed 
intentions. In this situation, the reconsider(. . .) function is not behaving optimally.  

• In situation (3), the agent chose to deliberate, but did not change intentions. In this situation, the 
reconsider(. . .) function is not behaving optimally.  

• In situation (4), the agent chose to deliberate, and did change intentions. In this situation, the 
reconsider(. . .) function is behaving optimally. 
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Agent Control Loop Version 7

1. B := B0;
2. I := I0;
3. while true do
4. get next percept ⇢;
5. B := brf(B, ⇢);
6. D := options(B, I);
7. I := filter(B,D, I);
8. ⇡ := plan(B, I);
9. while not empty(⇡)

or succeeded(I,B)
or impossible(I, B)) do

10. ↵ := hd(⇡);
11. execute(↵);
12. ⇡ := tail(⇡);
13. get next percept ⇢;
14. B := brf(B, ⇢);
15. if reconsider(I,B) then
16. D := options(B, I);
17. I := filter(B,D, I);
18. end-if
19. if not sound(⇡, I, B) then
12. ⇡ := plan(B, I)
21. end-if
22. end-while
23. end-while

Situation Chose to Changed Would have reconsider(. . .)
number deliberate? intentions? changed intentions? optimal?

1 No — No Yes
2 No — Yes No
3 Yes No — No
4 Yes Yes — Yes
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Optimal Intention Reconsideration
•Kinny and Georgeff’s experimentally 

investigated effectiveness of intention 
reconsideration strategies. 

•Two different types of reconsideration strategy 
were used: 
• bold agents: never pause to reconsider intentions, and 
• cautious agents: stop to reconsider after every action. 

•Dynamism in the environment is represented 
by the rate of world change, γ. 
• Experiments were carried out using Tileword.

!45



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Optimal Intention Reconsideration
•If γ is low (i.e., the environment does not change 

quickly), then bold agents do well compared to 
cautious ones.  
• This is because cautious ones waste time reconsidering their 

commitments while bold agents are busy working towards — and 
achieving — their intentions.  

•If γ is high (i.e., the environment changes frequently), 
then cautious agents can outperform bold agents.  
• This is because they are able to recognise when intentions are 

doomed, and also to take advantage of serendipitous situations and 
new opportunities when they arise.  

•When planning costs are high, this advantage can be 
eroded. 
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Bold Agent

Cautious Agent

low             γ             high
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Implemented BDI Agents:  
Procedural Reasoning System

•We now make the discussion even more concrete 
by introducing an actual agent architecture: the 
Procedural Reasoning System (PRS).  

• In the PRS, each agent is equipped with a plan library, 
representing that agent’s procedural knowledge: knowledge 
about the mechanisms that can be used by the agent in order 
to realise its intentions.  

• The options available to an agent are directly determined by the 
plans an agent has: an agent with no plans has no options.  

•In addition, PRS agents have explicit 
representations of beliefs, desires, and intentions, 
as above. 
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intentions

interpreter

beliefs

desires

plan library

actions

percepts
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Example PRS (JAM) System
•The agent possesses a number of pre-compiled plans 

(constructed manually) 
• Each plan contains: 

• a goal - the postcondition of the plan 
• a context - the pre condition of the plan 
• a body - the course of action to take out 

•When an agent starts, goals are pushed onto the 
intention stack. 
• This stack contains all of the goals that are pending 
• A set of facts or beliefs are maintained and updated as the agent 

achieves different goals 
• The agent then deliberates (i.e. selects the most appropriate goal to 

adopt). 
• This is achieved using meta level plans, or utilities 
• When utilities are used, the agent selects the goal with the highest value
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GOALS: 
          ACHIEVE blocks_stacked; 

FACTS: 
// Block1 on Block2 initially so need 
//to clear Block2 before stacking. 

          FACT ON "Block1" "Block2"; 
          FACT ON "Block2" "Table"; 
          FACT ON "Block3" "Table"; 
          FACT CLEAR "Block1"; 
          FACT CLEAR "Block3"; 
          FACT CLEAR "Table"; 
          FACT initialized "False";
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Example PRS (JAM) System
•This is the plan for the top 

level goal: 
• ACHIEVE blocks_stacked.

•Note that the body contains a 
mix of instructions and goals. 

•When executing, the goals will 
be added to the intention 
stack 
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Plan: { 
     NAME: "Top-level plan" 
     DOCUMENTATION: 
           "Establish Block1 on Block2 on Block3." 
      GOAL: 
           ACHIEVE blocks_stacked; 
      CONTEXT: 
      BODY: 
           EXECUTE print "Goal: Blk1 on Blk2 on Blk3 on Table.\n"; 
           EXECUTE print "World Model at start is:\n"; 
           EXECUTE printWorldModel; 
            
           EXECUTE print "ACHIEVEing Block3 on Table.\n"; 
           ACHIEVE ON "Block3" "Table"; 

           EXECUTE print "ACHIEVEing Block2 on Block3.\n"; 
           ACHIEVE ON "Block2" "Block3"; 

           EXECUTE print "ACHIEVEing Block1 on Block2.\n"; 
           ACHIEVE ON "Block1" "Block2"; 

           EXECUTE print "World Model at end is:\n"; 
           EXECUTE printWorldModel; 
}
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Example PRS (JAM) System

•This plan also has a 
utility associated with it 
• This is used by the agent 

during the deliberation phase 

•The plan can also 
determine actions to 
execute if it fails
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Plan: { 
     NAME: "Stack blocks that are already clear" 
     GOAL: 
          ACHIEVE ON $OBJ1 $OBJ2; 
     CONTEXT: 
     BODY: 
          EXECUTE print "Making sure " $OBJ1 " is clear\n"; 
          ACHIEVE CLEAR $OBJ1; 
          EXECUTE print "Making sure " $OBJ2 " is clear.\n"; 
          ACHIEVE CLEAR $OBJ2; 
          EXECUTE print "Moving " $OBJ1 " on top of " $OBJ2 ".\n"; 
          PERFORM move $OBJ1 $OBJ2; 
     UTILITY: 10; 
      FAILURE: 
          EXECUTE print "\n\nStack blocks failed!\n\n"; 
} 
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Example PRS (JAM) System
•This plan includes an 

EFFECTS field 

•This determines what 
the agent should do 
once the agent has 
succeeded in executing 
all of the BODY 
instructions. 
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Plan: { 
     NAME: "Clear a block" 
     GOAL: 
          ACHIEVE CLEAR $OBJ; 
     CONTEXT: 
          FACT ON $OBJ2 $OBJ; 
     BODY: 
          EXECUTE print "Clear " $OBJ2 " from on top of " $OBJ "\n"; 
          EXECUTE print "Move " $OBJ2 " to table.\n"; 
          ACHIEVE ON $OBJ2 "Table"; 
     EFFECTS: 
          EXECUTE print "Clear: Retract ON " $OBJ2 " " $OBJ "\n"; 
          RETRACT ON $OBJ1 $OBJ; 
     FAILURE: 
          EXECUTE print "\n\nClearing block " $OBJ " failed!\n\n"; 
} 
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Example PRS (JAM) System
•I’ll leave it as an exercise to 

work out what plans will be 
executed 
• If you have a solution and want me 

to check, let me know. 

•The Java version of JAM and 
further details/documentation 
are available from Marcus 
Huber’s website: 
• http://www.marcush.net/IRS/

irs_downloads.html
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Plan: { 
      NAME: "Move a block onto another object" 
      GOAL: 
            PERFORM move $OBJ1 $OBJ2; 
      CONTEXT: 
            FACT CLEAR $OBJ1; 
            FACT CLEAR $OBJ2; 
      BODY: 
            EXECUTE print "Performing low-level move action" 
            EXECUTE print " of " $OBJ1 " to " $OBJ2 ".\n"; 
      EFFECTS: 
            WHEN : TEST (!= $OBJ2 "Table") { 
                  EXECUTE print "-Retract CLEAR " $OBJ2 "\n"; 
                  RETRACT CLEAR $OBJ2; 
            }; 
            FACT ON $OBJ1 $OBJ3; 
            EXECUTE print "-move: Retract ON " $OBJ1 " " $OBJ3 "\n"; 
            RETRACT ON $OBJ1 $OBJ3; 
            EXECUTE print "-move: Assert CLEAR " $OBJ3 "\n"; 
            ASSERT CLEAR $OBJ3; 
            EXECUTE print "-move: Assert ON " $OBJ1 " " $OBJ2 "\n\n"; 
            ASSERT ON $OBJ1 $OBJ2; 
        FAILURE: 
            EXECUTE print "\n\nMove failed!\n\n"; 
}

http://www.marcush.net/IRS/irs_downloads.html
http://www.marcush.net/IRS/irs_downloads.html
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Summary
•This lecture has covered a lot of ground on 

practical reasoning.  
• We started by discussing what practical reasoning was, and 

how it relates to intentions.  
• We then looked at planning (how an agent achieves its desires) 

and how deliberation and means-ends reasoning fit into the 
basic agent control loop.  

• We then refined the agent control loop, considering commitment 
and intention reconsideration.  

• Finally, we looked at an implemented system (the textbook 
discusses a couple of others). 

•Next Lecture - we start looking at the AgentSpeak 
and the Jason framework to exploit BDI
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Class Reading (Chapter 4): 

“Plans and resource-bounded practical 
reasoning”, Michael E. Bratman, David J. 
Israel, Martha E. Pollack. Computational 
Intelligence 4: 1988.  pp349-355. 

This is an interesting, insightful article, 
with not too much technical content.  
It introduces the IRMA architecture for 
practical reasoning agents, which has 
been very influential in the design of 
subsequent systems.


