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Abstract

A universally applicable multi-dimensional reasoning system is described. The system is
founded on a dedicated tesseral representation of space and uses a heuristically guided con-
straint satisfaction mechanism to solve N-dimensional spatial problems. The representation
allows space to be linearised so that the same technique is applicable to problems in any number
of dimensions. The principal advantages offered by the system are that of general applicability
and computational effectiveness. With respect to Cartesian and other tesseral representations it
provides for efficient translation and rotation of space using standard arithmetic operations,
effective data storage using "block" encoding and fast comparison of groups of addresses. The
system has been successfully targeted at a number of application areas, but particularly Geo-
graphic Information System (GIS) and Environmental Impact Assessment (EIA).

1 Introduction

A N-dimensional quantitative spatial reasoning system, the SPARTA (SPAtial Reasoning using
Tesseral Addressing) system, based on a tesseral representation of space is described. Using the
system N-dimensional problems are defined in terms of an object and constraint scripting language
founded on a PROLOG predicate style of syntax [Coenen, 1996]. Scripts are passed to the system
which then processes the constraints using a heuristically guided depth first constraint satisfaction
algorithm. The result (assuming that a solution exists) is one or more numerically referenced con-
figurations of all objects, defined in the script, that satisfy the given constraints. The configura-
tion(s) may be output in a number of formats depending on the nature of the application. Examples
include two- and three- dimensional imaging, application specific file formats such as DXF (Draw-
ing eXchange Format) and PBM, or encodings such as HTML.

2 Object Space

Given a particular application, all spatial entities of interest are considered to exist in some N-
dimensional orthogonal parallelepiped space referred to as the object space. This space is tesselated
(sub-divided) into a set of isohedral (same shape) N-dimensional cubic subspaces down to some
desired resolution. Each subspace is then allocated a unique integer address (or reference) that
reflects its location within the space with respect to some arbitrarily selected corner origin. Within
the context of this paper we will assume that the maximum number of dimensions to be considered
is four and that addresses are represented as 32bit signed integers whose bit pattern is defined as
follows:

O r o r e r e e e e e e e e e e e e e e e e e e e
(| g S i | g gy g s I g | s i s g g g i A I g g g g

+ T z Y X
Figure 1: Address bit pattern

Of course any other bit pattern may be selected if it is more appropriate to a particular application.
Similarly the number of dimensions to be considered can be increased or decreased, or longer or
shorter integers may be used (for example 64 bit or 16 bit integers). Further, no particular relevance
need be attached to the labelling of the bit groupings in Figure 1; the X, Y, Z and T (Time) labelling
has simply been used here to facilitate understanding.



In Figure 2 an example object space is given defined by two dimensions, X and Y, such that X =
{o, 1, 2, 3, 4, 5, 6, 7, 8, 9randY = {0, 1, 2, 3, 4}. Note that each
address is made up of two coordinates using the bit pattern presented in Figure 1. Note also that, as
a consequence of the addressing mechanism, the space is linearised commencing at the 0 bottom-
left corner address (the origin) to the top-right address.
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Figure 2: Tesselated >§—D space

The advantages offered by the tesseral addressing mechanism, particularly with respect to the
Cartesian system, are as follows:

1) Any cell can be addressed using a single integer. Consequently the computer storage require-
ments using tesseral addressing are both low and constant.

2) Translation through the space can be achieved through simple integer addition and subtraction.
For example, in Figure 2, to move one tile to the "north-east” we always add the address 257
regardless of where we are in the space (to move to the south-west we add the fictitious address
-257, and so on). The approach thus avoids recourse to computationally expensive incrementa-
tion and decrementation of individual coordinates or cumbersome trigonometric techniques.

3) The N-dimensional space in question is linearised in a broad bottom-left to top-right manner.
Knowledge of this linearisation can be utilised as follows:

* Block encoding of addresses: Groups of addresses contained in a single orthogonal parallel-
ogram can be stored in terms of two addresses representing the corners closest to and fur-
thest away from the origin. Consequently further savings in computer storage requirements
are obtained. (We refer to this as block encoding so as to relate it to the more usual run-line
encoding.)

* Simple comparison of sets of addresses: To determine whether one set of addresses stands
in some relation to another set of addresses it is not necessary to compare each address in
one with each address in the other. Instead, knowledge of the relative location within the
linearisation can be used to achieve efficient comparison of sets of addresses.

* Simple addition (and subtraction) of blocks of addresses: When adding (or subtracting) one
block of addresses to another it is only necessary to add (or subtract) the two pairs of corner
addresses.



An additional advantage of the approach is that it is fully compatible with established Raster repre-
sentations found in GIS (Geographic Information Systems), image encoding and other computer
map representations. For further discussion relating to tesseral addressing and its merits interested
readers are referred to [Diaz and Bell, 1986].

3 Object Classes

It is assumed that the size and resolution at which the object space is defined is sufficient to con-
tain/represent all objects we wish to reason about. Three types of object are identified:

Fixed objects:
Objects whose location is fixed within the object space. Consequently their nature (e.g.
shape, size, contiguity etc.) is known.

Free objects:
Objects whose shape is known but not their location.

Shapeless objects:
An object of which nothing is known (other than that it exists somewhere within the object
space).

Using the scripting language, objects are defined in terms of classes and instances of those classes.
A class, identified by a class name, defines the object’s type, and (in the case of a free object) its
shape. The shape is defined in terms of a set of addresses which must incorporate the zero origin
address (negative addresses may be used). Note that a fixed object’s shape is defined by its location
and therefore fixed object class declarations need not include a shape definition (locations are
defined as part of instance declarations as described in Section 4 below). Some high level syntax
used for the definition of classes is presented in Table 1.

<CLASSDECS> : <CLASSDEC>
| <CLASSDEC> <CLASSDECS>

<CLASSDEC> : ‘class(’ CLASSNAME ‘', fixed).’
| ‘class(’ CLASSNAME ', free,’ <SHAPE> ‘).’
| ‘class(’ CLASSNAME ', shapeless) .’

<SHAPE> : ‘shape ([’ <SETTA> '1)’ ;

Table 1: Class declaration syntax

4 Object Instances

When declaring instances of classes, details of attributes that may be associated with spatial objects
may be included according to the type of the object - fixed, free or shapeless. The most significant
is the object’s location or its location space. This is again defined in terms of a set of addresses.
The distinction between locations and location spaces is that the first is associated with fixed
objects, and describes a sub-space within the object space where fixed objects are located; while
the second is associated with free or shapeless objects and describes the sub-spaces of the object
space within which such objects may be located.

4.1 Free Object Instances

With respect to free objects there exists a special relationship between the shape of such objects
and the associated location space. The number of possible locations for the object is defined (by
default) as the number of different ways the entire shape can be fitted into the location space



without rotation. Which of these locations is acceptable is then determined by the nature of the con-
straints associated with the spatial problem, which is in turn dependent on the nature of the applica-
tion. Note that if no locations for a free object can be generated the object cannot be physically
realised and consequently it can be said that no solution to the given spatial problem exists. Given
a particular application it is possible to influence the generation of locations as follows:

1) Sub-shape: We may include (in the instance declaration) some tesseral sub-shape definition
which is a sub-set of the shape defined in the associated class, and then determine candidate
locations for the free object by attempting to fit only this sub-shape into the given location
space.

2) Rotation: Given a particular application it may be appropriate to permit the shape to be rotated
so that additional locations may be generated.

3) Inclusion: We may wish to insist that certain fixed groups of addresses form part of any candi-
date location for a fixed object. Typically such inclusion groups of addresses are associated with
the locations of a fixed object.

4) Exclusion: We may wish to exclude certain groups of addresses form part of any candidate
location.

5) Contiguity: Where we have included and/or excluded some set of addresses we may wish to
insist that the result is only acceptable if the location set of addresses is in some way contigu-
ous. In addition we may require it to be contiguous on a particular set of addresses.

6) Size: Similarly, where we have included and/or excluded some set of addresses, in may also be
the case that we wish to specify some size qualification whereby the resulting locations are only
acceptable if they are less than, equal to or greater than some given size (number of addresses).

4.2 Shapeless Object Instances

Shapeless objects have no known location or shape, only a location space in which they can be said
to exist. Where such objects appear in a spatial problem scenario the aim is usually to refine,
through an appropriately specified set of constraint mappings (see below), the location space asso-
ciated with such objects. Although no knowledge is available concerning the shape, certain other
attributes may be known which can be used to validate the result of any refinement of the location
space that might take place as a consequence of the satisfaction of mapping constraints. Currently
the following may be specified with respect to shapeless objects:

1) Size: For any resulting location/shape to be acceptable it may be required to be less than,
greater than or equal to some magnitude (number of addresses).

2) Contiguity: For a result to be acceptable it may be necessary that the set of addresses describing
an ultimate location is in some sense contiguous. In addition there may be a requirement that
the contiguity holds over a particular set of addresses.

Using the scripting language instances are defined using syntax of the form indicated in Table 2.
Note that, from the above, not all attributes are appropriate to all object types (this is not evident
from the simplified syntax fragment given in Table 2).

5. Constraints

Given a spatial application, and using the proposed system, the relationships that are desired to
exist between objects are expressed in terms of constraints on the possible locations for those
objects. Constraints comprise two operands and an infix operator linking the two operands. Each
operand, in turn, comprises one or more object locations (typically identified by an object name).
Satisfaction of a constraint will result in one or more pairs of compatible object locations according
to the nature of the constraint. For example given two objects, X and Y, each of which has three
locations associated with it, then there are nine possible pairs of locations of which one or more
may satisfy the constraint. Thus, as a result of satisfying a constraint, the maximum number of
solutions that may result is equivalent to the size of the Cartesian product of the two groups of



<INSTANCEDECS> <INSTANCEDEC>

| <INSTANCEDEC> <INSTANCEDECS>

<INSTANCEDEC> "instance ('
| "instance (’

| "instance (’

<ID> ‘,’ CLASSNAME ‘).’ ;
<ID> ‘,’ CLASSNAME ‘,’ <LOCATION> ‘).’
<ID> ‘,’ CLASSNAME ‘,’ <LOCATION> °,’

<ATTRIBUTES> ‘).’

<ATTRIBUTES> <ATTRIBUTE>

| <ATTRIBUTE> ‘,’<ATTRIBUTES>

<ATTRIBUTE> ‘subShape (* <SETTA>
‘rotation ()’
‘include (’ <ID> ')’

|
|
| ‘exclude ('’ <ID> V)’
|
|

\)I

‘size (! <OPERATOR> N
‘contiguous (’ ‘)’

\)I

<ID> OBJECT

| <SETTA>

<LOCATION> ‘7 <SETTA>

I]I,.

Table 2: Instance declaration syntax

locations. In the following section, where the operation of the system is discussed, the efficiency
concerns associated with the generation of a large number of solutions are addressed. Note that if
no pair of locations satisfies the constraint the constraint is considered to have failed and conse-
quently no solution can be generated for the given problem in its current form.

Three categories of constraint are supported:

1y

2)

3)

Filters: Constraints that consider each pair of locations associated with a constraint and only
"pass" those that satisfy the constraint operator. Such constraints can only operate between
fixed and/or free objects where definite locations for objects either exist or can be generated.
Currently the system supports five filters: equals, subset, superset, disjoint and
intersects. The expressiveness of the last can be increased by specifying the nature of the
intersection to be less than, greater than or equal to some magnitude.

Mappings: Constraints that operate between shapeless objects and fixed or free objects and
serve to prune the location space associated with the shapeless object by mapping some opera-
tion onto the location space with respect to the location(s) associated with the given fixed or
free objects. The system supports two mapping operators complement and intersects.
Again in the case of the intersection operator the nature of the intersection can be specified. On
satisfaction of a mapping constraint there may be contiguity and/or size requirements associ-
ated with the referenced shapeless object in which case the resulting space must be validated
with respect to these requirements before satisfaction of the constraint can be said to be com-
plete.

Group filters: Similar to (1) except that the prefix or postfix operand comprises locations associ-
ated with more than one object.

Using constraints of the above form many of the standard temporal ([Allen, 1983], [Dechter, 1991],
[Ladkin, 1992]) and topological ([Egenhofer, 1994], [Cohn, 1995], [Herndndez 1991]) relations
encountered in the spatio-temporal literature can be specified. The expressiveness of the above



constraint system can be significantly increased by incorporating the notion of offsets. Offsets are
sets of addresses that are applied to locations, associated with the operands for a constraint, prior to
attempting to satisfy that constraint. In this manner we can identify spaces associated with locations
(for example we can identify (say) the area to the south-west of some 2-D location) or we can
expand locations either uniformly or in some direction. Offsets may be applied to all the addresses
associated with a location or only to the origin for the shape definition. The latter is defined as the
corner address, of the minimum surrounding orthogonal parallelepiped for the shape, nearest the
origin of the object space.

Although the expressiveness of constraints is greatly increased using offsets, they cannot easily be
used to identify shapes defined by uniformly "shrinking" a location. To this end a shrink option is
also provided. In addition offsets may be further influenced by insisting that certain groups of
addresses are included or excluded.

Using the scripting language constraints are specified as indicated in Table 3.

<CONSTRAINTDEC> : <CONSTRAINT>
| <CONSTRAINT> <CONSTRAINTDEC>

<CONSTRAINT> : ‘constraint (! <OPERAND> ‘,’ OPERATOR ‘,’
<OPERAND> ‘).’ ;

<OPERAND> : <OBJECT>
| <OBJECT> ',’" <OFFSETS>
| <SETTA>
| <SETTA> ‘,’ <OFFSETS>

<OFFSETS> : <OFFSET>
| <OFFSET> <OFFSET_ATTRIBUTE>

<OFFSET_ATTRIBUTE> : ‘include (* <ID> YY)’
| ‘exclude (" <ID> ')’/

4

Table 3: Constraint declaration syntax.

6 Operation

Scripts are passed to the reasoning system. This incorporates a lexical analyser and a parser which
translates the script into a set of object and constraint data structures. The constraints are then used
to verify object locations, discriminate between candidate locations for free objects and to "prune"
the location space associated with shapeless objects. The result is stored in a solution tree which is
constructed and destructed dynamically as the solution process progresses. Nodes in the tree repre-
sent alternatives encountered during the solution process where a constraint can be satisfied in more
than one manner. This typically occurs when a constraint incorporates a free object that has more
than one candidate location associated with it. Wherever a node occurs in the tree the solution pro-
cess continues in a depth first manner. If a given spatial problem has only one solution the resulting
solution tree will comprise only a single node.

The aim of the constraint satisfaction strategy used is to limit the growth of the solution tree. This is
achieved through:

1) A constraint selection process which, on each iteration, seeks to minimise the number of candi-
date solutions that may result on satisfaction of the constraint.



2) A merging mechanism which, should more than one solution be generated, attempts to identify
solutions that can co-exist within the restrictions of the given constraint and consequently
reduce the number of branches that might otherwise be generated.

The constraint selection process commences by attempting to identify constraints that reference a
fixed object or a free object which has only one candidate location associated with it. These con-
straints will, after appropriate merging of solutions, produce only a single result and will therefore
not generate branches in the solution tree. During the processing of these "single solution" con-
straints it is likely that the number of candidate locations associated with affected free objects will
be decreased, and that a significant amount of pruning of location spaces associated with free
objects will have been undertaken. In addition, given a particular scenario, single solution con-
straints are the most critical - if such constraints cannot be satisfied no solution to the problem can
be generated. The constraint selection strategy used thus also aides the early identification of fruit-
less branches in the solution tree. Once all single solution constraints have been addressed the
remaining constraints will reference free and shapeless objects. Selections are then made according
to the number of candidate locations associated with free objects. A free object which has (for
example) two candidate solutions can, in the worst case, result in only two branches in the solution
tree; while a free object which has (say) ten branches associated with it will, in the worst case,
result in ten branches in the solution tree.

The research team have conducted experiments into the application of alternative mechanisms
whereby fruitless branches within the tree can be identified early in the search process. Examples
include dependency based backtracking and a priori pruning techniques such as forward checking
and "look ahead" (see [Mackworth, 1977] and [Jaffar, 1986] for further discussion). Howeyver, it
was found that the computational overheads involved were such that no advantage would be gained
from the adoption of such techniques. The current, heuristically guided, pruning mechanism there-
fore seems to be the most appropriate. Similar approaches have been used in many well established
problem solving systems, for example ALICE [Lauriere, 1978]. Whatever the case, the design of
the SPARTA system is such that the constraint satisfaction mechanism is independent of the repre-
sentation, so that the system is not tied to any particular Constraint Satisfaction Problem (CSP)
solving approach.

7. Conclusions

A qualitative spatio-temporal reasoning system has been described founded on a tesseral represen-
tation and linearisation of space. The mechanism offers the following significant advantages:

1) Itis universally applicable regardless of the number of dimensions under consideration.
2) It is suited to a wide range of applications.
3) It is conceptually simple and computationally effective.

These advantages are gained primarily as a consequence of the particular tesseral representation on
which the mechanism is founded which allows for computationally efficient manipulation of sets of
addresses to support the resolution process. An additional advantage of the representation is that is
compatible with many existing raster image and GIS formats.

The resulting system has been found to have a great many applications and has been successfully
targeted at a number areas, particularly Geographic Information Systems (GIS) ([Beattie, 1995])
and Environmental Impact Assessment (EIA) ([Beattie, 1996]). In addition the system has been
used to address classic Al problems, such as shape fitting problems ([Coenen, 1997]), and also a
number of further applications which do not generally fall under the remit of spatial reasoning, for
example timetabling and scheduling ([Coenen, 1995]). This testing has demonstrated that the
approach can be applied to scenarios involving any number of dimensions without incurring any
corresponding computational overhead as the number of dimensions increases. Current work is
focused on noise pollution modelling and assessment in the city of London, and marine electronic
chart interaction.
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