
-- --

SPATIAL REASONING USING THE QUAD TESSERAL

REPRESENTATION

Coenen, F.P., Beattie, B., Shave, M.J.R, Bench-Capon, T.J.M. and Diaz, D.

Department of Computer Science,

The University of Liverpool,

Chadwick Building,

P.O. Box 147,

Liverpool L69 3BX,

England.

email: f.p.coenen@csc.liv.ac.uk

Tel: 0151 794 3698

Fax: 0151 794 3715

ABSTRACT

A review of the application of the quad tesseral representation to support

spatial reasoning is presented. The principal feature of the representation is that it

linearises multi-dimensional space, while still providing for the description of

individual objects within that space and the relationships that may exist between

those objects (in any direction and through any number of dimensions). In addi-

tion the representation is supported by an arithmetic which allows the manipula-

tion (translation etc.) of spatial objects. Consequently, when incorporated into a

spatial reasoning system, all necessary processing can be implemented as if in

only one dimension. This offers two significant advantages over more conven-

tional multi-directional approaches to spatial reasoning. Firstly, many of the con-

cerns associated with the exponential increase in the number or relations that

need to be considered (as the number of dimensions under consideration

increases) are no longer relevant. Secondly, the computational cost of manipulat-

ing and comparing spatial objects remains static at its one dimensional level,

regardless of the number of dimensions under consideration.

KEYWORDS: Spatial Reasoning, Spatial Linguistics, Quad Tesseral Addressing.

October 9, 1997

-- --

SPATIAL REASONING USING THE QUAD TESSERAL

REPRESENTATION

Coenen, F.P., Beattie, B., Shave, M.J.R, Bench-Capon, T.J.M. and Diaz, D.

Department of Computer Science,

The University of Liverpool,

Chadwick Building,

P.O. Box 147,

Liverpool L69 3BX,

England.

email: f.p.coenen@csc.liv.ac.uk

Tel: 0151 794 3698

Fax: 0151 794 3715

1. INTRODUCTION

There is a significant body of research work concerned with the representation of two-

dimensional space to support spatial reasoning using Constraint Satisfaction Problem (CSP) tech-

niques. Examples include the work of Freksa (1991), Hernández (1991) and Retz-Schmidt

(1988). Much of this work is based on a two-directional (X-Y) view of the space under considera-

tion and concentrates on the adaptation of well tried and tested one-dimensional (temporal) tech-

niques (such as those proposed by Allen (1991) or Dechter et al. (1991) to cite two examples) to

address two-dimensional reasoning. However, the scaling up of such one-dimensional techniques

to encompass two-dimensional reasoning results in:

1) A combinatorial explosion of the number of relations that must be considered and,

2) A corresponding increase in the computational cost of manipulating spatial objects (usually

implemented using trigonometric or matrix techniques).

-- --

- 2 -

These disadvantages are compounded when the scaling is extended to encompass three and four

dimensional reasoning.

In this paper we show how an alternative representation can be used to support spatial reasoning.

This representation is based on the concept of quad tesseral addressing (Diaz and Bell 1986, Gar-

gantini 1983) which, it is suggested, serves to avoid many of the concerns associated with tradi-

tional approaches to spatial reasoning. The features of this representation can be summarised as

follows:

• The linearisation of space.

• Data compression through the grouping of sequences of addresses in terms of a start and

end address.

• As a result of the above, computationally inexpensive implementation of "set operations"

and their comparison.

• A supporting arithmetic which facilitates translation through a tessellated space in any

direction (and through any number of dimensions).

• Applicability to N-dimensional space (although in this paper we will concentrate only on

two-dimensional space).

A more comprehensive discussion of the features of the quad tesseral representation is presented

in Section 2. When incorporated into a spatial reasoning system the representation offers the fol-

lowing advantages over more conventional multi-directional approaches:

• Arbitrarily shaped objects, regardless of their complexity, can be defined simply and con-

cisely in terms of sets of addresses (regardless of the number of dimensions under

-- --

- 3 -

consideration).

• All relationships between spatial objects can be expressed as if in one dimension and hence

many of the concerns associated with the number of relations that otherwise require consid-

eration are removed.

• The supporting arithmetic facilitates the effective description of the relationships that may

exist between spatial objects in terms of tesseral offsets.

• Computationally efficient comparison of objects can be achieved using the supporting arith-

metic and knowledge of the linearisation/sequencing.

These advantages will be expanded upon in Sections 3, 4 and 5. The description of spatial objects

will be considered in Section 3, and the definition of the relationships that may be required to

exist between objects in Section 4. In Section 5 consideration will be given to the manipulation of

spatial objects where the required relationships are interpreted as constraints.

The proposed technique has been incorporated into a spatial reasoning system which in turn has

been successfully applied to a number of application areas including: Geographic Information

System (GIS), Environmental Impact Assessment (EIA) and timetabling. Details of these applica-

tions are presented in Section 6.

2. THE QUAD TESSERAL REPRESENTATION

Tesseral addressing is based on ideas concerning hierarchical clustering developed in the 1960s

and 1970s to improve data access times (Morton 1966, see also Samet 1984), and atomic isohe-

dral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory

(Grunbaum & Shephard 1987). These two strands were brought together in the early 1980s when

a tesseral arithmetic was defined for the representation (Holroyd 1983). There are many excel-

lent works that deal in detail with the concept of tesseral addressing (see Diaz and Bell 1986,

-- --

- 4 -

Gargantini 1983). However, so that a complete understanding of the spatial reasoning technique

described can be gained, it is essential that the basic ideas behind the quad tesseral representation

are outlined here.

2.1. Tesseral Addressing

At its simplest tesseral addressing can be viewed as a method of labelling tiles in a two-

dimensional space. The addressing mechanism is as follows. Given a square area (Figure 1(a)) we

give this the address 0. If we now quarter this area (i.e. tessellate it) each quadrant (tile) will be

labelled as shown in Figure 1(b) assuming that the origin is located at the bottom left hand corner.

If we now also quarter these parent tiles we will produce child tiles as shown in Figure 1(c). Note

that each child tile takes an address made up of a left hand symbol corresponding to its parent’s

tesseral address and a right hand symbol corresponding to its position in relation to its siblings

(i.e. 0, 1, 2 or 3). In a similar manner we can produce grandchild nodes (Figure 1(d)) and so on

until some desired depth of tessellation is arrived at with new tesseral addresses generated by

always appending to the right of the parent tesseral address.

Using additional symbols (e.g. 4, 5, 6 and 7) we can use a similar approach to address 3-dimen-

sional space, and by adding further symbols (8, 9, A, B, C, D, E and F) address 4-dimensional

space.

2.2. Linearisation and the Morton sequence

One of the principal advantages of the quad tesseral representation, with respect to spatial reason-

ing, is that the addressing mechanism serves to linearise the object space of interest. If we con-

sider the addresses presented in Figure 1(d) to represent integers to the base four we can convert

these to decimals (Figure 2(a)) which then describe what is termed the Morton sequence (Figure

2(b)) after Morton (1966). In this paper sequences of tesseral addresses will be indicated using

-- --

- 5 -

0

00 01

02 03

000 001 010 011

002 003 012 013

020 021 030 031

022 023 032 033

0000 0001 0010 0011 0100 0101 0110 0111

0002 0003 0012 0013 0102 0103 0112 0113

0020 0021 0030 0031 0120 0121 0130 0131

0022 0023 0032 0033 0122 0123 0132 0133

0200 0201 0210 0211 0300 0301 0310 0311

0202 0203 0212 0213 0302 0303 0312 0313

0220 0221 0230 0231 0320 0321 0330 0331

0222 0223 0232 0233 0322 0323 0332 0333

(a) Positive space (b) Parent tiles

(c) Child tiles (d) Grand-child tiles
Figure 1: Tesseral addressing

the infix operator "..", where the prefix operand represents the start address for the sequence and

the postfix operand the end address. Thus the sequence given in Figure 2 would be described as

{0000..0333}. It is important to appreciate that such sequences represent sets (or sub-sets) of

addresses - hence the set notation.

2.3. Tesseral Addition

A further advantage offered by the quad tesseral representation is that it has an arithmetic (Hol-

royd 1983) which facilitates translation through the space in any desired direction simply by

adding a tesseral displacement. From Figure 1(b) we can see that to move (translate) from tile 00

to the right we must add 1; similarly to move up or diagonally to the top-right hand corner of the

-- --

- 6 -

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

(a) Morton numbering (b) Morton sequence
Figure 2: Morton sequencing

object space we add 2 or 3 respectively. By generating an addition table (Table 1) we can deter-

mine the result of adding any tesseral displacement to any tesseral address.

+ 0 1 2 3

0 0 1 2 3

1 1 10 3 12

2 2 3 20 21

3 3 12 21 30

Table 1: Tesseral addition table

The generation of this table is well understood and is described in Bell et al. (1983). Note that in

the table where a look up gives two digits the left most digit represents a carry. Note also that

multi-digit addition is performed using the place system in a fashion exactly analogous to ordi-

nary (base 10) arithmetic. Thus, from Figure 1(d), if we wish to translate 3 tiles to the right and 2

tiles up from the origin we will arrive at tile 0031. If we wish to make the same translation from

(say) tile 0023 we must add the tesseral displacement 0031 to the address 0023. From the

table, this will produce the expected tesseral address 0302.

Tesseral subtraction, although not described here, can be defined in a similar manner.

-- --

- 7 -

2.4. Negative Tesseral Addresses

Using tesseral addition we can translate to the right, upwards and diagonally in a broad "north-

easterly" direction. To translate in any other direction it is necessary to add a negative tesseral

address. Thus to support translation in all directions we also need to label the negative quadrants

of Cartesian space. In addition this must be done in such a manner that the arithmetic is still sup-

ported. In Figure 1(a) we labelled the positive quadrant 0 which gav e rise to the parent tesseral

addresses 00, 01, 02 and 03 (Figure 1(b)). Assuming a constant depth of resolution (i.e. all

tesseral addresses are made up of the same number of symbols), and with reference to Table 1, to

move from tile 01 to tile 00 we must add the tesseral offset 11 (ignoring any carry beyond the

address length). Thus, in Figure 1(b), the tile immediately to the left of tile 00 must be tile 11

and hence the quadrant immediately to the left of the positive quadrant must take the label 1.

Using the same process of deduction we can also determine the labels for the remaining two neg-

ative quadrants (Figure 3(a)). Thus the labelling of the first quadrant can now be extended to the

entire Cartesian space (see Figures 3(b) and 3(c)). As a result it is possible to translate, in any

direction, through a tessellated space by applying an appropriate tesseral displacement.

3 2

1 0

30 31 20 21

32 33 22 23

10 11 00 01

12 13 02 03

300 301310 311 200 201 210 211

302 303312 313 202 203 212 213

320 321330 331 220 221 230 231

322 323332 333 222 223 232 233

100 101110 111 000 001 010 011

102 103112 113 002 003 012 013

120 121130 131 020 021 030 031

122 123132 133 022 023 032 033

(a) Cartesian Space (b) Parent tiles (c) Child tiles
Figure 3: Tesseral addressing in all four quadrants

Again the negative labelling can be extended to three and four dimensions using appropriate sym-

bols.

-- --

- 8 -

3. SPATIAL OBJECTS

Spatial reasoning is concerned with the interrelationships that exist between objects that have spa-

tial characteristics. Such objects are considered to exist in some N-dimensional object space

whose dimensions are sufficiently large so as to ensure that all relevant objects are contained

somewhere within it. Further we can identify a number of attributes that such objects can take:

• Name

• Shape

• Location space.

The first acts as an identifier for the object and serves to group together the remaining attributes

under a single unifying label. In the following text we will use the symbols X and Y to indicate

such labels. The remaining attributes will be discussed in further detail in the following two sub-

sections.

3.1. Shape Attributes

A shape attribute describes the shape of a spatial object. To this end we can identify two types of

object, which we will refer to as tile and zone objects. A tile object, as its name suggests, occurs

at a single tesseral address. In temporal reasoning systems such objects are usually referred to as

instantaneous or point objects (Dechter et al. 1991, Bruce 1972). Note, however, that these

addresses, although treated primitively, hav e as many dimensions as the object space: it is this

feature that enables the straightforward linearisation of the space. Zones are then spatial objects

which occur over more than one tesseral address. In temporal reasoning terms such objects are

often referred to as intervals (after Allen 1983).

-- --

- 9 -

In conventional systems the shape of a zone object is usually described by defining its boundary

in terms of a set of vectors which, in turn, can be defined in terms of their start and end Cartesian

coordinates or in terms of a start point, direction and length. However, using this approach, it is

computationally expensive to determine the relationships that exist between such objects. Using a

tesseral representation any arbitrarily shaped object can be described and, more importantly,

related to other similarly defined objects.

To obtain the tesseral description of a two-dimensional object, given some object space, we place

the object so that the local origin (the south-west corner address) of the minimum bounding box

surrounding the object coincides with the origin of the object space. The shape of the object can

then be defined in terms of the set of tesseral addresses "included" in the object. In the case of a

tile object this will, of course, always be the zero tesseral address. In the case of a zone object this

will comprise a set of single and/or sequences of tesseral addresses. For example if we wish to

describe the shaded "doughnut" shape given in Figure 4(a), the shape would be placed within our

object space as indicated in Figure 4(b) and the appropriate tesseral addresses obtained, i.e. the set

{00003..000023, 00033..00103, 00112, 00122, 00130..00203, 00211,

00221, 00230..00300, 00310..00330}. Note that, from the "size" (number of digits)

of the addresses, we have assumed a 16×16 object space. Where the size of the object space is

unknown we can select an address size, up to some machine dependent maximum, which will

guarantee the inclusion of the required objects.

Thus from the above it is apparent that the tesseral representation allows the description of any

spatial object (contiguous or otherwise) and regardless of the complexity of its design. In the fol-

lowing text we will use the symbol XS and YS to indicate the set of tesseral addresses describing

the shape attribute associated with the objects X and Y respectively.

-- --

- 10 -

0010001101000101

000300120013010201030112

00200021 01300131

00220023 00330122 01320133

02000201 02110300 03100311

02020203 03120313

022102300231032003210330

0232023303220323

(a) (b)

Figure 4: Shape attribute definition.

3.2. Location Space Attributes

Every object has a location space attribute associated with it which describes the part of the object

space in which the object may be said to exist. This is defined in a similar manner to that used to

describe an object’s shape attribute, i.e. using single and/or sequences of tesseral addresses. In the

following text we will use the symbols XL and YL to indicate the location attributes associated

with the objects X and Y respectively.

The relationship between the shape and location space attributes associated with an object defines

the number of possible candidate locations for that object. This is described in terms of a list of

sets of tesseral addresses. In the following text we will use the symbols XC and YC to indicate the

candidate lists of sets of tesseral addresses for the objects X and Y respectively.

Given an object definition in the form of a predicate:

object(X,XS,XL)

we can generate the set XC as follows:

-- --

- 11 -

1. Initially XC is an empty list, {}.

2. For each t ∈ XL, T = t+XS

2. If T⊆ XL add T to XC.

where t is a single tesseral address belonging to a set of tesseral addresses, T is a set of tesseral

addresses which may represent an appropriate location for the object X, and XC is the list of loca-

tion sets of addresses associated with X. If the number of elements in the list XC (n(XC)) equals

zero the object is not physically realisable. If n(XC) = 1 the object has only one possible loca-

tion and hence the object is described as a fixed object. Otherwise, (n(XC) > 1) the object has a

number of possible candidate locations and is referred to as a free object.

The above process can best be illustrated by considering the following examples which assume a

4×4 object space (see Figure 5.

EXAMPLE 1 (Fixed tile object):

Consider a tile object X with a location space comprising a single address ({012}) (the shape

attribute for a tile object is also a single address (XS = {000}). As a result of applying the

shape attribute to the elements of XL only one possible location will be produced and hence X is a

fixed tile object.

object(X, {000}, {012})

∀ t ∈ XL+XS => 012+{000} = {012}

{012)⊆ {012}

XC = {{012}}, n(XC) = 1

-- --

- 12 -

EXAMPLE 2 (Free tile object):

Given another tile object, and a location space comprising more that one element we can deter-

mine a number of possible candidate locations for the object - four in this case.

object(X, {000}, {010..013})

∀ t ∈ XL+XS => 010+{000} = {010}
011+{000} = {011}

012+{000} = {012}

013+{000} = {013}

{010}⊆ {010..013}
{011}⊆ {010..013}
{012}⊆ {010..013}
{013}⊆ {010..013}

XC = {{010}, {011}, {012}, {013}}, n(XC) = 4

-- --

- 13 -

Shape Location(s)

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

(a) EXAMPLE 1 (Fixed tile object):

(b) EXAMPLE 2 (Free tile object):

(c) EXAMPLE 3 (Fixed zone object):

(d) EXAMPLE 4 (Free zone object):

Figure 5: Relationship between shape and location attributes

-- --

- 14 -

EXAMPLE 3 (Fixed zone object):

Similarly given a zone object (i.e. an object whose shape attribute is comprised of more than one

address) and a location space we again apply the shape attribute to the elements of XL to produce

a number of candidate locations. Note that in this case when we add XS to {031} one of the

addresses produced, 0120, is outside the object space and thus cannot form part of a candidate

location. As a consequence only one "candidate" location is found and the object is described as a

fixed object.

object(X, {000..001}, {030..031})

∀ t ∈ XL+XS => 030+{000..001} = {030..031}
031+{000..001} = {031, 0120}

{030..031}⊆ {030..031}
{031, 0120}⊆ {030..031}

XC = {{030..031}}, n(XC) = 1

EXAMPLE 4 (Free zone object):

Alternatively, if a number of candidate locations result from the calculation, the object is consid-

ered to be a free object. Note also that in this example the tesseral addresses 0200, 0201, 0210

and 0211 are all outside the object space and hence these addresses can not form part of any can-

didate location, leaving us with two candidate locations.

object(X, {000..003}, {020..030, 032})

∀ t ∈ XL+XS => 020+{000..003} = {020..023}
021+{000..003} = {021, 023, 030, 032}

022+{000..003} = {022..023, 0200..0201}

023+{000..003} = {023, 032, 0201, 0210}

030+{000..003} = {030..033}

032+{000..003} = {032..033, 0210..0211}

-- --

- 15 -

{020..023}⊆ {020..030, 032}
{021, 023, 030, 032}⊆ {020..030, 032}
{022..023, 0200..0201}⊆ {020..030, 032}
{023, 032, 0201, 0210}⊆ {020..030, 032}
{030..033}⊆ {020..030, 032}
{032..033, 0210..0211}⊆ {020..030, 032}

XC = {{020..023}, {021, 023, 030, 032}}. n(XC) = 2

4. SPATIAL RELATIONSHIPS

There is a rich body of research work concerned with the "linguistics" of spatial reasoning - the

taxonomy whereby the relationships between spatially distributed entities can be classified. This

has its roots in the 26 one-dimensional relations that can exists between points and/or intervals,

namely 13 interval-interval relations, 5 interval-point relations, 5 point-interval relations and 3

point-point relations (see Allen (1983) and Hamblin (1971) for further discussion). For many

applications we also need to consider the negation of such relations. These can be expressed sim-

ply by disjoining groups of relations. However, for practical purposes disjunctions are awkward

and cumbersome to manipulate and thus it is more computationally expedient to include a further

26 negative relations. Some authors (for example Freksa 1992) also identify sets of partial rela-

tions which apply given incomplete data. Further, to make relationships more expressive the con-

cept of offsets (Coenen et al. 1994) can be included so that an object X can be said to be a certain

distance before or after an object Y.

When scaling up this taxonomy to address the relationships that can exist in two-dimensional

space it is not effective to extend the above 26 one-dimensional relationships to two directions as

this will give rise to 228 relations (13×13 interval-interval relations, 5×5 interval-point relations,

5×5 point-interval relations and 3×3 point-point relations). A significant amount of work has been

undertaken to reduce the number of relations that need to be considered when reasoning about

multi-dimensional space. One approach is to define all relationships in terms of point-point

-- --

- 16 -

relationships. This is an approach made popular by many point-based temporal reasoning systems

(see Bruce (1972), Ladkin (1987, 1992), Dechter et al. (1991) and Maiocchi (1992)). Other

authors (Chang et al. 1987, Lee and Hsu 1992) suggest that the number of relations that need to

be expressed can be reduced by decomposing a spatial problem into its constituent dimensions

and performing any required reasoning in each dimension in turn. Alternatively, Hernández

(1991) proposes a system whereby relationships are described in terms of a projection and orien-

tation relation, where the first defines how the boundaries of an object relate and the second how

areas are placed relative to each other.

However, all such proposals to reduce the number of relations that need to be considered with

respect to two-dimensional space are based on the assumption that this space should be repre-

sented using a conventional "twin-directional" representation. Using the quad tesseral representa-

tion (which has the effect of linearising space) only one-dimensional relationships need to be con-

sidered. More specifically the following two relations are suggested:

1. isSubsetOf (⊆): A relation which expresses the requirement that a spatial object is located

within some area defined with respect to a second object.

2. isNotSubsetOf (⊆): The negation of the isSubsetOf relation, which expresses the relation-

ship that a spatial object is not located within some area defined with respect to a second

object.

The area in question can again be defined in terms of a set of tesseral addresses. However, in this

case the tesseral addresses are considered to be offsets which must be applied to the location set

of tesseral addresses associated with the second object. For example given two objects, X and Y

and a 8×8 object space, the relation Y within X (i.e. that the location set of tesseral addresses YL

must be a subset of the location set of tesseral addresses XL) can be expressed thus:

-- --

- 17 -

Y isSubsetOf X {000}

where the set {000} represents the set of tesseral offsets (D) which must be applied to the loca-

tion set of tesseral addresses (XL) associated with X.

Similarly the relationship that (say) Y is not to the south-west of X can be expressed as:

Y isNotSubsetOf X {3000..3333}

where the set of tesseral address {3000..3333} define the south-west quadrant of the example

8×8 object space under consideration. Note that the above actually expresses the relation

YL⊆ XL+{3000..3333}. Alternatively the above can be considered to express the relation

YL-{3000..3333}⊆ XL, where D is applied to (tesseraly subtracted from) the set YL instead of

XL.

5. CONSTRAINTS AND CONSTRAINT SATISFACTION

Given a means of defining a set of spatial objects and a group of associated relations describing

the relationships that exist between these objects, we can use these descriptions to express spatial

problems whereby the definition of the set of objects becomes the domain of discourse and the

relations define the constraints affecting this domain. Spatial problem scenarios couched in these

terms can thus be categorised as Constraint Satisfaction Problems (CSP). Such problems can gen-

erally be defined in terms of a set of variables I = {X1, X2, .., Xn} that can take values

from the finite domains {D1, D2, .., Dn} respectively, and a set of constraints which spec-

ify which values are compatible with each other. A solution to a CSP is then an assignment of val-

ues to all variables which satisfy all constraints. Given that the domains under consideration are

-- --

- 18 -

finite, and assuming no contradictory constraints, a solution or solutions to a CSP is always possi-

ble. The real problem associated with CSP is that of complexity (CSP are NP-complete) and, as a

result, efficiency.

The most straightforward method of solving a CSP is to use a "generate and test" paradigm

whereby every solution to a CSP is generated and tested against the given constraints. However,

this is a very inefficient approach. A more desirable paradigm is to use a depth-first tree search

approach supported by some form of a-priori pruning so that fruitless branches can be found as

early as possible (see van Hentenryck (1989) for further discussion). An alternative approach is

to use constraint propagation techniques where variables range over a set of values and con-

straints are used to restrict this set of values (see Mackworth 1977, Mackworth and Freuder 1985

and Mohr and Henderson 1986). This is the approach that is advocated here. Constraints are used

to "prune" the location sets of tesseral addresses associated with each object so that a final config-

uration (or set of configurations) which satisfies all the constraints is arrived at.

In the previous Section it was proposed that the number of specific relations that need to be con-

sidered in two dimensions can be restricted to two, isSubsetOf and isNotSubsetOf. We express

such relations as constraints thus:

constraint(X,isSubsetOf,Y,D)

or

constraint(X,isNotSubsetOf,Y,D)

where D represents a set of offset tesseral addresses.

The satisfaction of these constraints first requires the generation of the candidate lists of sets of

tesseral addresses XC and YC as described in Section 3. The values n(XC) and n(YC) then

-- --

- 19 -

indicate the number of potential branches that will result if the constraint is satisfied with respect

to X or Y. Giv en that we wish to minimise the number of branches in the solution tree each con-

straint should be satisfied accordingly. Thus the solution of a isSubsetOf constraint can be defined

as follows:

if (n(YC)<(n(XC)) then (∀ t ∈ YC)
determine the set XLnew = XL∩(t+D)

if (XLnew =) no solution for t

determine the set XCnew

if (XCnew =) no solution for t

otherwise (XLpruned = ∪ (XCnew)) and (YLpruned = t)

otherwise (∀ t ∈ XC)
determine the set YLnew = YL∩(t-D)

if (YLnew =) no solution for t

determine the set YCnew

if (YCnew =) no solution for t

otherwise (XLpruned = t) and (YLpruned = ∪ (YCnew))

where the ∪ operator indicates the union of all the sets in the indicated list (XC or YC). Note that

XCnew and YCnew (the "new" set of candidate locations obtained from XLnew or YLnew as

appropriate) are calculated in the same manner, using XS and YS respectively, as that used to cal-

culate XC and YC (see Section 3). Note also that the satisfaction of a constraint results in "pruned"

location lists for the objects in question. Note also that the + and - operators used here indicate the

tesseral application (addition or subtraction) of every member of the set D to each member of the

set t.

The satisfaction of the isNotSubsetOf constraint is then defined thus:

-- --

- 20 -

if (n(YC)<(n(XC)) then (∀ t ∈ YC)
determine the set XLnew = XL∩(t+D)

if (XLnew =) no solution for t

determine the set XCnew

if (XCnew =) no solution for t

otherwise (XLpruned = union(XCnew)) and (YLpruned = t)

otherwise (∀ t ∈ XC)
determine the set YLnew = YL∩ (t-D)

if (YLnew =) no solution for t

determine the set XCnew

if (YCnew =) no solution for t

otherwise (XLpruned = t) and (YLpruned = union(YCnew))

To demonstrate more clearly the satisfaction of individual constraints, a number of examples are

given below and illustrated in Figure 6. The examples clearly illustrate both the versatility of the

suggested tesseral approach, and the elegant method whereby constraints defined in this manner

can be processed.

EXAMPLE 5 (Figure 6(a)):

Given two tile objects X and Y such that the Y is fixed and X is free (with 16 candidate locations),

and a requirement that the location of X is a subset of Y this is expressed as follows:

constraint(X,isSubsetOf,Y,{000})

object(X,{000},{000..033})

object(Y,{000},{030})

The required processing then produces the result that only one candidate address for Y is appro-

priate. Note that the constraint is resolved with respect to Y because n(YC) is less than n(XC)

and that there are no offsets to be applied in this case, i.e. offsets = {000}.

-- --

- 21 -

Start Condition End (Pruned) condition

= XL/XLpruned = YL/YLpruned

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

0 1 10 11

2 3 12 13

20 21 30 31

22 23 32 33

(a) EXAMPLE 5

(b) EXAMPLE 6

(c) EXAMPLE 7

Figure 6: Constraint satisfaction

n(XC) = 16, n(YC) = 1, thus n(YC)<n(XC)

YC = {{030}}

t = {030}

XLnew = XL∩(t+D)
= {000..033}∩{030}+{000}
= {000..033}∩{030}

-- --

- 22 -

= {030}

XCnew = {{030}}

XLpruned = {030}, YLpruned = {030}

EXAMPLE 6 (Figure 6(b)):

Given a free 2×1 rectangular zone object X which has five possible candidate locations, and a free

tile object Y which has two possible locations, and a requirement that the zone object must not be

located immediately to the west of the tile object this is expressed as follows:

constraint(X,isNotSubsetOf,Y,{111})

object(X,{000, 001},{010..021, 030..031})

object(Y,{000},{000, 030})

The constraint is then processed with respect to Y (n(YC)<n(XC). The offset, {111} is applied

to each candidate location for Y and then a new location space for X obtained using a "not inter-

section" operator (∩). This produces two possible new location spaces which satisfy the con-

straint, and consequently two possible pairs of locations for X and Y, i.e. the constraint has two

possible solutions.

-- --

- 23 -

n(XC) = 5, n(YC) = 2, thus n(YC)<n(XC)

YC = {{000},{030}}

t = {000} or {030}

XLnew = XL∩(t+D)

= {010..021, 030..031}∩{000}+{111} or
= {010..021, 030..031}∩{030}+{111}

= {010..021, 030..031}∩{111} or
= {010..021, 030..031}∩{021}

= {010..021, 030..031} or

= {010..020, 030..031}

XCnew = {{010..011}, {012..013}, {020..021}, {021..030},

{030..031}} or

= {{010..011}, {012..013}, {030..031}}

XLpruned = {010..021, 030..031} and YLpruned = {000} or

XLpruned = {010..013, 030..031} and YLpruned = {030}

EXAMPLE 7 (Figure 6(c)):

Given two zone objects, X and Y, the first shaped in the form of a 3×3 tile cross and the second in

the form of a 2×2 tile box, and the requirement that X must not be contained in Y this will be

expressed thus:

constraint(X,isNotSubsetOf,Y,{000})

object(X,{001..003, 012, 021},{000..033})

object(Y,{000..003},{000..021, 030..031})

-- --

- 24 -

The constraint is then satisfied as follows:

n(XC) = 4, n(YC) = 6, n(XC)<n(YC)

XC = {{001..003, 012, 021}, {003, 010, 012..013, 030},

{003, 020..021, 023, 030}, {012, 021, 030..032}}

t = {001..003, 012, 021} or {003, 010, 012..013, 030} or

{003, 020..021, 023, 030} or {012, 021, 030..032}

YLnew = YL∩(t-D)

= {000..021, 030..031}∩{001..003, 012, 021}-{000} or
= {000..021, 030..031}∩{{003, 010, 012..013, 030}-{000} or
= {000..021, 030..031}∩{003, 020..021, 023, 030}-{000} or
= {000..021, 030..031}∩{012, 021, 030..032}-{000}

= {000, 010..011, 013..020, 030..031} or

= {000..002, 011, 020..021, 031} or

= {000..002, 010..013, 031} or

= {000..011, 013..020}

YCnew = or

= or

= {{010..013}} or

= {{000..003}}

XLpruned = {003, 020..021, 023, 030} and YLpruned = {010..013} or

XLpruned = {012, 021, 030..032} and YLpruned = {000..003}

5.1. Constraint Selection

The previous section demonstrated how individual constraints can be satisfied by manipulating

the associated sets of tesseral addresses using standard set operations. It was also noted that given

a set of constraints defining a spatial problem it is desirable that constraints are selected for satis-

faction in such a manner that the number of branches in the solution tree are minimised. In the

above section it was also illustrated that, given a constraint relating two objects X and Y, the num-

ber of branches that will result from the satisfaction of the constraint will be dependent on the val-

ues n(XC) and n(YC). Using these values, each constraint making up a spatial problem scenario

-- --

- 25 -

can be weighted so as to indicate the maximum number of branches that may result on satisfac-

tion of the constraint. Consequently constraints can be selected for satisfaction so as to minimise

the number and depth of branches in the solution tree.

6. APPLICATIONS

There are many application areas to which the above spatial reasoning mechanism is well suited.

A number of prominent example applications include:

1) Provision of spatial reasoning support for GIS - Geographic Information Systems (Beattie et

al. 1995).

2) Environmental impact assessment (Beattie et al. 1996).

3) Timetabling (Coenen et al. 1995).

However, it is conjectured here that the advantages offered through spatial reasoning based on a

tesseral representation are applicable to any problem domain which incorporates some spatial ele-

ment. To provide a greater "feel" for the nature of such applications each of the above listed

example applications will be considered in more detail in the following Sub-sections.

6.1. Spatial Reasoning Support for GIS

GIS are a well established part of computer technology and can be found in common usage

amongst the public utility providers and local government. However, it is generally acknowledged

that such systems have yet to attain their full potential in that they do not currently provide for

any spatial reasoning capability concerning the data they model. This is largely due to the Raster

and polyline (vector) representations adopted by such systems which are not considered to be

conducive to providing for a spatial reasoning capability without resort to computationally

-- --

- 26 -

expensive techniques. There are many areas where such a capability would offer significant bene-

fits, examples include transportation studies, forest resource management and ship routing. The

tesseral representation described here has been found to be an ideal vehicle for providing spatial

reasoning support for GIS in that it is directly compatible with raster GIS representations and, by

extension, polyline representations. Consequently it can provide all the functionality of traditional

GIS while at the same time supporting a spatial reasoning capability.

6.2. Environmental Impact Assessment

Subsequent to the issue of the European Council Directive 85/337/EEC in 1985 all member states

of the European Community are required to complete an Environmental Impact Assessment

(EIA) report for any major building project. A substantial part of such reports deal with two and

three dimensional spatial data and spatio-temporal data. However the computer support currently

available is limited to traditional GIS which are not well suited to the required task. To research

the requirements for computer support in drawing up EIA, a version of the tesseral reasoning sys-

tem was used to investigate the noise pollution considerations associated with road building pro-

grammes (Beattie et al. 1996). There were two issues to be addressed here, (1) identification of

the geographic locations suited to a proposed road programme with respect to given noise pollu-

tion levels and (2) identification of noise pollution "zones" that would result along a proposed

road plan. It was found that the proposed tesseral system could be used both to model provisional

road layouts (and produce noise pollution data reports with respect to those models), and to deter-

mine possible "routes" for a desired road system. Further the results were obtained in a computa-

tionally inexpensive manner and could be used to produce pictorial displays which could readily

be incorporated into EIA documents.

-- --

- 27 -

6.3. Timetabling

Timetabling is a well documented Constraint Satisfaction Problem (CSP) and is generally

addressed using established CSP techniques. The most common approach is to search through the

assignments to be made to find that which is most tightly constrained, and then to make the

assignment in a way which constrains subsequent assignments as little as possible. This process

continues until a solution is found or the system "gets stuck" in which case previously made

assignments must be "swapped". However, it was conjectured (Coenen et al. 1995) that any prob-

lem based on a tabular representation is essentially a spatial problem and can be solved using spa-

tial reasoning techniques. A university timetabling application was therefore implemented and

tested using the tesseral spatial reasoning technique described here. It was found that the resulting

system could easily verify existing timetables by representing all the resources concerned -

courses, course units, lecturing slots, rooms and members of staff - as either the axes of the object

space or as spatial objects, and defining the required relationships in terms of spatial constraints.

It was also shown that by using a multi-dimensional model, two-dimensional "slices" could be

produced so that individual timetables could be produced for particular courses or with respect to

particular members of staff or rooms. More generally the approach benefited from the broader

advantages offered by the representation.

7. EVALUATION

The applications of the tesseral approach to spatial reasoning described above offer both particu-

lar and general advantages in each case. However, during the development of the applications it

was found that the representation has associated with it the inherent weakness that translation

(which requires recourse to look-up tables) was not as computationally efficient as originally

envisaged. This has resulted in further work to discover alternative tesseral representations that

offer all the advantages of the quad tesseral approach while offering a more computationally

-- --

- 28 -

efficient techniques to support translation through multi-dimensional space.

A further difficulty encountered during the testing of the above applications was that user errors

often occurred when "inputting" address data. This was attributed to the unusual (non-Cartesian)

nature of the addressing system and the consequent non-intuitive linearisation that results. This

has resulted in further work to develop a tesseral spatial reasoning scripting language (supported

by a lexical analyser, parser and translator) that will allow users to express spatial problems in a

less error prone manner. To this end current further work to identify a more computationally effi-

cient representation is also directed at producing a simpler representation that can be both more

readily understood and has a more intuitively obvious linearisation associated with it. In the long

term the ideal interface would, of course, be a graphical "point and click" style interface.

A final limitation on the system is that the dimensions of the object space under consideration

must have some limit imposed on them. Given a well defined problem, such as a timetabling

problem, the dimensions of the object space will be precisely known. Given a less rigorously

defined problem, such as an EIA problem, some appropriate limit must be imposed which will

serve to meet the problem domain. Whatever the case the object space will always be limited by

the maximum integer size supported by the platform on which the system is mounted. Typically,

the maximum size of an address will be a 64 bit unsigned integer (some platforms support a 128

bit unsigned integer type). Consequently 264 addresses can be supported allowing definition of a

two dimensional object space measuring:

8

264 ×
8

264

Although it is acknowledged that this maximum object space may not be large enough to address

all applications, it is suggested that it is sufficient for a majority of cases.

-- --

- 29 -

8. CONCLUSIONS

In this paper we have presented a review of the advantages offered to spatial reasoning when the

quad tesseral representation is adopted. The advantages gained (over more traditional multi-

dimensional representations) can be summarised as follows:

1) Linearisation of space so that all reasoning need take place only in one-dimension while at

the same time supporting the description of complex two-dimensional shapes.

2) Simple description of spatial objects.

3) Effective manipulation of groups of tesseral addresses making full use of (Morton) sequenc-

ing and tesseral arithmetic.

4) As a result of 3, computationally efficient satisfaction of the relationships required to exist

between spatial objects.

As a result many of the concerns associated with traditional approaches to multi-dimensional rea-

soning, such as the combinatorial explosion of the number of relationships that need to be consid-

ered and the computational expense of manipulating spatial objects, are no longer relevant. Fur-

ther, by including additional symbols, the approach can be extended to encompass three and four-

dimensional reasoning.

The technique, as described in this paper, has been implemented in a tesseral spatial reasoning

system which has been successfully used to address a number of applications areas. Both the sys-

tem and the current versions of the tesseral representations used are still undergoing further devel-

opment. However, the research team have been greatly encouraged by the results produced so far.

-- --

- 30 -

REFERENCES

1. Allen, J.F. (1991). Time and Time Again: The Many Ways to Represent Time. International

Journal of Intelligent Systems, Vol 6, pp341-355.

2. Beattie, B., Coenen, F.P., Hough, A., Bench-Capon, T.J.M., Diaz, B.M. and Shave, M.J.R

(1996). Spatial Reasoning for Environmental Impact Assessment. Third International Con-

ference on GIS and Environmental Modelling, Santa Barbara: National Centre for Geo-

graphic Information and Analysis, WWW and CD.

3. Beattie, B., Coenen, F.P., Bench-Capon, T.J.M., Diaz, B.M. and Shave, M.J.R (1995). Spa-

tial Reasoning for GIS using a Tesseral Data Representation. In N. Revell and A.M. Tjoa

(eds.), Database and Expert Systems Applications, (Proceedings DEXA’95), Lecture Notes

in Computer Science 978}, Springer Verlag, pp207-216.

4. Bell, S.B.M., Diaz, B.M., Holroyd, F.C. and Jackson, M.J.J. (1983). Spatially Referenced

Methods of Processing Raster and Vector Data. Image and Vision Computing, Vol 1, No 4,

pp211-220.

5. Bruce, B.C. (1972). A model for Temporal References and Application in a Question

Answering Program. Artificial Intelligence, Vol 3, pp1-25.

6. Chang, S.K., Shi, Q.Y., and Yan, C.W. (1987). Iconic Indexing by 2-D Strings. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. PAM1-9, No 3, May,

pp413-428.

7. Coenen, F.P., Beattie, B., Bench-Capon, T.J.M., Shave, M.J.R and Diaz, B.M. (1995). Spa-

tial Reasoning for Timetabling: The TIMETABLER system. Proceedings of the 1st Interna-

tional Conference on the Practice and Theory of Automated Timetabling (ICPTAT’95),

Napier University, Edinburgh, pp57-68.

8. Dechter, R., Meiri, I. and Pearl, J. (1991). Temporal constraint networks. Artificial Intelli-

gence, Vol 49, pp61-95.

-- --

- 31 -

9. Diaz, B.M. and Bell, S.B.M. (1986). Spatial Data Processing using Tesseral Methods. Nat-

ural Environment Research Council publication, Swindon, England.

10. Freksa, C. (1991). Qualitative Spatial Reasoning. In Mark, D.M. and Frank, A.U. (eds).

Cognitive and linguistic Aspects of Geographic Space, Kluwer, Dordrecht, Netherlands,

pp361-372.

11. Freksa, C. (1992). Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence,

Vol 54, pp199-227.

12. Gargantini, I. (1983). An effective way to Represent Quadtrees. Communications of the

ACM, Vol 25, No 12, pp905-910.

13. Grunbaum, B. and Shephard, G.C. (1987). Tilings and Patterns, Freeman, New York.

14. Hamblin, C.L. (1971). Instants and Intervals. Studium Generale, Vol 24, pp127-134.

15. van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press,

Cambridge, Massachusetts.

16. Hernández, D. (1991). Relative Representation of spatial Knowledge: The 2-D Case. In

Mark, D.M. and Frank, A.U. (eds.), Cognitive and Linguistic Aspects of Geographic Space,

Kluwer, Dordrecht, Netherlands, pp373-385.

17. Holroyd, F.C. (1983). The Geometry of Tiling Hierarchies. Ars Combinatoria, Vol 16B,

pp211-244.

18. Ladkin, P.B. (1987). Models of Axioms for Time Intervals. Proceedings AAAI’87, Seattle,

WA, pp234-239.

19. Ladkin, P. (1992). Effective Solution of Qualitative Interval Constraint Problems. Artificial

Intelligence, Vol 52, pp105-124.

20. Lee, S. Y., and Hsu F. J. (1992). Spatial Reasoning and Similarity Retrieval of Images

Using 2D C-String Knowledge Representation. Pattern Recognition, Vol 25, No 3,

pp305-318.

-- --

- 32 -

21. Mackworth, A.K. (1977). Consistency in Networks of Relations. AI Journal, Vol 8, No 1,

pp99-118.

22. Mackworth, A.K. and Freuder, E.C. (1985). The Complexity of Some Polynomial Network

Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence, Vol

25, pp65-74.

23. Mohr, R. and Henderson, J.C. (1986). Arc and Path Consistency Revisited. Artificial Intel-

ligence, Vol 28, pp225-233.

24. Maiocchi, R. (1992). Automatic Deduction of Temporal Information. ACM Transactions

on Database Systems, Vol 4, No 4, pp647-688.

25. Morton, G.M. (1966). A Computer Oriented Geodetic Data Base, and a New Technique in

File Sequencing. IBM Canada Ltd., 1 March 1966.

26. Retz-Schmidt, G. (1988). Various Views on Spatial Preposition. AI Magazine, Vol 9, No 2,

pp95-105.

27. Samet, H. (1984). The Quadtree and Related Data Structures. ACM Comput. Survey, Vol

16, No 2, pp187-260.

-- --

