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Abstract

Argument Systems provide a rich abstraction within which divers concepts of reasoning,
acceptability and defeasibility of arguments, etc., may be studied using a unified frame-
work. Two important concepts of the acceptability of an argunpeint such systems are
credulous acceptand® capture the notion that canbe ‘believed’; andsceptical accep-
tancecapturing the idea that #@nythingis believed, thep mustbe. One important aspect
affecting the computational complexity of these problems concerns whether the admissibil-
ity of an argument is defined with respect toéferred or ‘ stablé semantics. One benefit

of so-called toherentargument systems being that the preferred extensions coincide with
stable extensions. In this note we consider complexity-theoretic issues regarding deciding
if finitely presented argument systems modelled as directed graphs are coherent. Our main
result shows that the related decision problerﬁéi)%—complete and is obtained solely via

the graph-theoretic representation of an argument system, thus independent of the specific
logic underpinning the reasoning theory.

Key words: Argument Systems, Coherence, Credulous and Sceptical reasoning,
Computational Complexity

1 Introduction

Since they were introduced by Dung [8], Argument Systems have provided a fruit-
ful mechanism for studying reasoning in defeasible contexts. They have proved
useful both to theorists who can use them as an abstract framework for the study
and comparison of non-monotonic logics, e.g. [2,5,6], and for those who wish to
explore more concrete contexts where defeasibility is central. In the study of rea-
soning in law, for example, they have been used to examine the resolution of con-
flicting norms, e.g. [12], especially where this is studied through the mechanism of
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a dispute between two parties, e.g. [11]. The basic definition below is derived from
that given in [8].

Definition 1 An argument systeris a pair H = (X, A), in which X is a set of
argumentsand A C X x X is theattack relationshigor H. Unless otherwise
stated,t” is assumed to binite, and.4 comprises a set of ordered pairsdistinct
arguments. A paifx,y) € A is referred to as “attacks(or is an attacker o’ or
'y is attacked by’

For R, S subsets of arguments in the systefit’, A)), we say that

a) se Sisattackedy R if there is some € R such thatr, s) € A.

b) x € X isacceptable with respect ®if for every ye X’ that attacks x there is
some z S that attacks y.

c) Sisconflict-freeif no argument in S is attacked by any other argumentin S.

d) A conflict-free set S iadmissibleif every argument in S is acceptable with
respectto S.

e) Sis goreferred extensioifi it is a maximal (with respect ta@) admissible set.

f) Sisastable extensioifi S is conflict free and every argumeng)S is attacked
by S.

g) H is coherentf every preferred extension iH is also a stable extension.

An argument x isredulously acceptatlithere issomepreferred extension contain-
ing it; X is sceptically acceptedit is a member okverypreferred extension.

The graph-theoretic representation employed by finite argument systems, naturally
suggests a unifying formalism in which to consider various decision problems. To
place our main results in a more general context we start from the basis of the
decision problems described by Table 1 in whig{:X', A) is an argument system

as in Defn. 1x an argument it’; andSa subset of arguments iti.

Polynomial-time decision algorithms for problems (1) and (2) are fairly obvious.
The results regarding problems (3-7) are discussed below. In this article we are
primarily concerned with the result stated in the final line of Table 1: our proof of
this yields (8) as an easy Corollary.

Before proceeding with this, it is useful to discuss important related work of Di-
mopoulos and Torres [7], in which various semantic properties of the Logic Pro-
gramming paradigm are interpreted with respect to a (directed) graph translation
of reduced negativéogic programs: graph vertices are associated with rules and
the concept ofattack modelled by the presence of edg@ss) whenever there is

a non-empty intersection between the set of literals defining the headraf the
negated set of literals in the body gfi.e. if z € body(s) then—zis in this negated

set. Although [7] does not employ the terminology — in terms of credulous accep-
tance, admissible sets, etc — from [8] used in the present article it is clear that simi-
lar forms are being considered: the structures referred weasi-kerné| * maximal



Problem Decision Question Complexity

1| ADM(H,S) Is Sadmissible? P

2 | STAB-EXT(H,S) | Is Sastableextension? P

3 | PREFEXT(H,S) | Is Sapreferredextension? CO-NP—complete
4 | HAS-STAB(H) DoesH have any stable extension? NrP—complete.
5| CA(H,X) Is x in somepreferredextension? NP—complete
6 | IN-STAB(H, X) Is x in somestableextension? NP—complete
7 | ALL-STAB(H,X) | Isxin everystable extension? CO-NP—-complete
8 | sA(H,X) Is xin everypreferred extension? Hép)—complete
9 | COHERENT(H) | IsH coherent? ng)—complete

Table 1

Decision Problems in Finite Argument Systems and their Complexity

semi-kernéland ‘kernel in [7] corresponding to ‘admissible set’, ‘preferred exten-
sion’ and ‘stable extension’ respectively. The complexity results for problems (3—6)
if not immediate from [7, Thm 5.1, Lemma 5.2, Prop. 5.3] are certainly implied by
these. In this context, it is worth drawing attention to some significant points re-
garding [7, Thm. 5.1] which, translated into the terminology of the present article
states:

The problem of deciding whether an argument syst&’, A) has anon-empty
preferred extension isP—complete.

First, this implies the complexity classification feREFEXT statedevenwhen the
subseSforming part of an instance the empty set

A second point, also relevant to our proof of (9) concerns the transformation used:
[7] present a translation of propositional formulé&ein 3-CNF (this easily gen-
eralises for arbitrancNF formulae) into a finite argument systeHg. It is not
difficult, however, giver#{ (X, A) to definecNF-formulae®, whose satisfiability
properties are dependent on the presence of particular structures#jtaig. sta-

ble extensions, admissible subsets containing specific arguments, etc. We thus have
a mechanism for transforming a givéhinto an ‘equivalent’ systenfF the point

being thatF mayprovide a ‘better’ basis for graph-theoretic analyses of structures
within .

Our final observation, concerns problem (7): although the given complexity classi-
fication is neither explicitly stated in nor directly implied by the results of [7], that
ALL -STAB is CO-NP—complete can be shown using some minor ‘re-wiring’ of the



argument grapks, constructed from an instandeof 3-SAT. !

The concept otoherencevas formulated by [8, Defn. 31(1), p. 332], to describe
those argument systems whose stable and preferred extensions coincide. One sig-
nificant benefit of coherence as a property has been established in recent work of
Vreeswijk and Prakken[13] with respect to proof mechanisms for establisbeyy

tical acceptance: problem (8) of Table 1. In [13] a sound and complete reasoning
method for credulous acceptance - using a dialogue game approach - is presented.
This approach, as the authors observe, provides a sound and complete mechanism
for scepticalacceptance in precisely those argument systems that are coherent.
Thus a major advantage of coherent argument systems is that proofs of sceptical ac-
ceptance are (potentially) rather more readily demonstrated in coherent systems via
devices such as those of [13]. The complexity of sceptical acceptance is considered
(in the context of membership in preferred extensions) for various non-monotonic
Logics by [5], where completeness results at the third-level of the polynomial-time
hierarchy are demonstrated. Although [5] argue that their complexity results ‘dis-
credit sceptical reasoning as ... “unnecessarily” complex’, it might be argued that
within finite systems where coherence is ‘promised’ this view may be unduly pes-
simistic. Notwithstanding our main result that testing coherence is extremely hard,
there is an efficiently testable property that can be used to guarantee coherence.
Some further discussion of this is presented in Section 3.

In the next section we present the main technical contribution of this article, that
COHERENTIS ng)—complete: the complexity claﬁé”) comprising those problems
decidable byco-NP computations given (unit cost) access taworacle. Alterna-
tively, ng) can be viewed as the class of languagesyembership in which is cer-
tified by a (deterministic) polynomial-time testable ternary relaBorc Wx X xY

such that, for some polynomial boupdwy|) in the number of bits encoding,

welL e (vxeX: X <p(w))(FyeY:[y <p(w)) (w,xy) eR

Our result in Theorem 2 provides some further indications that decision questions
concerning preferred extensions are (under the usual complexity-theoretic assump-
tions) likely to be harder than the analogous questions concestaige exten-

sions: line (8) of Table 1 is an easy Corollary of our main theorem. Similar conclu-
sions had earlier been drawn in [5,6], where the complexity of reasoning problems
in a variety of non-monotonic Logics is considered under both preferred and stable
semantics. This earlier work establishes a close link between the complexity of the
reasoning problem and that of tlerivability problenfor the associated logic. One
feature of our proof is that the result is established purely through a graph-theoretic
interpretation of argument, similar in spirit, to the approach adopted in [7]: thus,

L This involves removing all except the edgaux A) for edges(A, x) or (x,A): then
ALL -STAB(Gg, A) & —3-SAT(D)



the differing complexity levels may be interpreted in purely graph-theoretic terms,
independently of the Logic that the graph structure is defined from.

In Section 3 we discuss some consequences of our main theorem in particular with
respect to its implications for designindgalogue gametyle mechanisms for Scep-
tical Reasoning. Conclusions are presented in Section 4.

2 Complexity of Deciding Coherence

Theorem 2 COHERENTIS ng)—complete.

In order to clarify the proof structure we establish it via a series of technical lem-
mata. The bulk of these are concerned with establisﬁlﬁ?é—hardness, i.e with
reducing a knowﬂﬂgp)—complete problem tGOHERENT.

We begin with the, comparatively easy, proof thatHERENT(H) is in TT{?.
Lemma3 COHERENT(H) € TI{Y.

Proof: Given an instancel{ (X', A) of COHERENT, it suffices to observe that,

COHERENT(H) < VS(—PREFEXT(H,S) V STAB-EXT(H, S))

i.e. H is coherent if and only if for each subsgbf X': eitherSis nota preferred
extension ofS isa stable extension. SincepREFEXT(H, S) is in NP, i.e. X and
STAB-EXT(#, S) in P, we haveCOHERENTIN 11” as required. o

The decision problem we use as the basis for our reductipgaAas,. An instance of
QSAT, is a well-formed propositional formul& (X, Y), defined over disjoint sets
of propositional variables{ = (Xi,Xa, ..., %) andy¥Y = (y1,¥s, ..., ¥:). Without
loss of generality we may assume that= t; ¢ is formed using only the Boolean
operationsA, V, and—; and negation is only applied to variablesXnuU Y. An
instance®(X,Y) of QSAT, is accepted if and only Wax38y ®(ax, By). That is,
no matter how the variables X are instantiated«(x) there issomeinstantiation
(By) of Y such that ax, By) satisfiesb. ThatQsAT, is ng)—complete was shown in
[14].

We start by presenting some technical definitions. The first of these describes a
standard presentation of propositional formulaadascted rooted treeshat has
often been widely used in applications of Boolean formulae, see e.g. [9, Chapter 4]

Definition 4 Let®(Z) be a well-formed propositional formula (wff) over the vari-



Fig. 1.Te(z1,20,23,24) fOor (zz Vo VZ3) A2y V (=25 A\ —Z4)

ablesZ= (7,2, ..., z,) using the operation§A, Vv, =} with negation applied only
to variables ofd. Thetree representation df (denoted §) is a rooted directed tree
with root vertex denoted(Ts) and inductively defined by the following rules.

a) If ®(Z) = w — a single literal z or-z — then T, consists of a single vertex
p(Te) labelled w.

b) If ®(Z) = AL, W;(2), for wif (U, Us, ... Uy), Ty is formed from the k tree
representationgTy,) by directing edges from each(Ty,) into a new root
vertexp(Ty) labelledA.

c) If ®(Z2) = VK, ¥;(2), for wif (¥, U, ..., ¥y), Ty is formed from the k tree
representationgTy,) by directing edges from each(Ty,) into a new root
vertexp(Te) labelledyV.

In what follows we use the ternodeof T to refer to an arbitrary tree vertex, i.e.
a leaf or internal vertex.

In the tree representation df, each leaf vertex is labelled with some litexal
(several leaves may be labelled with the same literal), and each internal vertex with
an operation i A, V}. We shall subsequently refer to the internal verticeS0és

the gatesof the tree. Without loss of generality we may assume that the successor
of any A-gate (tree vertex labellet)) is anv-gate (tree vertex labelled) andvice-

versa The sizeof ®(Z) is the number ofyatesin its tree representatiofs. For
formulae of sizem we denote by(g;, 0., ..., gm) the gates ifly with g, always
taken as the rogi(Ts) of the tree. Finally for any edgéh, g) in T we refer to the
nodeh as aninput of the gateg. 2

Definition 5 For a formula,®(Z), aninstantiatiorof its variables is a mapping; :

Z — {true false, «} associating a truth value or unassigned stat¥pwith each
variable z. We user; to denoter(z). An instantiation igotal if every variable is
assigned a value ifitr ue, false} andpartialotherwise. We define a partial ordering

2 We note that since any gate may be assumed to have ainrdasinct literals among its
inputs, our measure of formula size as ‘number of gates’ is polynomially equivalent to the
more usual measure of size as ‘number of literal occurrences’, i.e. leaf nodes.



over instantiationsy ando to Z by writingy < ¢ if: for each i withv; # x, § = v,
and there is at least one i, for which = x andd; # .

Given®(Z) any instantiationr : Z — {true, false, x} induces a mapping from the
nodes defining s onto values inftrue, false, x}. Assuming the natural generalisa-
tions of A andV to the domaintrue, false *),3 we define forh a node inTy, its
valuer(h, ) under the instantiation of Z as

4

* if his aleaf node labelleg or -z andm; = x
i if his aleaf node labelled andr; # *
v(h,m) = ¢ = if his aleaf node labellegz andr; # *

vk v(h, ) if hisanv-gate with inputghy, ..., hy)

A v(hy, ) if hisanA-gate with inputghy, ..., hy)

wherer is clear from the context, we write(h) for v(h, 7).

With this concept of the value induced at a nodeTgfvia an instantiationr, we
can define a partition of thigerals andgatesin T4 that is used extensively in our
later analysis.

Thevalue partition Valr) of T, comprises 3 setSTrue(r), Falsg(r), Open(r)).

T1) The subsetrue(r) consists of literals and gatds,for whichv(h) = true.
T2) The subseffalsg) consists of literals and gatds,for whichv(h) = false.
T3) The subseDper(r) consists of literals and gates,for whichv(h) = x.

The following properties of this partition can be easily proved:
Fact 6

a) Opernir) = () < = is total.
b) If v < ¢, then Tru¢y) C Trug(d) and Falsé¢~y) C Fals€d).

For example in Fig. 1 under the partial instantiation= (z; = true,z, = false)
with all other variables unassigned, we haveue(r) = {7, -z, ¢, }; Falsgr) =
{_'Zla Zy, g3}’ andoper(ﬂ-) = {227 —Zy, Z3, —Z3, 02, g4}

At the heart of our proof thahsAT, is polynomially reducible tacOHERENT is
a translation from the tree representationof a formula®(X, Y) to an argument
systemt ¢ (Xs, Ag). It will be useful to proceed by presenting a preliminary trans-

3 ie. /\}‘le,- is * unless ally aretrueor at least one is false; VJ!(:1XJ' is * unless ally are
false or at least one i ue.



Fig. 2. The Argument SystefR¢ from the formula of Fig. 1

lation that, although not in the final form that will be used in the reduction, will
have a number of properties that will be important in deriving our result.

Definition 7 Let®(Z) be a propositional formula with tree representatiop fiav-
ing size m. Th&rgument Representatiai®, is the argument systeRig (Xp, As)
defined as followsR ¢ contains the following argumenfs;:

X1 2nliteral argumentyz, -z : 1 <i < n}.

X2 For each gate gof Ty, an argument-gy (if gx is anv-gate) or an argument
ok (if gk is an A-gate). If gy, i.e the root of T, happens to be aw-gate,
then an additional argument,gis included. We subsequently denote this set
of arguments by,.

The attack relationship A4 — over Xy contains:

Al {(z,-2z),(~z,z) : 1 <i<n}
A2 (=Qm, Om) if gm is @anv-gate in Ty,

A3 If g is anA-gate with inputghy, hy, ... h }: {(=hi, gk) :
A4 If g is anv-gate with inputghy, hy, ... h}: {(h, —gk) :

Fig. 2 shows the result of this translation when it is applied to the tree representation
of the formula in Fig. 1.

The arguments defining 4 fall into one of two sets2n arguments corresponding

to the2n distinct literals oveZ; andm (or m+ 1) ‘gaté arguments. The key idea is

the following: any instantiation of the propositional variables of ®, induces the
partition Val(r) of literals and gates iifg. In the argument systefR ¢ the attack
relationship folgatearguments, reflects the conditions under which the correspond-
ing argument is admissible (with respect to the subset of literal arguments marked
out by 7). For example, supposg is anV-gate with literalsz;, —z,, z; as its in-

puts. In the simulating argument systegn,is represented by an argument labelled
—g; which is attacked by the (arguments labelled with) liter|s-z,, andz;: the



interpretation being that “the assertiap ‘is false’ is attacked by instantiations in
which z; or =z, or z; aretrue”. Similarly were g, an A-gate it would appear in
R as an argument labelled which was attacked by literatsz;, z,, and—z;: the
interpretation now being that “the assertign Is true’ is attacked by instantiations
in which z; or =z, or z; arefalse’. With this viewpoint, any instantiatiom will
induce a selection of the literal arguments and a selection ofjabtearguments
(i.e. those for which no attacking argument has been included).

Supposer is an instantiation oZ. The key idea is to map the partition of the
tree representatiofn, asVal(r) onto an analogous partition of the literal and gate
arguments irR . Givenr this partition comprises 3 setdn (), Out(w), Posgr))
defined by:

R1) Anargumenp is in the subsein(r) of X if:

(pis the argument;, m; = true) or (p is the argumentz, m; = false)
or (p=—g € Gy andg € T, isin Falsg(r))
or(p=ge geandge T,isinTrueg(r))

R2) An argumenp is in the subseDut(r) of X5 if:

(pis the argument;, m; = false) or (p is the argumentz, m; = true)
or (p=—g € Gy andg € Ty isin True(n))
or(p=ge geandg € T, is in Falsg(T))

R3) An argumenp is in the subsePosgr) of X if:
p & In(m) U Out(r)

With the formulation of the argument systéR, (Xs, As) from the formula®(Z)

and the definition of the partitiofin(w), Out(r), Posg~)) via the value partition
Val(7) of T, we are now ready to embark on the sequence of technical lemmata
which will culminate in the proof of Theorem 2.

Our proof strategy is as follows. We proceed by characterising the set of preferred
extensions ofR ¢ showing — in Lemma 8 through Lemma 11 — that these consist
of exactly the subsets defined by(yz) where~ is atotal instantiation ofZ. In
Lemma 12 we deduce that these are all stable extensions and th&stisitself
coherent. In the remaining lemmata, we consider the argument systems arising by
transforming instance® (X, Y) of QSAT,. In these, however, we add to the basic
system defined bR (which will have 4n literal arguments andn (or m + 1)

gate arguments) an additional set ofé@trol argument®ne of which attacks all

of the Y—literal arguments: we denote this augmented systef bWy, Bs). As

will be seen in Lemma 15, it follows easily from Lemma 10 that for any, 5y)



satisfying® (X, Y) the subseln(ax, 5y) is a stable extension of bofRs and Hs.
The crucial property provided by the additional control argumen#4ns proved

in Lemma 16:if for ax there is nogy for which {(ax, fy) satisfies®(X,Y) then
the subseln(ayx) (defined fromR ) is a preferredut not stableextension oft{ s,
whereln(ayx) denotes the sdh(ax, *, *, ..., *) in which everyy; is unassigned.
The reason for introducing the control arguments in moving ffogto 4 is that
In(ax) is not a preferred extension 0R4: although it is admissible, it could be
extended by adding, for exampMé+literal arguments. The design &fs will be
such that unless the gate argumgptcan be used in aadmissibleextension of
In(ax) thenIn(ax) is already maximal irHe and not a stable extension since the
control arguments are not attacked. Finally, in Lemma 17, it is demonstrated that
theonly preferred extensions G{4 are those arising as a result of Lemma 15 and
Lemma 16. Theorem 2 will follow easily from Lemma 17, since the argurggnt

— corresponding to the root no@éT ) of the instanceb (X, Y) — must necessarily
belong to any stable extension#s: hencet s is coherent if and only if for each
instantiationy there is an instantiatiofly such that ay, fy) satisfiesb(X,Y), i.e.

for whichgn € In(ax, Sy) in the systenR 4 and thence in the corresponding stable
extension of .

We employ the following notational conventionsy, Sy, (and~z) denotetotal

instantiations ofX, Y, (andZ); for an argumenp in X3, g, (resp.hy) denotes
the corresponding gate (resp. node)Ti hence ifg, is anv-gate, therp is the

argument labelledhgp; PEM (resp.SEM) denotes the set dll preferred (resp.
stable) extensions in the argument systéfy, whereM,g is one ofR¢ Of He.

Lemma 8 V47 In(vz) is conflict-free.

Proof: Let~z be an instantiation of and consider the subgetyz) of X in Rs.
Suppose that there are argumgnédq in In(vz) for which (p, q) € As. It cannot
be the case thdi, = u; andh, = —u; for u; some literal oveg, since exactly one
of {z,—z} is in True(z) hence exactly one of the corresponding literal arguments
is inIn(vz). Thusq must be a gate argument. Suppgsés anVv-gate:q € In(yz)
only if g4 € Falsg+z) and thereforéa,, which (since(p, ) € As) must be an input
of g4 is also inFals€yz). This leads to a contradiction: lif, is a gate then it is an
A-gate, s@ € In(~z) only if hy, € True(~y,); if hy, is a literalu;, thenh, € Falsgy;)
would mean thatu; € True(vz) and hencey; ¢ In(~z). The remaining possibility
is thatgq is anA-gate:q € In(yz) only if g4 € Trug(yz) and thush, € True(yz).
If hy is a gate it must be an input gf, and anv-gate:h, € Trug(yz) would force
p ¢ In(vz). Finally if the inputh, is a literalu; in Ty then inRg the literal —u;
attacksq: u; € True(vyz) implies —u; ¢ In(vz). We deduce thain(vyz) must be
conflict-free. o

Lemma9 V47 In(yz) is admissible.

10



Proof: From Lemma 8Jn(~7) is conflict-free, so it suffices to show for all argu-
mentsp ¢ In(yz) that attack some € In(vz) there is an argument € In(vz)
that attacks. Let p, g be such thap ¢ In(yz), g € In(vz) and(p,q) € Aq. If

g is a literal argumenty; say, therp must be the literal argumentu; and choos-
ing r = g provides a counter-attacker po Supposej is a gate argument. One of
the inputs togq must be the nodé,. If g4 is anV-gate therg, € Falsgyz) and
hy € Falsgyz). If h, is a literalu; then the literal argument = —u; € In(yz)
attacksp; if h, is anA-gate therh, € Falsgy;z) implies there is some input,
to h, with h, € Fals€(yz), so thatr = —h; is in In(vz) (whetherh, is anVv-gate
or literal) andr attacksp. Similarly, if g4 is an A-gate theng, € True(~y;) and
he € True(nz). If hy is a literaly; then the attacking argument (orin R ) is the
literal —u; € Out(~z), thusr = u; € In(vz) provides a counter-attack qn If hy
is anV-gate therh, € True(y;) indicates that some inptit of h, is in True(yz),
so thatr = hy is in In(yz) andr attacksp. No more cases remain thurs(vz) is
admissible. o

Lemma 10 Vv In(vyz) € PER.

Proof: From Lemma 8, 9 and the fact that every argumen&inis allocated
to eitherin(yz) or Out(vz) by ~z, cf. Fact 6(a), it suffices to show that for any
argumenp € Out(vz) there is some € In(yz) such thap andq conflict. Certainly
this is the case for literal argumentsc Out(z) since the complementary literal
—uis in In(vyz). Suppose € Out(v;) is a gate argument. b, is an\V-gate then

p € Out(yz) impliesg, € Trueyz) and hence some inpii; of g, must be in
True(yz). The argumeng corresponding to this input node will therefore be in
In(vz). If gp is anA-gate therp € Out(yz) impliesg, € Falsgz) and some input
hy of g, must be inFalsgyz). The argumenthy will be in In(yz) and conflicts
with p. o

Lemmall VSe PER vz @ S=In(yz).

Proof: First observe that als € PE® must contain exactiy literal arguments:
exactly one representative frofw, -z} for eachi. Let us call such a subset of the
literal arguments aepresentative sednd suppose thal is any representative set
with S, any preferred extension containikly We will show that there is exactly
one possible choice f@, and that this i§, = In(y(U)) wherevy(U) is the instan-
tiation of Z by: z = trueif z € U; z = falseif -z € U. Consider the following
procedure that takes as input a representative setd returns a subsgf € PER
withU C §.

Q) S=U; Ty =X
(2) TU = TU/SJ

11



(3) if Ty = () then return §; and stop.

(4) Tu :=Tu/{qe Ty : (p,q) € Ao for somep € Sy}.
(5) L:=SyuU{geTy: forallpe Ty, (p,q) ¢ As}
(6) goto Step(2).

We can note three properties of this procedure. Firstly, it always halts: once the
literal arguments in the representative Yeaind their complements have been re-
moved fromTy, (in Steps 2 and 4), the directed graph-structure remaining is acyclic
and thus has at least one argument that is attacked by no others. Thus each iteration
of the main loop removes at least one argument figrmvhich eventually becomes
empty. Secondly, the s&; is in PER: the initial set U) is admissible and the
arguments removed frofy, at each iteration are those that have just been added
to S, (Step 2) as well as those attacked by such arguments (Step 4); in addition
the arguments added ®, at each stage are those that have had counter-attacks
to all potential attackers already placedSn. Finally for any givenU the subset

Sy returned by this procedure is uniquely defined. In summary, eseryPER is
defined through exactly one representative Sgt,and every representative det
develops to a uniqu§, € PER. Each representative sét, however, has the form
In(v(U)) N {z,-z : 1 < i < n}, and hence the unique preferred extens®p,
consistent witiJ is In(y(U)). o

Lemma 12 The argument systeRqs (Xs, . Ag) is coherent.

Proof: The procedure of Lemma 11 only excludes an arguntgfitpm the sey
under construction i§ is attacked by some argumgnte S;. Thus,S, is always
a stable extension, and since Lemma 11 accounts f&@lP£®, we deduce that
R4 IS coherent. o

Although our preceding three results charactefisg as coherent, this, in itself,
does not allowR , be usedlirectly as the transformation for instancé$X, Y) of
QSAT,. The overall aim is to construct an argument system fdgd, Y) which is
coherent if and only ifb(X,Y) is a positive instance a§SAT,. The problem with
Re is that, even thougtk (X, Y) may be a positive instance, there could be instan-
tiations, («x, By) which fail to satisfy®(X,Y) but give rise to a stable extension
In(ax, By), e.g. for By with which ®(ayx, 5y) = false. In order to deal with this
difficulty, we need to augmeriRs (giving a systentHs) in such a way that the
admissible sein(ax) is a preferred (but not stable) extension fig) only if no
instantiationsy allows(ax, fy) to satisfy®(X, Y). Thus, in our augmented system,
we will haveexactly twanutually exclusive possibilities for each total instantiation
ax of X: either there is n@y for which ®(ax, 5y) = true, in which event the set
In(cx) will produce a non-stable preferred extensioraf; or there is an appropri-
atefy, in which casdn(ax, fy) (of which In(ayx) is aproper subsetcf. Fact 6(b))

12



Fig. 3. An Augmented Argument Representatida

will yield a stable extension ift¢.

Definition 13 For ®(X, Y) an instance of}SAT,, the Augmented Argument Rep-
resentatiorof & — denoted (Ws, Bs) — has argument3Ve = X5 U Cgy, Where
Xy are the arguments arising in the Argument Representatich(¥{ Y) — R ¢ —
as given in Definition 7 ands = {C;,C,, C;} are 3 new arguments called the
control argumentsThe attack relationshifgs contains all of the attacksly in the
systeniR 4 together with new attacks,

{{(Ci,¥1),(Ci,y) : 1<i<n}
{{C1,Gy), (Cy, C3), (C3,Cy) }
{(gm; C1>’ <gm, C2>a < m; C3>}

Using the relabelling of variables in our example formula — Figs. 1,2(x%a%,) =
(z1,25), (Y1, ¥2) = (73, 24), the Augmented Argument Representation for the system
in Fig. 2 is shown in Fig. 3

Lemmal4 If S € PEM then G ¢ S for any of{C,,C,, Cs}. If S € SE* then
Om € S.

Proof: Supposes € PE™. If g, € Sthen each of the control arguments is attacked
by gn, and so cannot be i8. If g, ¢ SthenC; ¢ Ssince the only counter-attack
to C, is the argumenC; which conflicts withCs. By similar reasoning it follows
thatC, ¢ SandC, ¢ S For the second part of the lemma, givee SE£™, since
{C,,C,,C3} ¢ S there must be some attacker of thes&iThe only choice for
this attacker ig,. o

Lemma 15 V({ax, fy) that satisfy®(X, Y): In(ax, By) € SE™.

13



Proof: From Lemma 10 and 12, the subs$etay, fy) is in SE*. Furthermore,
sincegn € True(ay, fy) it follows that the gate argumegf, of R4 is inIn(ax, fy).

For the augmented systerH,s, the arguments ifn(ax, fy) remain admissible:
attacks ony—literal arguments by the control arguméit are attacked in turn by
the gate argumei,. In addition, using the arguments of Lemma 10 no arguments
in Out(ay, By) can be added to the det(«y, Sy) within Hg without conflict. Thus
In(ay, By) € SE™ wheneverd(ay, By) holds. o

Lemma 16 If ax is such thanoinstantiationgy of Y, leads tdax, fy) satisfying
®(X,Y) then Inax) € PEH/SE™.

Proof: The subsein(ax) of R4 can be shown to be admissible (in ba¥ and
Hs) by an argument similar to that of Lemma*9Suppose for all3y, we have
®(ax, fy) = false, and consider any subsgbf Wy in Hg for whichIn(ax) C S

We show thaS ¢ P£*. Assume the contrary holds. From Lemma 14 no control
argumentisirs If g, € SthenSmust contain aepresentative seVy say, of they—
literal arguments matching some instantiatign From the argument used to prove
Lemma 11,In(ax, By) is the only preferred extension iRs consistent with the
literal choices indicated byy and gy, and thus would be the only such possibility
for He. Now we obtain a contradiction singg, ¢ In(ax, Sy) (in either system),
and so cannot be used; to counter the attack b, on the representative Sé¢.
Thus we can assume thgt, ¢ S. From this it follows that ndrliteral argument

is in S (asgn is the only attacker of the control argumedt which attacksY—
literals). Now consider the gatesry topologically sorted, i.e. assigned a number
1 < k(g) < msuch that all of the inputs for a gate numbergd) are from literals

or gatesh with x(h) < x(g). Let g be an argument such thad is the first gate in
this topological ordering for whicly € S/In(ax). We must havey, € Oper{ax)
otherwise —i.eq € Out(ax) — g would already be excluded from any admissible
set havingIn(ax) as a subset. Consider the set of argumentgVin that attack

g. At least one attackep, must be a nodé, in Ty for which h, € Oper{ax).
Now our proof is completedS has no available counter-attack to the attack by
p on g since such could only arise from¥a-literal argument (all of which have
been excluded) or from another gate argunrenith g, € Oper{ax), however,
k(0r) < k(hy) < k(gq) andr € Scontradicts the choice @f Fig. 4 illustrates the
possibilities. We conclude that the subb®iy) of Wy is in PE* whenever there

is no By with which ®(ax, fy) = true, and since the control arguments are not
attacked|n(ayx) ¢ SE™. o

4 A minor addition is required in that sinas is a partial instantiation (ofX, Y)) it has
to be shown that all argumengsthat attack argumenig € In(ax) belong to the subset
Out(ax), i.e. are not inPosgayx). With the generalisation of andV to allow unassigned
values, it is not difficult to show that [ € Posgax) then any argumerg attacked byp in
Ra cannot belong tdn(ax).
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rin Open()
k(r)<k(g) or rinY:
rnotin S()

rin Open()
k(r)<k(g) orrinY:
rnotin S()

Inputs in True()

@ p=h in Open()

p notin S()

Inputs in False()

p=-h in Open()
p notin S()

Inputs in False() Inputs in True()

g=-g in Open() a=g in Open()
qin SO qinS()

() (b)

Fig. 4. Final cases in the proof of Lemma & Posgayx) is not admissible

Lemmal7 If S € SE* then S= In(ay, fy) (with ®(ax, By) = true). If S €
PEM/SEM then S= In(ax) and ®(ax, By) = falsefor all Sy.

Proof: Consider anyS € PE™. It is certainly the case tha& has as a subset
some representative s&ty from the X—literal arguments. Suppose we modify the
procedure described in the proof of Lemma 11, to one which takes as input a rep-
resentative se¥ of the X—literals and returns a subs&t of the argument3¥V; of

Ho in the following way:

1) S/ :=V;newl := Ws,;

(2) oldTy := newT, ; newl, := oldTy/S;

(3) if newT, = oldTy then return S, and stop.

(4) newT, := newlk/{g € newT, : (p,q) € By for somep € S, }.
(5) Sy =S/ U{qge newT, : forallpe newk, (p,q) & Bs}

(6) goto Step(2).

The setS, is an admissible subset ¥ that contains onlyX-literal arguments
and a (possibly empty) subs8tof the gate argumentss. Furthermore, givew,
there is a uniqué, returned by this procedure. It follows that for aBy P£E™,
V C S = S, C Sfor the representative s&t associated witls. This set,V,
matches the literal arguments selected by some instantiatidh of X, and so as
in the proof of Lemma 11, we can deduce tisat= In(«(V)). This suffices to
complete the proof: we have established that everggetP£™ contains a subset
In(ax) for some instantiatiomy: from Lemma 16Jn(ax) is not maximal if and
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only if S= In(ax, fy) for somesy with ®(ax, fy) = true. o
The proof of our main theorem is now easy to construct.

Proof: (of Theorem 2) It has already been shown tbaHERENT € ng) in
Lemma 3. To complete the proof we need only show théX, Y) is a positive
instance ofRSAT, if and only if 4 is coherent.

First suppose that for all instantiationg there is some instantiatios, for which
®(ax, fy) holds. From Lemma 15 and Lemma 17 it follows that all preferred ex-
tensions irH ¢ are of the formin(ax, Sy), and these are all stable extensions, hence
‘Hs is coherent. Similarly, suppose tHd# is coherent. Letvx be any total instan-
tiation of X. Suppose, by way of contradiction, that for 8}, ®(ayx, By) = false.
From Lemma 16In(ay) is a preferred extension in this case, and hence (Sifice
was assumed to be coherent) a stable extension. From Lemma 14 this implies that
Om € In(ax) which could only happen i, € True(ax) for Tg, i.e. the value ofp

is determined in this case, independently of the instantiatiofy obntradicting the
assumption tha®(«y, Sy) wasfalse for every choice ofjy. Thus we deduce that
®(X,Y) is a positive instance @fSAT, if and only if #4 is coherent so completing

the proof thalCOHERENTIS ng)—complete. o

An easy Corollary of the reduction in Theorem 2 is

Corollary 18 sais [T —complete.

Proof: Thatsa € ng) follows from the fact that is sceptically accepted in
H(X,A)if and only if: for every subsebof X' eitherSis not a preferred extension
orxisinS. To see thasAis ng)—hard, we need only observe that in orderfy to
be coherent, the gate argumegrtmust occur in in every preferred extensiorif

in the reduction of Theorem 2 ThuH,e is coherent if and only i§, is sceptically
accepted ins. o

3 Consequences of Theorem 2 and Open Questions

A number of authors have recently considered mechanisms for establishing credu-
lous acceptance of an argumegnin a finitely presented syste# (X, .4) through
dialogue gamesThe protocol for such games assumes two players Béfender

(D) andChallenger (C) — and prescribe a move (twcution) repertoire together

with the criteria governing the application of moves and concepts of ‘winning’ or
‘losing’. The typical scenario is that followin® assertingp the players take al-
ternate turns presenting counter-arguments (consistent with the structjet@f

the argument asserted by their opponent in the previous move. A player loses when
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no legal move (within the game protocol) is available. An important example of
such a game is theri—dispute formalism of [13] which provides a sound and com-
plete basis for credulous argumentation. An abstract framework for describing such
games was presented in [11], and is used in [3] also to define a game-theoretic ap-
proach to Credulous Acceptance. Coherent systems are important with respect to
the game formalism of [13}rPI—disputes define a sound and complete proof theory
for both Sceptical and Credulous games on coherent argument systems; the Scepti-
cal Game is not, however, complete in the case of incoherent systems. The sequence
of moves describing a completed Credulous Game (for both [3,13]) can be inter-
preted as certificates of admissibility or inadmissibility for the argument disputed.

It may be noted that this view makes apparent a computational difficulty arising in
attempting to define similar ‘Sceptical Games’ applicable to incoherent systems:
the shortest certificate thata(?, x) holds, is the size of the smallest admissible
set containing — it is shown in [10] that there is always a strategy Ebthat can
achieve this; it is also shown in [10] thapI-disputes won byC, i.e. certificates
that—CA(#, X), can require exponentially many (jA'|) moves?® If we consider a
sound and complete dialogue gamedoepticakreasoning, then the moves of a dis-
pute won byD constitute a certificate of membership iﬂi[é’)—complete language:

we would expect such certificates ‘in general’ to have exponential length; similarly,
the moves in a dispute won Iy constitute a certificate of membership imé’)—
complete language and again these are ‘likely’ to be exponentially long. Thus a
further motivation of coherent systems is that sceptical acceptance is ‘at worst’
NP—complete: short certificates that an argumenbissceptically accepted always
exist.

The fact that sceptical acceptance is ‘easier’ to decide for coherent argument sys-
tems, raises the question of whether there are efficiently testable properties that can
be exploited in establishing coherence. The following is not difficult to prove:

Fact 19 If H(X, A) is not coherent then it contains a (simple) directed cycle of
oddlength.

Thus an absence of odd cycles (a property which can be efficiently decided) ensures
that the system is coherent. An open issue concerns cohererasammsystems.

One consequence of [4] is that random argument systemsu@fuments in which

each attack occurs (independently) with probabiityalmost surely have a stable
extension wheip is a fixed probability in the range < p < 1. Whether a similar

result can be proven for coherence is open.

As a final point, we observe that the interaction between graph-theoretic models of
argument systems and propositional formulae may well provide a fruitful source

5 Since these are certificates of membership @oanP—complete language, this is unsur-
prising: [10] relates dispute lengths for such instances to the length of validity proofs in the
cuT—free Gentzen calculus.
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of further techniques. We noted earlier that [7] provides a translation &nm
formulae,® into an argument systef 4; our constructions above define similar
translations for arbitrary propositional formulae. We can equally, however, consider
translations in the reverse direction, e.g. gi#efY’, A) itis not difficult to see that
thecNF-formula, @y = Axyea(XV 2Y) A Axex (XV Vizzxeay 2) is satisfiable if

and only# has a stable extension. Similar encodings can be given for many of the
decision problems of Table 1. Translating such folbaskto argument systems, in
effect gives an alternative formulation of the original argument system from which
they were generated, and thus these provide mechanisms whereby any gystem,
can be translated into another systéfy.. with properties of concern holding of

‘H if and only if related properties hold iH 4. Potentially this may permit both
established methodologies from classical propositional Ibgind graph-theory to

be imported as techniques in argumentation.

4 Conclusion

In this article the complexity of deciding whether a finitely presented argument
system is coherent has been considered and shownIfképr:omplete, employ-

ing techniques based entirely around the directed graph representation of an ar-
gument system. An important property of coherent systems is that sound and com-
plete methods for establishing credulous acceptance adapt readily to provide similar
methods for deciding sceptical acceptance, hence sceptical acceptance in coherent
systems iscO-NP—complete. In contrast, as an easy corollary of our main result

it can be shown that sceptical acceptancﬁ(ﬁ—complete in general. Finally we
have outlined some directions by which the relationship between argument systems,
propositional formulae, and graph-theoretic concepts offers potential for further re-
search.
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