
SPATIO-TEMPORAL REASONING USING AMULTI-DIMENSIONAL TESSERALREPRESENTATIONF.P. Coenen, B. Beattie, T.J.M. Bench-Capon, B.M. Diaz and M.J.R. Shave 1Abstract. A versatile and universally applicable quanti-tative multi-dimensional reasoning mechanism founded on aunique linear tesseral representation of space is described.The reasoning mechanism is based on a constraint satisfac-tion mechanism supported by a heuristically guided constraintsatisfaction approach The mechanism has been incorporatedinto a spatio-temporal reasoning system, the SPARTA (SPA-tial Reasoning using Tesseral Addressing) system, which hasbeen applied successfully to a diverse number of spatial ap-plications.1 INTRODUCTIONIn this paper we describe a quantitative spatio-temporal rea-soning system founded on a tesseral representation of Eu-clidean space which is universally applicable to N-dimensionalspatial data stored or presented using a raster style encoding.The universal applicability o�ered by the reasoning system isa direct consequence of the tesseral representation on whichit is founded. This representation may be viewed as either anintermediate representation which links the reasoning mecha-nism with some primary representation (raster and by exten-sion vector), or as a primary representation in its own right.The reasoning mechanism comprises a constraint satisfac-tion approach to spatial problem solving supported by aheuristically guided constraint selection mechanism so as tominimise the search space. The mechanism has been incorpo-rated into a demonstration spatio-temporal reasoning system,the SPARTA (SPAtial Reasoning using Tesseral Addressing)system. Spatial problems are passed to this system in the formof a script comprising a set of object descriptions and a setof constraints de�ning the relationships \desired" to exist be-tween pairs or groups of objects. The system then producesall solutions that satisfy the given constraints and outputsthese solutions in a graphical or textual format as directed bythe user.2 REPRESENTATIONN-dimensional space can be conceptualised as comprising a set(P) of N-dimensional cells where each cell has some uniqueidenti�er referred to as an address or reference. Sub-spaces1 Department of Computer Science, The University of Liverpool,Chadwick Building, P.O. Box 147, Liverpool L69 3BX, England.Tel: 0151 794 3698 Fax: 0151 794 3715 email: frans@csc.liv.ac.uk

within this space can then be de�ned in terms of subsets ofP . Spatial reasoning is concerned with the interpretation andmanipulation of knowledge concerning the attributes of spa-tial objects. If we wish to manipulate objects whose attributesare expressed in terms of sets of addresses it is desirable toadopt an addressing mechanism that supports computation-ally e�ective processing of these sets. The most obvious start-ing point for the representation of such addresses is the wellunderstood Cartesian coordinate system. A consequence ofthis will be the existence of negative coordinates, thus theset P should more accurately be described as a subset of alarger set (I) which includes the set of cells (N) representingnegative space, i.e. P qN = I(the disjoint union of P and N is equivalent to I), orN = P n I(N is equivalent to the complement of P in I).Although the Cartesian system is well understood, it is notconsistent over di�ering numbers of dimensions, i.e 4-D ob-jects are referenced using 4 coordinates while 2-D objects onlyrequire 2 coordinates. Consequently the Cartesian system be-comes extremely unwieldy when considering spaces de�ned by(say) more than two dimensions. These problems are elimi-nated by the referencing system proposed here, where the co-ordinates representing a particular cell are \compacted" intoa single (signed) integer. For the purpose of this documentwe will assume a 64 bit signed integer with a bit pattern asfollows: �t::t t::t z::z z::z y::y y::y x::x x::xwhere � is the sign bit, and the symbols x (16 bits), y (16bits), z (16 bits) and t (15 bits) represent the bits to be as-sociated with particular coordinates used to reference (in thiscase) 4-D space. Note that:1. It is not necessary to associate any particular dimensionwith any particular bit grouping.2. Any other distribution of bits could equally well have beenallocated provided that each dimension of interest com-prises a continuous sequence of bits.3. Alternative bit patterns can be de�ned to address (say) 8-Dreasoning.c
 1998 Coenen et al.Submitted to ECAI 98January 15, 1998

4. The sign bit is included to provide for negative addressingrequired in order to support various translation operations.Assuming the above bit pattern we can rede�ne the set Ias follows:I = frjr = x+ 216y + 232z + 248t � x; y; z; t 2 integer ��32767 � x; y; z � 32767 � � 16383 � t � 16383gI is the set of elements r such that each r is calculated from tox+216y+232z+248 where x; y; z; t belong to the set of integerssuch that �32767 � x; y; z � 32767 and �16383 � t � 16383hold. We can de�ne the set P (positive space) in a similarmanner:P = frjr = x+ 216y + 232z + 248t � x; y; z; t 2 natural �0 � x; y; z; t � 32767 � 0 � t � 16383gand the set N :N = frjr = x+ 216y + 232z + 248t � x; y; z; t 2 integer ��32767 � x; y; z � 32767 � � 16383 � t � 16383 �x _ y _ z _ t < 0gNegative space is de�ned as space in which at least one coor-dinate is negative.Using this representation we can de�ne any object space(i.e. the space which contains the objects we are interested in)subject to the limitations of the de�nition for I. For example,if we have a two dimensional 5�5 (cell) object space as shownin Figure 1, this will be de�ned by the set:O = frjr = x+ 216y + 232z + 248t � x; y; z; t 2 natural �0 � x; y � 4 � z; t = 0g= f0; 1; 2; 3; 4; 256; 257; 258; 259; 260; 512; 513; 514;515; 516; 768; 769; 770; 771; 772; 1024; 1025; 1026;1027; 1028gThe general advantages of the representation are as follows:1. All references are unique and conceptually simple to gen-erate.2. The representation is applicable (without alteration) to anynumber of dimensions within the con�nes of the de�nitionof the set I.3. The representation has the e�ect of linearising N-dimensional space which in turn has signi�cant bene�tswith respect to (a) data storage, (b) comparison of setsof addresses and (c) translation through the space (see be-low).The referencing system proposed here has many similari-ties with ideas concerning tesseral representations ([1, 2, 3]).Tesseral representations are founded on ideas concerning thehierarchical decomposition of N-Dimensional space into isohe-dral sub-spaces (cells) until some application dependent res-olution is reached. Each sub-space is then referenced using

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

256 257 258 259 260

512 513 514 515 516

768 769 770 771 772

1024 1025 1026 1027 1028

+Y

-Y

+X-X Figure 1. Addressing for 2D 5x5 object spacesome number system. In the case of the representations pro-posed here, any given object space is conceptually tessellateddown to some prede�ned resolution, and each cell given a ref-erence (address) comprising a single integer whose bit patternis made up of the coordinates of that cell. Hence we refer toour representation as a \tesseral" representation.2.1 Data StorageAs a consequence of the linearisation the elements belongingto a set of addresses can be ordered. More usefully clusters ofelements can be grouped into multi dimensional boxes de�nedby the \corner" address nearest the origin of a given objectspace (the 0 cell) and that furthest away. Thus in Figure 1the set of cells:f257; 258; 259; 513; 514; 515; 769; 770; 771gcan be de�ned as a box of the form:f257::771gprovided that the .. operators is understood to mean \thesequence of cells bounded by the multi-dimensional box whosecorner address nearest to the origin is given by the pre�xoperand, and whose corner address furthest away from theorigin is given by the post�x operand". More formally we cansay that any set of addresses S can be de�ned in terms of asubset of I thus:S � fm::njm; n 2 I ^m � ngIt should be noted that this form of \data compression" isparticular advantageous when dealing with spaces more gen-eral than that de�ned by two dimensions.2.2 Comparison of spacesKnowledge of the linearisation can also be used to advantagewhen comparing sets of addresses. For example given sets S1Spatio-temporal reasoning 2 Coenen et al.

and S2 of the form de�ned above, the relation subset whichmight link these two sets can be de�ned as:S1subsetS2 , 8m::n 2 S1 � 9s::t 2 S2 � m::n within s::tThe relation S1subsetS2 is true if and only if for all boxesm::nin the set S1 there exist a box s::t in the set S2 such that m::nis within s::t (an appropriate de�nition for the within rela-tion is assumed). Thus to compare sets of addresses wherethe elements are de�ned in terms of boxes we do not haveto consider all elements contained within a box but only thede�ning corner addresses. Again, this advantage is of particu-lar relevance when dealing with spaces comprising more thantwo dimensions.2.3 Translation of spaceTo move through the space I (as represented here) we canuse standard integer addition and subtraction. For example,to move any address one cell to the right and two cells up-wards we simply add the address 513 (measured from the 0address). To move in the opposite direction we subtract 513(or add �513). In this manner we can translate sets of ad-dresses e�ectively and e�ciently by de�ning a translate func-tion:translate(S1; S2) ! fn::mj8 < p::q; s::t >2 S1 � S2 �m = p+ s ^ n = q + tgthe function translate(S1; S2) produces the set of boxes n::msuch that far all Cartesian pairs (< p::q; s::t >) in S1 and S2,m = p+ s and n = q + t. For example, given a set:S = f257::771gwe can use the translation function to (say) move S one cellto the right and two cells upwards:translate(f257::771g; f513::513g) ! f770::1284gIn a similar manner we can uniformly expand the set S, orstretch it in a particular direction or directions.3 SPATIAL OBJECTSThe reasoning system recognises a number of categories ofobject:� Fixed objects which cannot be moved, i.e. they have a\�xed" location.� Free objects which have a known shape but no �xed location(and thus they can be moved).� Shapeless objects which have no given shape or location(they are only known to exist somewhere in the objectspace).These objects can have a great many attributes, the mostsigni�cant of which are� Location� Shape� Relationship to other objects

To which we can add further attributes such as size, contigu-ity , orientation etc. Of course some attributes are implied byothers. For example given a �xed object (i.e. an object whoselocation is known), all other attributes can be deduced. Sim-ilarly in the case of a free object the object's shape will alsoindicate the nature of attributes such as size, contiguity andso on.Given an object n, belonging to a set of objects, the location(Ln) of that object can be expressed in terms of some subsetof the object space O (the space in which all objects of interestare known to exist). Similarly the shape (Sn) of an object ncan be expressed in terms of a subset (Sn) of I (shape neednot necessarily be de�ned using positive coordinates only).Thus: 8n 2 objects; Ln � O; Sn � I4 SPATIAL RELATIONSThe connection between spatial objects can be expressed byrelations that link the location(s) associated with one objectto the location(s) associated with another object:L1 relation L2where L1 and L2 are two set each element of which comprisesa set of addresses representing a possible location for an object(i.e. L1 and L2 are sets of sets of address).In a system where attributes are expressed in terms of setsof uniquely identi�ed cells, the primitive relations are thestandard group of set relations. We can consider relationshipsas �lters or as mappings. Filters return True or False, whilstmappings \map" some operation onto one operand with re-spect to another operand to produce a \new" set of cells.1. Example �lters: equals, subset, superset, disjoint,intersects.2. Example mappings: complement, intersection.Using these relations many of the standard topological rela-tions encountered in spatial reasoning can be expressed, e.g.within, contains, overlaps, disjoint ([4, 5, 6, 7, 8]). Theexpressiveness of these relations can be increased by allowingo�sets to be applied to the locations before the relation is pro-cessed. For example we may have two objects L1 and L2 whoselocations are given by the sets f257::514g and f514::771g anda subset relation: L1 subset L2to establish whether L1 is contained within L2. In this casethe result will be false. However, we may wish to establishwhether L1 is contained within a space surrounding L2 by(say) one cell. We can express this relation by �rst applyingan o�set to L2 thus:L1 subset (translate(L2; f�257::257g))which will be equivalent to:f257::514g subset f257::1028gin which case the result will be true.Spatio-temporal reasoning 3 Coenen et al.

<script> ::= <spaceDef> <classDef> <instanceDef><constraintDef><spaceDef> ::= space(<dimensions>).<classDef> ::= class(CLASS NAME,OBJECT TYPE). jclass(CLASS NAME,OBJECT TYPE,<shapeDef>).<instanceDef> ::= instance(INSTANCE NAME,CLASS NAME,<locationDef>).<constraintDef> ::= constraint(<operandDef>,OPERATOR,<operandDef>).<operandDef> ::= (INSTANCE NAME) j(INSTANCE NAME,<o�setDef>).Table 1. Top level syntax for SPARTA scripting language5 SPARTA SYSTEMThe SPARTA (SPAtial Reasoning using Tesseral Addressing)system is designed to take as input a set of objects and aset of constraints which are desired to hold between these ob-jects, and output one or more con�gurations of objects thatsatisfy the constraints (assuming a solution exists). The inputis presented in the form of a script, expressed in a PROLOGlike syntax, which is then analysed and processed. Syntacti-cally the scripting language comprises a number of primaryconstructs of the form given in Table 1 (using BNF notation).The �rst construct de�nes the desired object space in termsof its maximum coordinates. Class de�nitions only include ashape de�nition if the object type referred to is a free object.The location de�nition that forms part of an instance de�-nition then de�nes the objects location in the case of a �xedobject, and a location space in which the object can be said toexist in the case of a free or shapeless object. Constraints areused to express the relations that are desired to exist betweenlocations (possibly with o�sets applied). Note that shape, lo-cation and o�set de�nitions are expressed in terms of sets oftesseral addresses.6 THE CONSTRAINT SATISFACTIONPROCESSThe constraint satisfaction process commences with a singleroot node in a solution tree. Initially this node contains a listof constraints-to-do as de�ned in the input script, and an ob-ject space containing no objects but dimensioned accordingto the de�nition given in the script. A constraint is then se-lected from the constraints-to-do list following the constraintselection criteria outlined below (Section 8). The system thenattempts to resolve this constraint with three possible out-comes:1. The constraint cannot be satis�ed in which case (at thisstage) we conclude that no solution exists.2. One or more compatible solutions exist; therefore updatethe object space with respect to the identi�ed solutions.

3. A number (more than one) of non compatible solutionsis produced; therefore create a new level in the tree withbranches equivalent to the number of solutions, each branchterminating in a new node containing an updated versionof the object space and constraints-to-do list.In this manner a solution tree is dynamically created. Ifall the given constraints have only one solution the tree willconsist of a single (root) node. If, however, the script includesconstraints that have more than one solution, the tree willconsist of a number of levels, each level representing a pointin the solution process where the satisfaction of a constraintgenerates more than one solution. Whenever an additionallevel in the tree is created each branch is processed in turnuntil either all constraints have been satis�ed, in which casethe solution is stored; or an unsatis�able constraint is dis-covered. On completion of processing a particular branch thecurrent node is removed from the tree and the system back-tracks to the previous node. If all branches emanating fromthis node have also been processed this node is also expunged.The process continues until all branches in the tree have beeninvestigated and all solutions generated. As a result of thisapproach the solution tree in its entirety never exists, onlythe current branch and those higher level nodes which meritfurther investigation.We can illustrate this process by considering the variousstates presented in Figure 2. A script is assumed that includestwo constraints that will result in more than one solution. Wecommence with a root node (state 1) and process constraintsuntil one of the two constraints with more than one solutionis encountered. Here we have assumed that the constraint,when satis�ed, produces three solutions. Consequently a treeof the form presented in state 2 is produced. Processing iscontinued in the left most branch (node 1.1) until the secondconstraint which had more than one solution is discovered andanother level in the tree is created (state 3). Processing thencontinues in the left most branch (node 1.1.1) until (say) allfurther constraints are satis�ed, when the result is stored andthe current branch in the tree expunged (state 4). Node 1.1.2is then processed until either a further solution is found oran unsatis�able constraint is reached, after which this branchis also removed. There are no more branches emanating fromnode 1.1 therefore, at this stage, this node can also be removed(state 5). Processing now continues with node 1.2 in a similarmanner, and so on.7 CONSTRAINT SATISFACTIONThe individual constraint satisfaction process comprises �vesteps: (1) identify operands, (2) apply o�sets, (3) identifyCartesian pairs, (4) apply the operator to the identi�ed pairsand (5) rouping of results.7.1 Identify operandsFrom Section 4 a constraint comprises an operator and twooperands. The operands indicate the locations (one or more),expressed in terms of a set of of one or more sets of addresses,associated with two distinct objects. If the objects in ques-tion were referenced in a previously processed constraint theobjects will be contained in the object space as de�ned in theSpatio-temporal reasoning 4 Coenen et al.

1 1

1.1 1.2 1.3

1

1.1 1.2 1.3

1.1.1 1.1.2

1

1.1 1.2 1.3

1.1.2

1

1.2 1.3

State 1 State 2

State 3 State 4

State 5Figure 2. Constraint satisfaction processcurrent node in the solution tree and thus location informa-tion can be extracted directly. Otherwise the location for theobject will need to be generated according to the nature ofthe object:� If the object is a �xed object the location will be given inthe script.� If the object is a free object the operand will be equiva-lent to set of locations dictated by the di�erent mannersin which a the shape de�nition can be \�tted into" theprescribed location space.� If the object is a shapeless object the required location isthe location space (as de�ned in the script) within whichthe object is known to exist.Consider the script given in Table 2. Here we have threeclasses of objects, one of each type, and an instance of eachclass. We also have two constraints relating objects e1 andp1, and b1 and e1. The �rst is a �lter because neither of theobjects is a shapeless object, and states that any valid pairof locations for the objects e1 and p1 must be such that the�rst intersects the second \moved down" in the -Y directionby one cell (o�set f�256::�256g). The second constraint is amapping because one of the objects (b1) is a shapeless objectand states that, what ever the shape of b1 might be, it shouldnot include any part of the location of the �xed object e1expanded in all directions by one cell (o�set f�257::257g).The location for the �xed object e1 is given in thescript (f0::2512::514g). The location to be associated withthe shapeless object b1 is equivalent to its location space(1..1027) also given in the script. The free object p1 hasa number of possible locations, i.e. the shape de�nition

space([5,5]).class(equals, fixed).class(blob, shapeless).class(plus, free, -256..256, -1..1).instance(e1, equals, 0..2, 512..514).instance(b1, blob, 1..1027).instance(p1, plus, 257..1028).constraint((e1), intersects,(p1, offset(-256..-256))).constraint((b1), complement,(e1, offset(-257..257))).Table 2. Example script(f�256::256;�1::1g) can be �tted into the speci�ed locationspace (f257::1028g) in four di�erent ways:{{258..770, 513..515},{259..771, 514..516},{514..1026, 769..771},{515..1027, 770..772}}Thus the constraints can be rewritten as:constraint(({{0..2, 512..514}}), intersects,({{258..770, 513..515},{259..771, 514..516}, {514..1026, 769..771},{515..1027, 770..772}}, offset({-256..-256}))).constraint(({{1..770}}), complement,({{0..2, 512..514}}, offset({-257..257}))).7.2 Apply o�setsOnce the operands have been identi�ed the next stage is toapply the o�sets (if any) by adding the o�set to each locationassociated with the operand using the translation function.As a consequence the constraints are transformed to:constraint(({{0..2, 512..514}}), intersects,({{2..544, 257..259}, {3..515, 258..260},{258..770, 513..515}, {259..771, 514..516}})).constraint(({{1..1027}}), complement,({{-257..259, 255..771}})).7.3 Determine Cartesian pairsThe next step is to identify all Cartesian pairs that exist be-tween the two operand sets. Thus the constraints can nowe�ectively be rewritten as follows:constraint((({0..2, 512..514}}), intersects,({{2..544, 257..259}})).constraint((({0..2, 512..514}}), intersects,({{3..515, 258..260}})).constraint((({0..2, 512..514}}), intersects,({{258..770, 513..515}})).constraint((({0..2, 512..514}}), intersects,Spatio-temporal reasoning 5 Coenen et al.

({{259..771, 514..516}})).constraint(({{1..1027}}), complement,({{-257..259, 255..771}})).7.4 Apply operatorWe are now in a position to apply the operator in each caseaccording to whether it is a �lter or a mapping constraint.Considering the �lter constraints �rst, all but the second aresatis�able. Consequently the following pairs of locations arevalid locations for objects e1 and p1:<{{0..2, 512..514}}, {{258..770, 513..515}}><{{0..2, 512..514}}, {{514..1026, 769..771}}><{{0..2, 512..514}}, {{515..1027, 770..772}}>Thus three possible solutions exist. The second constraint isa mapping of the form:{1..1027} \ {-257..259, 255..771} = {1025..1027}Consequently the location space for b1 is re�ned to f1::1027gand thus we have a location pair for b1 and e1 of the form:<{{1..1027}}, {{0..2, 512..514}}>7.5 Grouping of resultsAlthough, in the above subsection, satisfaction of the �rstconstraint appears to result in three solutions nothing is lostif all three solutions are grouped together, i.e. expressed bythe pair:<{{0..2, 512..514}}, {{258..770, 513..515},{514..1026, 769..771}, {515..1027, 770..772}}>thus the constraint has only one (compound) solution andthus would not give rise to a new level in the solution tree.The locations for each object with respect to the given objectspace are illustrated in �gure 3.If we were now to add a third (mapping) constraint:constraint(b1, intersects, p1)and assuming a current solution as outlined above this con-straint would be equivalent to:constraint(({{1025..1027}}), intersects,({{258..770, 513..515} {514..1026, 769..771}{515..1027, 770..772}}).which would break down to the following \pairs":constraint(({{1025..1027}}), intersects,({{258..770, 513..515}}).constraint(({{1025..1027}}), intersects,({{514..1026, 769..771}}).constraint(({{1025..1027}}), intersects,({{515..1027, 770..772}}).which would evaluate to:

{1025..1027} intersects {258..770, 513..515} = {}{1025..1027} intersects {514..1026, 769..771} = {1026}{1025..1027} intersects {515..1027, 770..772} = {1027}The �rst of these solutions is not viable as it implies thatobject b1 does not exist which, according to the script, is nottrue. The remaining two solutions state that b1 is at f1026gif p1 is at f514::1026; 769::771g or that b1 is at f1027g ifp1 is at f515::1027; 770::772g. These solutions are clearly notcompatible and thus a new level (comprising two nodes) inthe solution tree is indicated.8 CONSTRAINT SELECTIONSTRATEGYAlthough in the above discussion, for illustrative purposes,the example constraints have been processed in roughly simul-taneously manner, in practice constraints are processed in asequential fashion. This implies an ordering and consequentlya selection strategy. We wish to process the constraints andgenerate the solution tree in a manner which is as computa-tionally e�cient as possible. Thus we wish to limit the growthof the search tree by delaying, for as long as possible, the sat-isfaction of constraints that may cause the generation of anew level in the solution tree ([9, 10]). When the selection ofa constraint that is likely to result in a new level in the treeis unavoidable we wish to minimise the number of branchesthat this new level will entail.Selections are then made according to the cardinality of thelocation sets. Given a constraint of the form:constraint(L_{1}, intersects, L_{2}).whereL_{1} = {{1025..1027}}L_{2} = {{258..770, 513..515}, {514..1026, 769..771},{515..1027, 770..772}}the cardinality of the sets is:num(L_{1}) = 1mum(L_{2}) = 3In the case of a shapeless object, which cannot have a lo-cation, the cardinality is assumed to be NULL (interpretedas no cardinality). Each constraint is given a primary anda secondary weighting equivalent to the cardinality associ-ated with the locations such that the primary weighting isthe lower of the two. Constraints with a primary weighting of1 are guaranteed to result in only one solution and thereforewill not produce a branch in a tree. Selection is thus initiallymade on the primary weighting with the aim of minimisingthis. Given two constraints with identical primary weightingsthe constraints are di�erentiated according to the secondaryweighting. The NULL weighting associated with shapelessobjects is considered to be the maximum for a particular ap-plication.This constraint selection strategy then has the e�ect of lim-iting the growth of the search tree. In addition it causes themost vulnerable constraints, i.e. those constraints hardest tosatisfy, to be selected early on in the satisfaction process.Spatio-temporal reasoning 6 Coenen et al.

3 4

256 257 258 259 260

515 516

768 769 770 771 772

10241025102610271028

0 1 2 3 4

256 257 259 260

512 516

768

10241025 1028

0 1 2 3 4

256 257 258 259 260

512 513 514 515 516

768 769 770 771 772

1024 1028

Object e1 Object p1 Object b1Figure 3. Solution to example script9 CONCLUSIONA quantitative spatio-temporal reasoning mechanism hasbeen described founded on a tesseral representation of space.The mechanism o�ers the following signi�cant advantages:1. It is universally applicable regardless of the number of di-mensions under consideration.2. It is fully compatible with Raster representations renderingit suited to a wide range of applications founded on suchrepresentations.3. It is conceptually simple and computationally e�ective.The proposed mechanism has been incorporated intoa spatio-temporal reasoning system, the SPARTA system,which has been tested against a great many spatial prob-lems including, site identi�cation for civil engineering projects([11]), Geographic Information Systems (GIS) ([12]), envi-ronmental impact assessment ([13]) and timetabling ([14]).Other, more esoteric, applications include classic AI problemssuch as N-queens problems and multi-dimensional shape �t-ting scenarios ([15]). Current work is focused on noise pol-lution modelling and assessment in the city of London, andmarine electronic chart interaction.REFERENCES[1] S.B.M. Bell, B.M. Diaz, F.C. Holroyd and M.J.J. Jack-son, Spatially referenced methods of processing raster andvector data, Image and Vision Computing 1(4) 211-220(1983).[2] B.M. Diaz and S.B.M. Bell, Spatial data processing usingtesseral methods, Natural Environment Research Councilpublication, Swindon, England (1986).[3] I. Gargantini, Linear octrees for fast processing of threedimensional objects. Computer Graphics and Image Pro-cessing 20 365-374 (1982).[4] J.F. Allen, Maintaining knowledge about temporal inter-vals, Communications of the ACM 26(11) 832-843 (1983).[5] D. Hern�andez, Relative representation of spatial knowl-edge: the 2-D case, in D.M. Mark and A.U. Frank, Cogni-tive and Linguistic Aspects of Geographic Space, Kluwer,Dordrecht, Netherlands, 373-385 (1991).[6] C. Freksa, Temporal reasoning based on semi-intervals,Ar-ti�cial Intelligence 54 199-227 (1992).

[7] M.J. Egenhofer, Deriving the composition of binary topo-logical relations, Journal of Visual Languages and Com-puting 5 133-149 (1994).[8] A.G. Cohn, J.M. Gooday, B. Bennet and N.M. Gotts,A logical approach to representing and reasoning aboutspace, Arti�cial Intelligence Review 9 255-259 (1995).[9] P. van Hentenryck, Constraint satisfaction in logic pro-gramming, MIT Press, Cambridge, Massachusetts (1989).[10] A.K. Mackworth, Consistency in networks of relations AIJournal 8(1) 99-118 (1977).[11] B. Beattie, F.P. Coenen, T.J.M. Bench-Capon, B.M.Diaz and M.J.R. Shave, Spatial reasoning for GIS using atesseral data representation, in N. Revell, and A.M. Tjoa(Eds), Database and Expert Systems Applications (Pro-ceedings DEXA'95), Lecture Notes in Computer Science978, Springer Verlag, 207-216 (1995).[12] F.P. Coenen, B. Beattie, B.M. Diaz, T.J.M. Bench-Caponand M.J.R. Shave, A temporal calculus for GIS usingtesseral addressing, in M.A. Bramer and A.L. Macintosh(Eds), Research and Development in Expert Systems XI,Proceedings of ES'94 261-273 (1994).[13] F.P. Coenen, B. Beattie, B.M. Diaz, T.J.M. Bench-Caponand M.J.R. Shave, Temporal reasoning using tesseral ad-dressing: towards an intelligent environmental impact as-sessment system, Journal of Knowledge-Based Systems9(5) 287-300 (1996).[14] F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, M.J.R.Shave and B.M. Diaz, Spatial reasoning for timetabling:the TIMETABLER system, Proceedings of the 1st Inter-national Conference on the Practice and Theory of Auto-mated Timetabling (ICPTAT'95), Napier University, Ed-inburgh, 57-68 (1995).[15] F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, B.M. Diazand M.J.R Shave, A tesseral approach to N-dimensionalspatial reasoning, in A. Hameurlain and A.M. Tjoa (Eds),Database and Expert Systems Applications (ProceedingsDEXA'97), Lecture Notes in Computer Science 1308,Springer Verlag, pp633-642 (19977).
Spatio-temporal reasoning 7 Coenen et al.

