
A Multi-Agent Legal Argument Generator

Mark Allen' Trevor Bench-Capon2 and Geof Staniford'
LIAL - Legal Informatics at Liverpool

Abstract

One of the most SigniJicant series of experiments in
AI and Law is the investigation of case based
reasoning carried out in the HYPO, CABERET and
CATO projects. It is important to understand what
has been achieved in these experiments, and this
requires that the techniques be applied to a variery
of domains. The techniques are not, however,
straightforward to appb. In order to provide an
experimental environment for investigating the
techniques further, we have re-implemented the
central argument generation process as a set of
agents written in JAVA using IBM's Aglet agent
building framework. By using this environment it
will be possible to explore the general applicability
of the techniques. In this paper we give a summary
of an algorithmic description of argument buiIding
in HYPO and CATO. and describe our
implementation of the algorithm.

1. Introduction
In the foreword to their excellent book on the series
of MYCIN experiments (Buchanan and Shortliffe
1984), the authors wrote:

"In the present state of AI, it is all too easy to
move on to the next system without devoting
sufficient energies to trying to understand
what has been wrought, and to doing so in
such a way that adds to the explicit body of
science." (p xiv).

One factor underlying the rapid assimilation of
MYCIN ideas into the community was the
existence of the expert system shell, EMYCIN,
which allowed for easy application of the ideas to a
variety of domains, permitting a greater
understanding and a sounder basis for
generalisation. But in general, their criticism
remains true today. AI progresses through
experiments, but even successful and important
experiments need to be thoroughly understood and
made easily replicable if they are to become part of

the received wisdom of the subject. AI and Law
provides some instructive examples. There have
been several important and widely known
experiments, not all of which have been sufficiently
understood and exploited by the community.

In this respect two of the most famous examples
provide an important contrast. Consider first the
classic logic programming experiment of the
British Nationality Act (BNA) (Sergot et a1 1986).
Working out "what has been wrought" - and what
has not been wrought - here has been a major
activity of logical programming inclined workers in
AI and law ever since. HYPO, developed by
Rissland and Ashley and best described in Ashley
(1990), however, despite being the key program
representing the CBR approach to AI and Law, has
proved far more difficult for others to build on.

Partly this is because of intrinsic differences in the
experiments: the BNA experiment was based on a
rather simple hypothesis: that a legal expert system
could be built by:
1) Representing the relevant legislation in

2) Executing the representation using Prolog
augmented by a "Query the user" (Sergot
1983) module.

Given the wide understanding of the formalism
and the ready availability of the required
environment, it was possible to reproduce the
experiment in other domains, and reflect on the
strengths and limitations of the approach. HYPO,
on the other hand, applies some sophisticated and
specific techniques, to a rather special
representation. As a result, despite its influence,
and the fact that its developers have refined it in
separate directions (CABERET (Skalak and
Rissland 1992), and CATO (Aleven 1997)) we
have not seen the proliferation of HYPO-like
developments that would help us to fully
understand its strengths and limitations to the
extent that we do with legal logic programs. One
possible exception is the reconstruction of Prakken
and Sartor [1998), which helps to explain the logic

, executable logic;

of the reasoning,

Chester, College, Chester, UK.
Department of Computer Science, The University of Liverpool, Liverpool, UK.

Liverpool John Moores University, Liverpool, UK.

2

but falls well short of providing

1080
0-7695-0680-1/00 $10.00 0 2000 IEEE

tools to allow for experimentation in different
domains.

c-factors make the new case more favourable.
d-factors make the case Zess favourable.

In an attempt to improve this situation, one of the
current authors provided in Bench-Capon (1997) a
description of the underlying collection of
algorithms used in HYPO (and the CATO
extensions). This breaks HYPOS argument
generation down into a series of components, each
specified using pseudo-code. While this articulated
the various mechanisms in HYPO, it does not
immediately provide a readily usable tool for
experimentation comparable to that supplied by
Prolog for the logic programming approach. In this
paper we therefore go a step fiuther and describe a
modular implementation of the HYPOKATO
algorithms, which we hope can be used to provide
the required experimental vehicle.

Section 2 summarises the expression of
HYPO/CATO as a set of algorithms. Section 3
describes the design of the implementation in terms
of a multi-agent architecture. Section 4 gives some
detail on the actual implementation. Section 5
offers some suggestions for future work.

2. Argument in HYPO
The aim of HYPO (and CATO) is to construct an
argument which could be advanced concerning a
new case, the various steps of which are supported
by precedents taken from the case law of the
domain (US Trade Secrets Law). In fact, these
systems can produce arguments for either side, but
in what follows I shall consider that the system is
trying to argue for the plaintiff.

Cases are represented using factors, which are
distinctions that can be drawn in a case and which
favour one side or other. Factors can be one of
three kinds. A binary factor is either true or false. A
dimension has a value representing its strength and
also has a direction (whether high or low values
favour the plaintiff). Finally (introduced by CATO)
there are abstract factors, which relates factors in a
hierarchy, the children of a given abstract factor
either supporting or militating against that abstract
factor.

When past cases are compared with a current case,
there are four possibilities, as shown in Figure 1.

Figure 1: classification of factors when
comparing cases in HYPO
Depending on their classification according to the
above scheme, factors have different effects:

a-factors are pro-factors in common.
0 b-factors are con-factors in common.

prccrdrnt
case

Note that the new case is compared with the
precedents on an individual basis so that, for
example, an a-factor with respect to one case might
be a c-factor with respect to another. The
classification of the factors in this way is an
essential input to the argument algorithm. Each of
the various moves makes use of this classification.
In HYPO'S model an argument has three stages,
called "plies".

State Point. The plaintiff analogises a
precedent case to the current fact situation
(CFS) and makes the claim that the court
should find for them. The precedent must have
some A-factors, and precedents can be ranked
in order of support for the plaintiff according
to the existence of other factors: The order is:
AC, ABC, AB, A, ACD, ABCD, ABD, AD.
(In general C factors strengthen the plaintiffs
case, whereas D factors allow the defendant
room for manoeuvre.
Respond. The defendant responds, either by
citing a counter example (a past case at least as
on-point, i.e. containing as many A and B
factors, as that cited by the plaintiff) or by
distinguishing the cited case, citing D factors.
CATO also allows the distinctions to be
emphasised, if appropriate, using the factor
hierarchy.
Rebut. The plaintiff rebuts the response. This
means distinguishing the counter example,
(using C factors), showing any weaknesses are
not fatal, (citing a case decided for the plaintiff
where the D factors were present), and (in
CATO), downplaying the significance of any
distinctions and up playing any strengths,
again using the factor hierarchy.

108 1

From this we can see that each of the plies contains
a number of moves: in each case we have to
establish whether the move can be made, and to
find a suitable precedent case to licence the move.
A full specification of all the moves is given in
Bench-Capon (1997).

SOLICITOR

L-.--J

I /

------“.I 3. The Program i
It was decided to implement the system using a
multi-agent architecture. This was motivated ’
mainly by a desire to use a highly modular design, +--------

to make experimentation with more, different, or j
allows us to take advantage of any scope for i~..--:z-d!

i

even fewer, components readily possible. It also [--;A:;-~.-7

I
1
i

Figure 2 System Role Model

parallelisation that may present itself.

We began modelling the system by identifying and
assigning roles to each agent that would take part in
the argument. This gave us:

A Solicitor. This agent interfaces with the user,
organises the argument, creates and
communicates with other agents.
A Judge. This agent accepts and displays parts
of the argument. It also ensures that the
argument follows the specified rules.
Various “expert” agents. There is one such
agent for each possible move in the argument,
as identified in Bench-Capon (1997). For
example there are state point and counter
example experts. These build their own part of
the argument and send it to the judge.
A Case Librarian. This agent guards the case
base and provides access to the cases. When
presented with a new case, it creates a contact
agent.
The Contact Agent handles communications
with the experts. This agent also carries out the
classification and sorting. If the case base is
large this agent may spawn a team of agents to
classify the cases in parallel.
A Context Register. This agent maintains a list
of active agents in the local context. It also has
a list of other context registers on other
servers. The list of active servers is maintained
through a cgi program an a web server. A
context server’s address is published as a
property in its local context.
Finder agents. Created by the solicitor to
search out the case librarian.

The role model for the system is shown in Figure 2.
Each Expert Agent is started by the solicitor and
passed the data relating to the case under
consideration. It then constructs its argument and
send it to the judge. Where possible the experts act
in parallel. For example the stages of the response
of distinguish and counter example can be done in
parallel.

The system is written in Java using IBM’s Aglet4
agent framework (Lange and Oshima (1998)). This
provides a class library supplying the framework
for basic agent actions such as movement from one
server to another, message passing, serialisation of
data, and security (based on the standard Java
model’). Java is the current standard language for
agent creation. Used, for example, by Zeus‘, Jade’
or JaLite‘. This is because Java provides platform
independence, secure execution, dynamic class
loading, multi-thread programming, object
serialisation, and reflection. The drawbacks include
execution speed, and the lack of resource control -
Agents can use up processor cycles and memory
without limit. Also there is no reference protection
- an agent cannot control what access another agent
has to its public methods.

4. Example Agent

To give a flavour of the details of the
implementation, in this section we will describe the
coding of one of our expert agents. The agent we
shall discuss is the distinguish factors expert. The
role of this agent is to find any factors which can be
used to distinguish the precedent from the case

Aglet is a cross between Agent and Applet
Java Secwiry J. S. Fritzinger and M. Mueller Sun

Micro Systems Inc
htto://iava.sun.com/docs/white/index. html
Qeus
http://www. labs. bt.com/projects/agents/zeus/index.htm

Jade httD://sharon.cselt.it/moiects/iade/
JatLite http://java.stanford.edu/

1082

http://www
http://java.stanford.edu

under consideration. Essentially these are pro-
plaintiff factors present in the precedent and absent
from the current case, or pro-defendant factors
present in the current case but absent from the
precedent (what we call dzfators). This agent will
also emphasis the distinctions if appropriate.

This agent is created by the solicitor agent. It
extends the Expert class, which contains the base
information required by all expert agents, including
the addresses of the judge and contact agents and
the new case. This data is passed through the
oncreation method.

public void
onCr ea t ion (Ob j ec t ini t)

Object [I
{

info=(Object [I) init;

judge= (AgletProxy) info [O] ;

contact= (AgletProxy) info [13 ;
newcase= (Case) info [2] ;

1
The init object is cast into an array of objects.
Each element of the array is then cast into the
appropriate type. An AgletProxy represents the
address of an agent.
The factor distinction algorithm looks for
weaknesses represented by ‘D’ classifications.

If case is AD, ABD or ACD
Write citation for cited case
Write “is distinguished because:”

The first job is to get the cited case. This was
passed to thejudge by the statepoint expert.

citedCase= (Case)
judge. sendMessage (new
Message (“CITED-CASE1’)) ;
if (citedCase.tv.numD==O)
I

sb . append (“\nNo
Distinctions”) ;

else
I
sb.append(tl\nll+citedCase.cas
eName+ ‘I is distinguished
because: I f) ;

1

1
The number of ‘D’ classified factors is stored in the
transient values object of the case. If this is
zero then no distinctions can be drawn and the
move is ended. If there are weaknesses then we
need to retrieve the “meta values” of the case type
from the contact - the agent that holds the
classified and sorted cases.

metaValues= (MetaValues)
contact.sendMessage(new
Message (“META-VALUES”) ;

This object maintains information about aspects of
the cases. For example how many factors there are,
which factors are dimensions and which are

abstract and the text relating to each factor. Now
we loop through each factor in the case to check if
it is ‘D’ classified.

i=O;i<metaValues.nu&erFactors;i++
for (int

1
1

if (citedcase. tv.classD.charAt (i)==
Case. SET)
i
if (metavalues .outcomes. charAt (i) ==
Case. DEFENDANT)
{
sb. append (“\nin new case”

+metaValues. factorText [il + I 1 . Not
so in”+citedCase. caseName) ;
sb.append(emphasiseDistinction(i))

1
else
{

Il+citedCase. caseName+”
Il+metaValues. factorText [i] + I 8 . not
so in “+newCase. caseName) ;
sb.append(emphasiseDistinction(i))

1
1
1
The classD array in the transient values object
records whether each factor is ‘D’ classified or not.
If it is we check from metavalues whether the
factor is pro-defendant or pro-plaintiff and then
build the argument accordingly. This is a direct
translation of the FD algorithm.

If D-factor is a d-factor

sb. append (“\nin

Write “in” NC
Write D-factor
Write ‘Wot so in“
Write cited case
Do ES

Once a ‘D’ factor is found and added to the
argument string the “emphasiseDistinction” method
is called with the factor number.

sb. append
(emphasiseDistinction (i)) ;

This method implements the Emphasise Distinction
Algorithm by searching for the highest abstract
factor supported by the factor we wish to
emphasise and which is not supported by any factor
in NC.
The argument is appended into the StringBuffer
“sb”. When all binary factors have been completed
the dimensions are distinguished (if possible). Then
a Message object is created and the argument text
set as a message argument. This is then sent to the
judge for display.
sb.append(distinguishDimensions0)

Message message=new
Message (tlDISTINGUISH-FACTORS”) :

1083

message.setArg("TEXT", sb. tostring(
1) ;
judqe.sendMessaqe(message);
On completion the agent destroys itself.
Communication errors are handled with a tv and
catch block. If the message fails to arrive the
Expert first establishes whether the Judge still lives.
If it does it resends - if it does not it destroys itself,
since if the Judge has failed then the argument will
need to be restarted from the beginning.

5. Conclusions and Further Work

In this paper we have described the design and
implementation of a system capable of generating
arguments in the style of HYPOKATO. The
intention is to use this as an experimental vehicle to
apply this style of argumentation generation to
other domains. We believe that it is important to do
this if we are to understand how generally
applicable these techniques are, and to come to a
better appreciation of the strengths and weaknesses
of the approach.

We therefore intend to use the program in two new
domains. The first domain will be a legal domain,
namely the interpretation of the phrase "arising out
of, and in the course, of employment" central to
decisions on compensation for Industrial Injuries.
As well as being interesting in its own right, this
will enable comparison with another important case
based reasoning system, Branting's GREBE
(Branting 1989), which also operated in this
domain. Secondly we would like to apply it also to
a non-legal domain. Currently we have not fvted on
a domain for this, but job interviews might be an
interesting possibility.

When we have used the system in these two
applications we will be in a position to assess the
usability of the system for building HYPO style
systems in different domains. If this is acceptable
we would hope to make the tool available to other
researchers. In this way a body of experimental
data will be accumulated which we would expect to
provide a good basis for coming to a verdict on the
effectiveness and applicability of the techniques.

References

Aleven, V., (1997). Teaching Case-Based
Argumentation Through a Model and Examples
PhD Dissertation University of Pittsburgh.
Ashley, K.D., (1990). Modelling Legal Argument:
Reasoning with Cases and Hypotheticals. MIT
Press: Cambridge, Mass.
Bench-Capon, T.J.M., (1997). Arguing with Cases.
In Legal Knowledge Based Systems, (Proceedings
of the 10" JURIX conference), GNI, Nijmegen, pp

Branting, L.K., (1989). Representing and Reusing
Explanations of Legal Precedents, in the Second
International Conference on AI and Law, ACM
Press: New York, pp103-110.
Buchanan, B.G., and Shortliffe, E.H., (1984). Rule
Based Expert Systems, Addison Wesley: Reading,
Mass.
Lange, D.B., and Oshima, M., (1998) Programming
and Deploying Java Mobile Agents with Aglets
Addison-Wesley.
Prakken, H., and Sartor, G., (1998). Modelling
Reasoning with Precedents in a Formal Dialogue
Game. Artijicial Intelligence and Law, Vol 6 Nos

Sergot, M.J. (1983). A query-the-user facility for
logic programming. In Integrated Interactive
Computer Systems (Degano, P., Sandewall, E.,
Eds). North-Holland, Amsterdam.
Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek,
F., Hammond, P., Cory, H.T. (1986) The British
Nationality Act as a Logic Program.
Communications of the ACM 29,5 (May 1986), pp

Skalak, D.B., and Rissland, E.L., (1992).
Arguments and Cases: An Inevitable Intertwiining.
Artificial Intelligence and Law, VolI No 1, pp 3-
42.

85-100.

2-4, pp 231-287.

370-386.

1084

