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Abstract 

Schrag and Crawford ( 1996) present strong experimental evidence that the occurrence of prime 
implicates of varying lengths in random instances of 3-SAT exhibits behaviour similar to the well- 
known phase transition phenomenon associated with satisfiability. Thus, as the ratio of number 
of clauses (m) to number of propositional variables (n) increases, random instances of 3-SAT 
progress from formulae which are generally satisfiable through to formulae which are generally not 
satisfiable, with an apparent sharp threshold being crossed when m/n - 4.2. For instances of 3- 
SAT, Schrag and Crawford ( 1996) examine with what probability the longest prime implicate has 
length k (for k > 0) -unsatisfiable formulae correspond to those having only a prime implicate 
of length O-demonstrating that similar behaviour arises. It is observed by Schrag and Crawford 
( 1996) that experiments failed to identify any instance of 3-SAT over nine propositional variables 
having a prime implicate of length 7 or greater, and it is conjectured that no such instances are 
possible. In this note we present a combinatorial argument establishing that no 3-SAT instance on 
n variables can have a prime implicate whose length exceeds max{ [n/21 + 1, L2n/3j }, validating 
this conjecture for the case n = 9. We further show that these bounds are the best possible. An 
easy corollary of the latter constructions is that for all k > 3, instances of k-SAT on n variables 
can be formed, that have prime implicates of length n - o(n). @ 1997 Elsevier Science B.V. 
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1. Definitions and notations 

X” = (x1,x*,... ,x,) denotes a set of n propositional variables. A literal is either 
a variable x or its negation 1. A clause C is a disjunction of literals; C is said to be 
trivial if it contains both the literal x and its negation, and is nontrivial otherwise. A 

CNF formula q5 over X,, is a conjunction of (nontrivial) clauses {Cl, CT,. . . , C,,}. For 
any CNF formula 4, f$ denotes the n-variable propositional logic function represented 
by $. The decision problem sutis$ubility (SAT) asks whether a given CIW formula 
4 is such that there exists any instantiation a of the propositional variables X,, of 4, 
for which f4( a) = 1. A k-CNF formula is a CNF formula in which every clause has 

exactly k literals. The decision problem k-SAT is the satisfiability problem restricted to 
k-CNF formulae. Similarly, for integers 1 < kl < k2 < . . . < k,, a (kl , . . . , k,) -CNF is 
a CNF formula in which the length of any clause is one of { kl , . . . , k,}. 

A CNF formula 4(X,,) is a maximal unsutisjable formula if 4 is unsatisfiable and 

VC E 4, the CNF formed by removing C from r$ is satisfiable. 
If f(X,,) is a propositional logic function over the variables X,, then a O-point of f 

is an instantiation CY E (0,l)” of the variables such that f(a) = 0. A clause C is an 
implicate of f( X,) if for all instantiations LY that yield C (cu) = 0, such an instantiation 

renders f(a) = 0. A clause C is a prime implicate of f if it is an implicate of f and 

no proper subset of the literals forming C defines an implicate of f. 

k-SAT(n) Ef (4: 4 is an instance of k-SAT over X,}, 

i.e., k-SAT(n) is the set of k-CNF formulae with n propositional variables. 

runk( f) dGf max{ JC I: C is a prime implicate of f}. 

r(n, k) d~fmax{runk(~~): 4 E k-SAT(n)}. 

For#E (kl,..., k,)-SAT(n), +i denotes the set of clauses C in 4 that contain exactly 

i literals. 
[xl denotes the smallest integer y such that y > x. 
1x1 denotes the largest integer y such that y < x. 

2. Main result 

2.1. Preliminaries 

In order to obtain the result, we proceed via three main stages. First we show that the 
value of r(n, k) is exactly determined by a measure defined on maximal unsatisfiable 

instances of ( 1,2, . . . , k)-SAT: this measure is denoted p( n, k) when introduced and 
used subsequently. The remaining parts then deal with proving upper and lower bounds 
for the specific case of ,u(n, 3). Our main result concerning r(n, 3) then follows as an 
easy corollary. 
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Definition 2.1. Vn, Vk > 2, the measure p(n, k) is defined as 

k-l 

max c 
(k-i)l+il: 4~ (1,2,...,k)-SAT(n) 

i=l 

and 4 is maximally unsatisfiable . (1) 

The motivation underlying the definition of p(n, k) is the following. Consider any 
qbE (1,2,... , k) -SAT( n) that is maximally unsatisfiable, i.e., 4 need not maximise the 

sum given in Definition 2.1. We can form a k-CNF formula rl, from 4 by introducing new 
variables into each clause of 4 that contains fewer than k literals. Now, the maximum 

number of new variables that could be added is CL;’ (k - i) I&l, since we can use k - 1 

new variables for each clause of length 1 in 4, k - 2 new variables for each clause 

of length 2 in 4, etc. Suppose that (yt , ~2,. . . , ys) is the set of new literals added to 

create the k-CNF $ from 4. We can observe two facts about $: firstly, q is an instance 
of k-SAT( n + s) ; secondly, the clause yi V yz V . . . V ys is a prime implicate of f,,, (a 
formal proof of the second assertion is given in Lemma 2.2). Thus, the definition of 
p( n, k) can be interpreted as capturing the maximum value s, such that a k-CNF of n+s 
variables having a prime implicate of length s can be formed from a ( 1,2, . . , k) -CNF 
of n variables. It follows from these observations that if it is not possible to form a 
4 E (1,2,... , k) -SAT( n) which is both maximally unsatisfiable and “has room” for 

s variables to be added to make a k-CNF formula, i.e., Ci=<’ (k - i) j&j < s, then no 

k-CNF of II + s variables can have a prime implicate of length s. A formal justification 
of these claims is given in the following lemma. 

Lemma 2.2. ‘dn 3 k 2 2, r(n, k) = max{t: t < p(n - t, k)}. 

Proof. We first establish that r(n, k) 3 max{t: t < ~(n - t, k)}. Let m denote 

max{t: t < ,x(n - t,k)} and the n propositional variables be partitioned into two 

sets yt,. . . ,y,, and xi,. , ,xn+,. We show how to construct a k-SAT instance 4,(n) 
for which (y] V . . . V ynl) is a prime implicate. From our definition of m, there exists 
a (1,2,... , k)-SAT instance 1,4 on n - m variables such that ~~=~’ (k - i) I$il > m and 
cc/ is maximally unsatisfiable. 4(n) is formed from 1c, by adding k - i literals from 

{yt , . . . , y,,!} to each clause in +i. Since m < ,u(n - m, k) this can be accomplished 
using all of the m literals y;. The resulting k-SAT instance 4 has yt V . . . V ynl as 

an implicate, since setting yi := 0, 1 6 i < m yields a formula that is equivalent to 
(c, and hence unsatisfiable, i.e., equivalent to 0. Furthermore yt V . . . V ylll must be a 
prime implicate of 4(n), for if a single yi is set to 1 with the remainder set to 0, 
then 4(n) reduces to a CNF formula whose clauses form a strict subset of the clauses 

of +. Such a formula must be satisfiable since fi is a maximal unsatisfiable instance 
of SAT. 

It remains to show that r(n, k) < max{t: t < ,u(n - t, k)}. Let 4 E k-SAT(n) such 
that rank(fb) = r(n, k) = m. Without loss of generality we can (by relabelling literals 
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and variables) assume that (xl V x2 V . V x,,,) is a maximum length prime implicate 
of j-4 and that no x E k-SAT(n) has rank(f,) = r(n,k) and 1x1 < 141. Note that 
a consequence of the latter property is that no clause of 4 contains lhe literal z~, for 

any 1 < i 6 m. Let 6,, denote the partial instantiation of the n variables, given by 
(xi := 0: 1 6 i < m). Consider the formula @ E (1,2,. . . , k)-SAT(n - m) that results 
by applying S,, to 4, i.e., reducing the number of variables in a clause containing an 
instance of the literal X, (1 6 i < rn)~ The resulting formula @ must be unsatisfiable 
since xl v .Vx,, is an implicate of f@ _ Furthermore, $ must be a maximal unsatisfiable 

instance. For suppose this were not so, and that some clause C E @ could be deleted 
without rendering fi - {C} satisfiable. If C E 4, i.e., C did not contain any of the 

literals xi ( 1 < i < m), then x = q5 - {C} would still have ran& fX) = m contradicting 
our assumption that 4 had a minimal number of clauses. If C # c#~ then (Q V C) E 4 
for some subset Q of the literals {xl,. . , x,,}. Without loss of generality, suppose that 

Q = {XI,..-A), h w ere r < k. If, fur some xi, x1 say, if is the case that xi $ C,j, 

‘dJci E 4 - {(Q V C>}, then 

f+((x, := 1,x2 :=o )..., x,, :=O)) =f@-{c} =o 

(notice that here we use the property of no clause of 4 containing the literal Ri for 
any I < i < m) contradicktg the assumption that $‘i, xi is a prime jmplisate. Thus, 

we may assume that Vx, E Q, 3Ci E 4 - {(Q V C)} such that xi E C,. NOW we 

get 

which contradicts the choke of 4 having a minimal number oi clauses. 
So, having established that (Ir is a maximal unsatisfiable instance of ( 1,2, . , k)-SAT, 

it follows that CL;‘< k - i) l&l 6 ,~(n - m, k). It is also the case, however, that m < 

cf=;’ (k - i> IthI? since each clause in & can account for at most k - i literals in the 

prime implicate x1 V. 1 V x,,. We thus have the inequality M 6 ,~(n - m, k), and hence 
r(n, k) < max{t: t < ~(n - t, k)) as claimed. Cl 

We note, in passing, that the conjecture in [3]--r(9,3) = 6-follows quite easily 
from the characterisation given by Lemma 2.2: suppose that r-(9,3) 2 7. Lemma 2.2 
then implies that either ~(2,3) 2 7 or /~(1,3) 2 8. The latter is clearly impossible, 

since the only maximal unsatisfiable formula of a single variable is x A f. If the former 

were true, then there would be a maximal unsatisfiabk q% say, in (1,2)-SAT(2) such 

that Z/$1 ) + /&I 2 7. Now it must be the case that /I+$) < 2, otherwise +I contains a 
literal and its negation and $ is not maximal. Without loss of generality, suppose that 
q41 = xl A x2. Since 21$_1) + It,b~l > 7, so I&[ > 3. But if we choose three distinct 
clauses of length 2 over two variables then at least one must be of the form (x1 V y) 
or (XI V y). Again the maximality of (L is contradicted since we have the LWO clauses 
XI A [xl V y) = XI or x2 A (x2 V y) = x2. This leaves only the case ]1,5,\ < I, but such 
would require I&l 2 5: this is impossible since there are only four distinct length 2 
clauses of two variables, 



PE. Dunne, T.I.M. Bench-Capon/Artificial Intelligence 92 (1997) 317-329 321 

Lemma 2.3. p( n, 3) 2 max{n + 3,2n}. 

Proof. For n = 1 and n = 2 the lemma may be verified directly from the ( 1,2,3)-CNF 
formulae 

xi A ,Ft ; Xi A x2 A (X, v X.2). 

For IZ 3 3, let $(n) denote the 2-SAT instance 

n-1 I,- 1 

I+!/(n) Zf<xl Vx,) A(51 VX,) A &iVXi+dA /j(iiVXi+,). 

i=I i=l 

We show that $(n) is a maximal unsatisfiable instance of 2-SAT(n) . First observe that 
$(n) is unsatisfiable. For consider any instantiation LY E (0, 1)” of its variables. If 

every variable has the same value instantiation then either the clause (xi V x,) or the 
clause (31 V X,) is false, rendering $(n) false. On the other hand, for any instantiation 
in which some variables take the value 0 and some the value 1, there must be some 

index i, such that the value of Xi differs from the value of Xi+l, In this case one of 

the clauses (Xi V &+I) or (Xi V x;+i) must be 0, again rendering I/J(~) equal to 0. 
To see that e(n) is maximal, consider any clause C E $(n) and the 2-SAT instance 
~(n, C) = @Cl(n) - {C} obtained by removing C from +(n). If C = (xt V x,) then 
the instantiation Xi := 0, ‘~‘1 < i < n, satisfies x since all of the remaining clauses 
contain at least one instance of a negated literal. A similar argument holds for the case 

of C = (Xi VT,,), using the instantiation Xi := 1. If C = (xi V Xi+t), then by considering 

the instantiation x.i := 0 ( 1 < j 6 i), Xj := 1 (i + 1 < j < n), it is easy to see that this 
satisfies ~(n, C). Similarly, for C = (Xi V Xi+1 ) the instantiation Xj := 1 (1 < j < i), 
X,j := 0, i + 1 < j 6 n produces a satisfying assignment of x( n, C) . 0 

2.2. Formula graphs for 2-SAT instances 

By virtue of Lemma 2.2, we wish to establish an upper bound on 21#~t 1 + 14~1 for 
any maximally unsatisfiable 4 E ( 1,2,3)-SAT(n). In order to do this, we consider 

two different possibilities for 4: the case when 4 has at least one clause containing a 
single literal; and the case when every clause of 4 contains at least two literals. The 
former case yields to a relatively straightforward inductive argument (Case 1 in the 
proof of Lemma 2.10 below). The second case, however, turns out to be rather more 

complicated and, in order to complete the upper bound proof, we need to bound the 
number of clauses of length 2 in maximally unsatisfiable instances of (2,3)-SAT(n). 
This we do in two stages: first considering the case were there are no clauses of 
length 3, i.e., maximally unsatisfiable instances of 2-SAT(n); and, having dealt with 

these, maximally unsatisfiable instances of (2,3)-SAT(n) containing at least one clause 
of length 3. Lemma 2.7 and Case 1 of Lemma 2.9 deal with the former instances; 
Lemma 2.8 and Case 2 of Lemma 2.9 are directed towards the latter class of formu- 
lae. 

To assist in deriving the bounds needed for each of the (2,3)-SAT(n) cases, we use 
the well-known concept of formula graphs. 
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Definition 2.4. Let 4 E 2-SAT(n) . The formula graph of C&---G+ ( YE) -is a directed 
graph with 2n vertices corresponding to the 2n possible literals. There is a directed edge 
(x, y) in E if and only if the clause (3 V y) E $. Thus, each clause (X V y) E C#I 

generates exactly two edges in G4 (YE): (IT, y) and (Y, X) . If Q is a directed path of 

literals in Gb then Q denotes the path in which each literal in Q is negated and the 
direction of each edge in Q is reversed. The definition of formula graph implies that the 

path Q exists if and only if the path Q exists. 

Formula graphs were introduced in [ 11, where they are used as the basis of a lin- 

ear time algorithm for 2-SAT. Further use is made of these graphs in [2], where a 
sharp satisfiability threshold is exhibited for 2-SAT instances, by analysing combina- 

torial properties of random formula graphs rather than random instances of 2-SAT. 
We rely on some basic facts and constructions from [ l] in our subsequent develop- 

ment. 

Definition 2.5. Let G+( YE) be a formula graph. 
A strongly connected component of G4 is a subgraph S( w F) of G4 with the follow- 

ing properties: W C V; F = ( W x W) f~ E; Vx, y E W (x # y), there are directed paths 

from x to y and from y to x in G4; ‘dx E W, Y’z # W, either there is no directed path 
from x to z or there is no directed path from z to x in G4. For any strongly connected 

component S( M! F) of G4 there exists a complementary component s( I?‘, F) in G4, 

formed by negating the literals in W and reversing the direction of each edge in F. S 

and 3 may not be distinct. 

A contradictory cycle is a directed cycle in G,,+ such that both the literals xi and ,Fi 

appear on the cycle, for some variable Xi. An instantiation (Y E (0, 1)” of the variables 
of 4 is inconsistent with G4 if there is a directed path from a literal whose value is 1 
under a to a literal whose value is 0 under cy. 

The strongly connected components of G4-31,. . . , Sk-induce a partition of the 
2n literals of q5 into k sets. If these components are regarded as “super-vertices”- 

vt ) . . . , V&then the edges of G4 that do not belong to any Sj, i.e., connect a literal 
in one component to a literal in another, define a directed acyclic graph over these 

super-vertices. 

Lemma 2.6. VC$ E 2SAT(n) : 
(a) CY is inconsistent with G4 if and only if f4 (a) = 0. 
(b) 4 is unsatis$able if and only if G4 has a contradictory cycle. 

Proof. Both parts are implicit in the analysis of formula graphs from [ 11. 0 

We need a slightly stronger form of Lemma 2.6(b) for our purposes. 

Lemma 2.7. Zf G4 has a contradictory cycle then it has a simple contradictory cycle, 

i.e., one on which any literal occurs at most once. 



PE. Dunne, TJ.M. Bench-CapodArtijcial Intelligence 92 (1997) 317-329 323 

Proof (Outline ’ ). Let P be a contradictory cycle in G,p, such that no other contra- 
dictory cycle contains fewer edges than P and let X, X be complementary literals on 
P. Since P is assumed to contain as few edges as possible, it follows that the paths 
x + . . . --f 3 and E -+ . . . + x on P are simple paths. Let V = (~1, UT, . . . , ~k-~, uk} 

be the literals that are visited (exactly) twice on P; let Y be the literals visited on the 
simple path from x to 2 but not on the path from 2 to X; and Z be the literals visited 
on the simple path from 2 to x but not on the path from x to X. The cycle P may be 

expressed as: 

P=x+R-+f-+S-+x 

where 

R={X +}Yl -+ U1 + 5 --) 02 + ... -+ Y&l 4 uk_] 4 Yk + uk + Yk+,{-+ i-t}, 

s = {it -+}&+I -+ wk + zk + wk-1 + &_I -+ ” 

+w2+22+w] -4(+x}, 

where {WI,. . . ,wk} = {u,, . . . , uk}; {x: 1 < i 6 k + I} is a partition of Y into k + 1 
subsets (some of which may be empty); and, similarly, {Z,i: 1 < j 6 k + l} is a 

partition of Z into k + 1 subsets. Now, since G$ is a formula graph, the existence of 

a path u -+ Q --f t implies the existence of a path f -+ Q -+ E. It follows, from the 
analysis of P that G4 contains paths: 

s={a-}Z, - -+ ,?I --+ & + 92 + ‘. --+ & -+ @k -3 &+,{+ X}, 

cf. Fig. 1, where for simplicity we have assumed that Ui = wi, and reduced each Yi, Zj 
to a single literal in each subset. 

Now we can construct a cycle 

(cf. the corresponding cycle in Fig. 1). This cycle contains the same number of edges 

as P. If it is not a simple cycle, then one of the new complementary literals introduced 
must be the same as one of the literals in P. This, however, would imply that a 

contradictory cycle containing fewer edges than P could be constructed, contradicting 
our initial choice. 0 

Lemma 2.8. Let C$ = (CI A x E (2,3)-SAT(n) be a maximal unsatis$able formula, 

where 42 = $, 43 = x and 143 / > 0. Let S( K F) be any strongly connected component 

of G+ Then IFI < 2(jWl - 1). 

’ This result is not given in [ I ] (where it is not needed for the algorithm presented); the “normal form” 
presented in r2] appears to assume its correctness, but gives no explicit proof to that effect. 
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Fig. 1. Construction of a simple contradictory cycle. 

Proof. We may assume that IW( > 1, otherwise the result is immediate. Consider any 
x E W. Using x as the root we can build a directed tree that describes simple paths 

from x to any other literal in W, e.g. form a breadth-first spanning tree whose first level 

consists of those literals y, such that (n, y) is an edge of S, and whose remaining levels 
are formed by expanding each first level literal in the same way, the process continuing 
until all literals in S have been accounted for: call this tree T+(x). Similarly, we can 
build, starting from edges directed into x, a directed tree that describes simple paths 

to x from any other literal in W: call this tree T-(x). Since T+ and T- are trees on 
( W \ vertices, in total they contain at most 2( 1 WI - 1) edges. Note that some edges of 
S( W, F) may appear in both T+(x) and T-(x) so that this bound is not necessarily 
exact. Furthermore, for every distinct pair of literals y, z in W we have paths y + x, 

z + x in T- and paths x + y, x + z in T +. Hence the edges of these trees preserve the 

strongly connected structure of S, i.e., we have both a directed path from y to z and a 
directed path from z to y. Let Tf( B) and T’-(R) be the corresponding structures in the 
complementary component s of S. (Note that S and .? are disjoint from the assumptions 

that 4 is maximally unsatisfiable and 14s ( > 0.) Suppose that there is some edge (u, u) 
- - 

in S that is not contained in either T+ or T-, and hence the edge (u, u) is not contained 
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in F+ or T’-. Such an edge corresponds to a clause C = (ii V v) E @. We claim that 
in this case the (2,3)-SAT instance c# - C would be unsatisfiable. To see this consider 
any LY E (0, 1)“: since 4 is unsatisfiable it follows that either f,(a) = 0 or f*(a) = 0. 
In the former case, f+-c (a) = 0, and so we can assume that f,(cr) = 1, f$ (a) = 0. 

From Lemma 2.6(a) this means that a is inconsistent with G+. But then cr must also 
be inconsistent with G+-c since our construction of T and 7 means that there is a 
directed path from x to y in G, if and only if there is a directed path from x to y in 
Gg-c. It follows that every strongly connected component S( W, F) contains no more 
than 2( 1 WI - 1) edges as claimed. 0 

Lemma 2.9. Vn 3 2, if 4 E (2,3) -SAT(n) is maximally unsatisJable then 142 1 6 2n. 

Proof. Let 4 E (2,3)-SAT(n) that is maximally unsatisfiable. 

Case 1: 14s 1 = 0. So, 4 E 2-SAT(n), and since 4 is unsatisfiable it follows, from 

Lemma 2.7, that G& contains a simple contradictory cycle. Such a cycle can contain at 

most 2n literals, thus be formed from at most 2n different edges (i.e., clauses of 4). 
So if 141 > 2n, we could remove some clause of q5 without affecting the contradictory 
cycle within G,p. This, however, would mean that 4 was not maximal. 

Case 2: 143 / > 0. Consider the formula graph of 42, G4, (v E) . Suppose that this has 
k strongly connected components Si( Wi, Fi), 1 < i f k. We know, from the definition 
of formula graph, that 1421 = JE)/2. However, 

IEJ = 2 ,fi, + 
i=l 

(u,w) E E: (U,W) +!cFi 
i=l 

(v,w)~E: (v,w)$ijF, 
i=l 

=2fJWi\-2k+ 

i=l 

(v,w) E E: (V,W) $/JFi 

i=l 

(u,w) EE: (u,w) &, 
i=l 

Without loss of generality, we can assume that q5 = 42 A (xl V x2 V x3) A t+b, where 
4s = (xl v x2 V xg) A $. Since 4 is maximal, it follows that 42 A (/I is satisfiable, and 

furthermore, every satisfying assignment must have (XI V x2 V x3) = 0. So, consider 
any assignment cr E (0, l}“, and the “cross-component” edges-{ (v, w) E E: (v, w) @ 

U;=, 4). If f+(a) = 1 then either (Y must be inconsistent with G4,, or f~xlvx2vxjj (a) = 
0. It follows that cross-component edges which do not essentially contribute to forming 
inconsistent paths from the literals xl, x2, x3 may be deleted from G&, and the corre- 
sponding clauses from 42. Recalling that the cross-component edges define a directed 
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acyclic graph over the components, a straightforward but lengthy analysis of the differ- 
ing possible relationships between the host components of xi, x2, and x3, establishes 
that if there are more than 2k such edges, then some are redundant.2 In consequence, 

we have that [El < 4n and hence 142 ( 6 2n. Cl 

2.3. Combining the results 

Lemma 2.10. Vn 3 1, p(n, 3) 6 max{n + 3,2n}. 

Proof. By induction on n. The base case, n = 1, is immediate from the fact that the 
only unsatisfiable CNF formula of a single variable is the CNF x A X 

Inductively assume that the lemma holds for all values 1 < m < n, and let 4 E 
( 1,2,3)-SAT(n) such that 4 is maximally unsatisfiable. We first observe that for each 
of the n variables xi, there must be a clause of 4 containing the literal xi and a clause 
of 4 containing the literal Xi. 

(For suppose this were not so: then either no clause of #J involves the variable 
xi; or exactly one of the literals X,/Xi occurs in 4. In the former instance, 4 E 
( 1,2,3)-SAT( n - 1) and so from the inductive hypothesis 

as required. In the latter case, suppose without loss of generality, that the variable xi 
occurs only in positive form in 4. We may express e5 as 

(X, v $5(I)) A +(2) 

where #‘) E (1,2)-SAT(n - 1) and d(2) E (1,2,3)-SAT(n - l), i.e., @l) consists 

of those clauses of 4 that depend on xi and #2) is formed from the remaining clauses 
of $. Since 4 is maximally unsatisfiable and (pc2) C 4 it follows that there is an 
instantiation p E (0, I}“-’ of the variables of 4c2) for which f4cz) (p) = 1. But now 
we obtain the contradiction that the instantiation (xi := 1, p) satisfies 4.) 

Case 1: 141 I 3 1. Without loss of generality, let xi E 41. We may express 4 as 

where 4(l) E ( 1,2)-SAT(n - 1) is formed from those clauses of + in which the literal 

11 appears, and d(2) E ( 1,2,3)-SAT(n - 1) consists of those clauses of I$ in which 

the variable xi does not appear. We claim that $ E (1,2,3)-SAT(n - 1) defined by 
#‘I A 4c2) is maximally unsatisfiable. Certainly, this formula is unsatisfiable, for if 

jY3 E (0, I}+’ satisfied + then (xi := 1, /3) would satisfy 4. If $ is not maximal then 

there is a clause C of $ such that the instance $ - C is unsatisfiable. If C E $(‘) 
then the clause (_Zi V C) E 4. Consider the CNF 4 - (ai V C). This is satisfiable 

* The analysis considers a spanning forest of the component, formed using only the cross-component edges 
(which contains at most k - 1 edges). Such a forest accounts for all of the inconsistent paths that can arise 
from a single literal, nr . To account for the inconsistent paths from x2 and x3 an inductive argument over the 
number of components (k) can be used to show that these can only take a iruall number of additional edges. 
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since 4 is maximal, and any satisfying assignment has the form (xi := 1, /?) for some 
/3 E (0, l}n-‘. But now we obtain the contradiction that 

f+-(x,vc)(xl := l,P) = 1, 

fqb-(f,VC) (Xl := 17 P> = f+-c w> = 0. 

The case where C E +(2) results in a similar contradiction. 
Thus since (I, = 4(l) A#2) is a maximal unsatisfiable instance in ( 1,2,3) -SAT( n- 1) , 

from the inductive hypothesis it follows that 

21$1 I + I+21 < max{n + 2,2n - 2). 

However, 

WI1 = IhI- 1 + I{C E 42: c = (21 vy>}(, 

Iv921 = 1421 - l{C E 42: c = (.fl v #I+ I{C E 43: c = (Xl v y v z>}l. 

Hence, 

21@11 + )&I = 21411 + 1421 + I{C E 4: fi occurs in C}l - 2. 

Rearranging this and using the upper bound on 2l$i 1 + 114~) yields 

21$1/ -t 1421 6 max{n+4,2n} - I{C E 4: _ki occurs in C}l. 

Since there must be at least one clause of 4 containing the literal 2,) we have the upper 

bound required for this case of the inductive argument. 

Case 2: 1411 = 0. In this case, we have 4 E (2,3)-SAT(n), and 4 is maximally 

unsatisfiable. From Lemma 2.9, l&l 6 2n. If n = 2, then any 4 E (1,2)&4T(2), 

for which 2141 I + 1421 > 4, must either contain a clause of length 1-i.e., Case 1 
applies-or is not maximally unsatisfiable. 0 

Theorem 2.11. V’n 2 3, r(n, 3) = max{ [n/21 + 1, [2n/3]}. 

Proof. From Lemmas 2.2, 2.3, and 2.10 we have 

r(n, 3) = max{t: t < max{n - t + 3,2(n - t)}}. 

The inequality t < n - t + 3 yields t < [n/2] + 1; similarly, the inequality t < 2( 12 - t) 
gives t < [2n/3]. Combining these proves the theorem. 0 

3. Prime implicates in k-SAT instances for k > 3 

For completeness, we present in this section bounds on r( n, k) for fixed k 3 4. These 
are obtained by bounding ,u( IZ, k) . 

Theorem 3.1. Vk > 4, ,u(n, k) = Sl(nkF2); p(n, k) = O(nk-I). 
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Proof. For the lower bound, we use a recursive construction, building from the for- 
mula $(n), described in the proof of Lemma 2.3. We denote by q5ck) the formula 
for which the lower bound claimed holds. At every stage of the construction 4(k) E 
(k - l)-SAT( 3k-3n). Since we are assuming that k is constant, the coefficient 3k-3 is 

not significant in the analysis. 
Base: If k = 3, the formula q+(n) of Lemma 2.3 is used. 
Recursive step: If k > 3, let X, Y, 2 be disjoint sets of N = 3k-4n variables, and 

@k-U(y) and #k-r) (2) be instances of +(k-l). Partition the clauses of #k-1)(Z) 
into N (non-empty) sets Ci. @ckf (X, YZ) is the k-CNF formula: 

i /\(XiVC) Ah A (,FiVC). 
i=l CEC, i=l C#-l) (Y) 

4(k) (X, YZ) is unsatisfiable: consider any LY E (0, 1}3N: if any xi is set to 1 by (Y 
then @ck) reduces to the unsatisfiable formula q5 (k-1)(Y). If every xi has the value 0 
then q5(k) reduces to the unsatisfiable formula @k-1)(Z). To see that @k) is maximal, 
consider the effect of removing any clause D. If D is of the form (ai V C) then setting 
x,i := 0 (for j # i) and xi := 1, reduces 4(k) to ti’k-“(Z) A (d’(k-l)(Y) - (c)j, 

where +(k-1) is a strict subset of the clauses of #(k-1)(Z). Since 4ck-‘) is maximal, 

there are assignments to Y and Z that satisfy $(k-1) and @(k-1) - {C}. If D has the 
form (xi V C) then the assignment xi := 0, 1 6 i < N, reduces q6ck) to the formula 

@k-1) (Z) - {C} which is satisfiable. 

Let U( N, k) denote the number of clauses in q6ck). We then have the recurrence 
relations:a(n,3) =2n;a(3N,k+l) = (N+l)cr(N,k).Theseyieldp(n,k) =fl(nkm2) 
as claimed. 

For the upper bound let 4 E ( 1,2,3,. . . , k)-SAT( n) be a formula that maximises 
the value of p( n, k). By introducing at most k - 1 new variables, we may express q5 as 
+, an instance of (k - 1, k)-SAT(n + k - 1) in which the number of clauses of length 

k - 1 is no larger than 2k-1~(n, k). If 

I’bk-l/ > (zk-’ - 1) 

then $ must be unsatisfiable, since for any (Y E (0, l}nfk-l there are exactly (ni!;‘) 
clauses of length k - 1 that are not satisfied by LL. The total number of possible length 
k - 1 clauses is exactly 2k-1 (nit;‘), so if II&~ 1 exceeds the bound given, then every 
instantiation (Y fails to satisfy at least one clause of q. It is straightforward to convert 
this bound to give p(n, k) = O(nk-‘). Cl 

Corollary 3.2. For all jixed k 2 4: r(n,k) 2 n - O(IZ’/(~-~)); r(n,k) < n - 
~(n’/W-‘))_ 

Proof. Immediate from Lemma 2.2 and Theorem 3.1. 0 
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4. Conclusions 

In this note the question of how many variables are contained in the longest prime 

implicate of an instance of k-SAT(n) has been addressed. For the case of 3-SAT 
instances, exact bounds on this length have been derived, establishing that for n > 3, no 

instance can have a prime implicate of length exceeding max{ In/21 + 1, [2n/3J} and, 
furthermore, explicit constructions of instances achieving these bounds have been given. 

The results confirm a conjecture put forward in [ 31. For general k > 4, it has been 
shown that instances with prime implicates of length n - f(n) can be formed where 

lim,,, f(n)/n = 0. In these cases, a small gap remains between the upper and lower 

bound results. 
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