SPATIO-TEMPORAL REASONING USING A
MULTI-DIMENSIONAL TESSERAL
REPRESENTATION

F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, B.M. Diaz and M.J.R. Shave '

Abstract. A versatile and universally applicable quanti-
tative multi-dimensional reasoning mechanism founded on a
unique linear tesseral representation of space is described.
The reasoning mechanism is based on a constraint satisfac-
tion mechanism supported by a heuristically guided constraint
satisfaction approach The mechanism has been incorporated
into a spatio-temporal reasoning system, the SPARTA (SPA-
tial Reasoning using Tesseral Addressing) system, which has
been applied successfully to a diverse number of spatial ap-
plications.

1 INTRODUCTION

In this paper we describe a quantitative spatio-temporal rea-
soning system founded on a tesseral representation of Eu-
clidean space which is universally applicable to N-dimensional
spatial data stored or presented using a raster style encoding.
The universal applicability offered by the reasoning system is
a direct consequence of the tesseral representation on which
it is founded. This representation may be viewed as either an
intermediate representation which links the reasoning mecha-
nism with some primary representation (raster and by exten-
sion vector), or as a primary representation in its own right.

The reasoning mechanism comprises a constraint satisfac-
tion approach to spatial problem solving supported by a
heuristically guided constraint selection mechanism so as to
minimise the search space. The mechanism has been incorpo-
rated into a demonstration spatio-temporal reasoning system,
the SPARTA (SPAtial Reasoning using Tesseral Addressing)
system. Spatial problems are passed to this system in the form
of a script comprising a set of object descriptions and a set
of constraints defining the relationships “desired” to exist be-
tween pairs or groups of objects. The system then produces
all solutions that satisfy the given constraints and outputs
these solutions in a graphical or textual format as directed by
the user.

2 REPRESENTATION

N-dimensional space can be conceptualised as comprising a set
(P) of N-dimensional cells where each cell has some unique
identifier referred to as an address or reference. Sub-spaces

I Department of Computer Science, The University of Liverpool,
Chadwick Building, P.O. Box 147, Liverpool L69 3BX, England.
Tel: 0151 794 3698 Fax: 0151 794 3715 email: frans@csc.liv.ac.uk

© 1998 Coenen et al.
Submitted to ECAI 98
January 15, 1998

within this space can then be defined in terms of subsets of
P. Spatial reasoning is concerned with the interpretation and
manipulation of knowledge concerning the attributes of spa-
tial objects. If we wish to manipulate objects whose attributes
are expressed in terms of sets of addresses it is desirable to
adopt an addressing mechanism that supports computation-
ally effective processing of these sets. The most obvious start-
ing point for the representation of such addresses is the well
understood Cartesian coordinate system. A consequence of
this will be the existence of negative coordinates, thus the
set P should more accurately be described as a subset of a
larger set (I) which includes the set of cells (V) representing
negative space, i.e.

PIIN=1
(the disjoint union of P and N is equivalent to I), or
N=P\I

(N is equivalent to the complement of P in T).

Although the Cartesian system is well understood, it is not
consistent over differing numbers of dimensions, i.e 4-D ob-
jects are referenced using 4 coordinates while 2-D objects only
require 2 coordinates. Consequently the Cartesian system be-
comes extremely unwieldy when considering spaces defined by
(say) more than two dimensions. These problems are elimi-
nated by the referencing system proposed here, where the co-
ordinates representing a particular cell are “compacted” into
a single (signed) integer. For the purpose of this document
we will assume a 64 bit signed integer with a bit pattern as
follows:

tttttz.zz.2y.yy.yr.xr.o

where =+ is the sign bit, and the symbols = (16 bits), y (16
bits), z (16 bits) and ¢ (15 bits) represent the bits to be as-
sociated with particular coordinates used to reference (in this
case) 4-D space. Note that:

1. It is not necessary to associate any particular dimension
with any particular bit grouping.

2. Any other distribution of bits could equally well have been
allocated provided that each dimension of interest com-
prises a continuous sequence of bits.

3. Alternative bit patterns can be defined to address (say) 8-D
reasoning.

4. The sign bit is included to provide for negative addressing
required in order to support various translation operations.

Assuming the above bit pattern we can redefine the set I
as follows:

I = {rlr=z+2"%y+2%2+2% .

—32767 < z,y,z < 32767 - — 16383 <t < 16383}

xr,y,z,t € integer -

I is the set of elements r such that each r is calculated from to
t+2'%y 42322428 where z, , 2, t belong to the set of integers
such that —32767 < z,y,z < 32767 and —16383 < ¢ < 16383
hold. We can define the set P (positive space) in a similar
manner:

P = {rr=z+2"%+22+2%t .

0<x,y z2t<32767 - 0<t<16383}

x,y, z,t € natural -

and the set IV:

{rlr =z 42"y + 2%z + 2% .
—32767 < z,y,z < 32767 - — 16383 <t < 16383 -
zVyVzVt<0}

xr,y,z,t € integer -

Negative space is defined as space in which at least one coor-
dinate is negative.

Using this representation we can define any object space
(i.e. the space which contains the objects we are interested in)
subject to the limitations of the definition for I. For example,
if we have a two dimensional 5 x 5 (cell) object space as shown
in Figure 1, this will be defined by the set:

0O = {rlr=ax+2"%y+2"242% .

0<z,y<4 - z,t=0}

= {0,1,2,3,4,256,257,258,259, 260,512,513, 514,
515, 516, 768, 769, 770, 771, 772, 1024, 1025, 1026,
1027, 1028}

z,y, 2,t € natural -

The general advantages of the representation are as follows:

1. All references are unique and conceptually simple to gen-
erate.

2. The representation is applicable (without alteration) to any
number of dimensions within the confines of the definition
of the set I.

3. The representation has the effect of linearising N-
dimensional space which in turn has significant benefits
with respect to (a) data storage, (b) comparison of sets
of addresses and (c) translation through the space (see be-
low).

The referencing system proposed here has many similari-
ties with ideas concerning tesseral representations ([1, 2, 3]).
Tesseral representations are founded on ideas concerning the
hierarchical decomposition of N-Dimensional space into isohe-
dral sub-spaces (cells) until some application dependent res-
olution is reached. Each sub-space is then referenced using

Spatio-temporal reasoning

Yy,

4 |1024|1025|1026(1027(1028

3 | 768|769 | 770 | 771|772

2 | 512|513 | 514 | 515|516

1 | 256|257 | 258|259 | 260

X -
VA |

Figure 1.

+X

Y

o 1 2 3 4

Addressing for 2D 5x5 object space

some number system. In the case of the representations pro-
posed here, any given object space is conceptually tessellated
down to some predefined resolution, and each cell given a ref-
erence (address) comprising a single integer whose bit pattern
is made up of the coordinates of that cell. Hence we refer to
our representation as a “tesseral” representation.

2.1 Data Storage

As a consequence of the linearisation the elements belonging
to a set of addresses can be ordered. More usefully clusters of
elements can be grouped into multi dimensional bozes defined
by the “corner” address nearest the origin of a given object
space (the 0 cell) and that furthest away. Thus in Figure 1
the set of cells:

{257,258, 259,513,514, 515, 769, 770, 771}
can be defined as a box of the form:
{257..771}

provided that the .. operators is understood to mean “the
sequence of cells bounded by the multi-dimensional box whose
corner address nearest to the origin is given by the prefix
operand, and whose corner address furthest away from the
origin is given by the postfix operand”. More formally we can
say that any set of addresses S can be defined in terms of a
subset of I thus:

S C{m.nlm,n€IAm<n}

It should be noted that this form of “data compression” is
particular advantageous when dealing with spaces more gen-
eral than that defined by two dimensions.

2.2 Comparison of spaces

Knowledge of the linearisation can also be used to advantage
when comparing sets of addresses. For example given sets S;

Coenen et al.

and Sy of the form defined above, the relation subset which
might link these two sets can be defined as:

SisubsetSs @ Vm.ne Sy - ds..t € Sy - m..n within s..t

The relation S;subsetSs is true if and only if for all boxes m..n
in the set S; there exist a box s..t in the set S» such that m..n
is within s..t (an appropriate definition for the within rela-
tion is assumed). Thus to compare sets of addresses where
the elements are defined in terms of boxes we do not have
to consider all elements contained within a box but only the
defining corner addresses. Again, this advantage is of particu-
lar relevance when dealing with spaces comprising more than
two dimensions.

2.3 Translation of space

To move through the space I (as represented here) we can
use standard integer addition and subtraction. For example,
to move any address one cell to the right and two cells up-
wards we simply add the address 513 (measured from the 0
address). To move in the opposite direction we subtract 513
(or add —513). In this manner we can translate sets of ad-
dresses effectively and efficiently by defining a translate func-
tion:

translate(S1,S2) — {n.m|V<p.q,s.t>€ S xS, -

m=p+sAn=q+t}

the function translate(S1, S2) produces the set of boxes n..m
such that far all Cartesian pairs (< p..q, s..t >) in S1 and S,,
m =p+ s and n = q + t. For example, given a set:

S = {257..771}

we can use the translation function to (say) move S one cell
to the right and two cells upwards:

translate({257..771}, {513..513}) — {770..1284}

In a similar manner we can uniformly expand the set S, or
stretch it in a particular direction or directions.

3 SPATIAL OBJECTS

The reasoning system recognises a number of categories of
object:

e Fized objects which cannot be moved, i.e. they have a
“fixed” location.

e Free objects which have a known shape but no fixed location
(and thus they can be moved).

e Shapeless objects which have no given shape or location
(they are only known to exist somewhere in the object
space).

These objects can have a great many attributes, the most
significant of which are

e Location

e Shape
e Relationship to other objects

Spatio-temporal reasoning

To which we can add further attributes such as size, contigu-
ity , orientation etc. Of course some attributes are implied by
others. For example given a fixed object (i.e. an object whose
location is known), all other attributes can be deduced. Sim-
ilarly in the case of a free object the object’s shape will also
indicate the nature of attributes such as size, contiguity and
SO on.

Given an object n, belonging to a set of objects, the location
(L») of that object can be expressed in terms of some subset
of the object space O (the space in which all objects of interest
are known to exist). Similarly the shape (S,) of an object n
can be expressed in terms of a subset (S,) of I (shape need
not necessarily be defined using positive coordinates only).
Thus:

Vn € objects, L, C O,S, C I

4 SPATIAL RELATIONS

The connection between spatial objects can be expressed by
relations that link the location(s) associated with one object
to the location(s) associated with another object:

L1 relation Ls

where L; and Lo are two set each element of which comprises
a set of addresses representing a possible location for an object
(i.e. L1 and Ls are sets of sets of address).

In a system where attributes are expressed in terms of sets
of uniquely identified cells, the primitive relations are the
standard group of set relations. We can consider relationships
as filters or as mappings. Filters return T'rue or False, whilst
mappings “map” some operation onto one operand with re-
spect to another operand to produce a “new” set of cells.

1. Example filters: equals, subset, superset, disjoint,
intersects.
2. Example mappings: complement, intersection.

Using these relations many of the standard topological rela-
tions encountered in spatial reasoning can be expressed, e.g.
within, contains, overlaps, disjoint ([4, 5, 6, 7, 8]). The
expressiveness of these relations can be increased by allowing
offsets to be applied to the locations before the relation is pro-
cessed. For example we may have two objects L and Lo whose
locations are given by the sets {257..514} and {514..771} and
a subset relation:

L1 subset Lo

to establish whether L is contained within Ly. In this case
the result will be false. However, we may wish to establish
whether L, is contained within a space surrounding L, by
(say) one cell. We can express this relation by first applying
an offset to Lo thus:

L subset (translate(Ls, {—257..257}))

which will be equivalent to:

{257..514} subset {257..1028}

in which case the result will be true.

Coenen et al.

<script> 1= <spaceDef> <classDef> <instanceDef>
<constraintDef>

<spaceDef> ::= space(<dimensions>).

<classDef> ::= class(CLASS_.NAME ,OBJECT_TYPE). |
class(CLASS_ NAME,OBJECT_TYPE, <shapeDef>).

<instanceDef> ::= instance(INSTANCE_NAME,
CLASS_NAME <locationDef>).

<constraintDef> ::= constraint(<operandDef>,
OPERATOR, <operandDef>).

<operandDef> ::= (INSTANCENAME) |
(INSTANCE_NAME, <offsetDef>).

Table 1. Top level syntax for SPARTA scripting language

5 SPARTA SYSTEM

The SPARTA (SPAtial Reasoning using Tesseral Addressing)
system is designed to take as input a set of objects and a
set of constraints which are desired to hold between these ob-
jects, and output one or more configurations of objects that
satisfy the constraints (assuming a solution exists). The input
is presented in the form of a script, expressed in a PROLOG
like syntax, which is then analysed and processed. Syntacti-
cally the scripting language comprises a number of primary
constructs of the form given in Table 1 (using BNF notation).
The first construct defines the desired object space in terms
of its maximum coordinates. Class definitions only include a
shape definition if the object type referred to is a free object.
The location definition that forms part of an instance defi-
nition then defines the objects location in the case of a fixed
object, and a location space in which the object can be said to
exist in the case of a free or shapeless object. Constraints are
used to express the relations that are desired to exist between
locations (possibly with offsets applied). Note that shape, lo-
cation and offset definitions are expressed in terms of sets of
tesseral addresses.

6 THE CONSTRAINT SATISFACTION
PROCESS

The constraint satisfaction process commences with a single
root node in a solution tree. Initially this node contains a list
of constraints-to-do as defined in the input script, and an ob-
ject space containing no objects but dimensioned according
to the definition given in the script. A constraint is then se-
lected from the constraints-to-do list following the constraint
selection criteria outlined below (Section 8). The system then
attempts to resolve this constraint with three possible out-
comes:

1. The constraint cannot be satisfied in which case (at this
stage) we conclude that no solution exists.

2. One or more compatible solutions exist; therefore update
the object space with respect to the identified solutions.

Spatio-temporal reasoning

3. A number (more than one) of non compatible solutions
is produced; therefore create a new level in the tree with
branches equivalent to the number of solutions, each branch
terminating in a new node containing an updated version
of the object space and constraints-to-do list.

In this manner a solution tree is dynamically created. If
all the given constraints have only one solution the tree will
consist of a single (root) node. If, however, the script includes
constraints that have more than one solution, the tree will
consist of a number of levels, each level representing a point
in the solution process where the satisfaction of a constraint
generates more than one solution. Whenever an additional
level in the tree is created each branch is processed in turn
until either all constraints have been satisfied, in which case
the solution is stored; or an unsatisfiable constraint is dis-
covered. On completion of processing a particular branch the
current node is removed from the tree and the system back-
tracks to the previous node. If all branches emanating from
this node have also been processed this node is also expunged.
The process continues until all branches in the tree have been
investigated and all solutions generated. As a result of this
approach the solution tree in its entirety never exists, only
the current branch and those higher level nodes which merit
further investigation.

We can illustrate this process by considering the various
states presented in Figure 2. A script is assumed that includes
two constraints that will result in more than one solution. We
commence with a root node (state 1) and process constraints
until one of the two constraints with more than one solution
is encountered. Here we have assumed that the constraint,
when satisfied, produces three solutions. Consequently a tree
of the form presented in state 2 is produced. Processing is
continued in the left most branch (node 1.1) until the second
constraint which had more than one solution is discovered and
another level in the tree is created (state 3). Processing then
continues in the left most branch (node 1.1.1) until (say) all
further constraints are satisfied, when the result is stored and
the current branch in the tree expunged (state 4). Node 1.1.2
is then processed until either a further solution is found or
an unsatisfiable constraint is reached, after which this branch
is also removed. There are no more branches emanating from
node 1.1 therefore, at this stage, this node can also be removed
(state 5). Processing now continues with node 1.2 in a similar
manner, and so on.

7 CONSTRAINT SATISFACTION

The individual constraint satisfaction process comprises five
steps: (1) identify operands, (2) apply offsets, (3) identify
Cartesian pairs, (4) apply the operator to the identified pairs
and (5) rouping of results.

7.1 Identify operands

From Section 4 a constraint comprises an operator and two
operands. The operands indicate the locations (one or more),
expressed in terms of a set of of one or more sets of addresses,
associated with two distinct objects. If the objects in ques-
tion were referenced in a previously processed constraint the
objects will be contained in the object space as defined in the

Coenen et al.

®

State 1

State 3

State 4

State 5

Constraint satisfaction process

Figure 2.

current node in the solution tree and thus location informa-
tion can be extracted directly. Otherwise the location for the
object will need to be generated according to the nature of
the object:

e If the object is a fixed object the location will be given in
the script.

e If the object is a free object the operand will be equiva-
lent to set of locations dictated by the different manners
in which a the shape definition can be “fitted into” the
prescribed location space.

e If the object is a shapeless object the required location is
the location space (as defined in the script) within which
the object is known to exist.

Consider the script given in Table 2. Here we have three
classes of objects, one of each type, and an instance of each
class. We also have two constraints relating objects el and
pl, and bl and el. The first is a filter because neither of the
objects is a shapeless object, and states that any valid pair
of locations for the objects el and p1l must be such that the
first intersects the second “moved down” in the -Y direction
by one cell (offset {—256.. —256}). The second constraint is a
mapping because one of the objects (b1) is a shapeless object
and states that, what ever the shape of b1 might be, it should
not include any part of the location of the fixed object el
expanded in all directions by one cell (offset {—257..257}).
The location for the fixed object el is given in the
script ({0..2512..514}). The location to be associated with
the shapeless object bl is equivalent to its location space
(1..1027) also given in the script. The free object pl has
a number of possible locations, i.e. the shape definition

Spatio-temporal reasoning

space([5,5]).

class(equals, fixed).
class(blob, shapeless).
class(plus, free, -256..256, -1..1).

instance(el, equals, 0..2, 512..514).
instance(bl, blob, 1..1027).
instance(pl, plus, 257..1028).

constraint((el), intersects,
(pl, offset(-256..-256))).

constraint ((bl), complement,
(el, offset(-257..257))).

Table 2. Example script

({—256..256, —1..1}) can be fitted into the specified location
space ({257..1028}) in four different ways:

{{258..770, 513..515},
{269..771, 514..516},
{514..1026, 769..771},

{515..1027, 770..772}}
Thus the constraints can be rewritten as:

constraint (({{0..2, 512..514}}), intersects,
({{258..770, 513..515},
{259..771, 514..516}, {514..1026, 769..771},
{515..1027, 770..772}}, offset({-256..-256}))).
constraint (({{1..770}}), complement,
({{0..2, 512..514}}, offset({-257..257}))).

7.2 Apply offsets

Once the operands have been identified the next stage is to
apply the offsets (if any) by adding the offset to each location
associated with the operand using the translation function.
As a consequence the constraints are transformed to:

constraint (({{0..2, 512..514}}), intersects,
({{2..544, 257..259}, {3..515, 258..260},
{258..770, 513..515}, {259..771, 514..516}})).
constraint (({{1..1027}}), complement,
({{-257..259, 255..771}})).

7.3 Determine Cartesian pairs

The next step is to identify all Cartesian pairs that exist be-
tween the two operand sets. Thus the constraints can now
effectively be rewritten as follows:

constraint ((({0..2, 512..514}}), intersects,
({{2..544, 257..259}})).

constraint ((({0..2, 512..514}}), intersects,
({{3..515, 258..260}})).

constraint ((({0..2, 512..514}}), intersects,
({{258..770, 513..515}})).

constraint ((({0..2, 512..514}}), intersects,

Coenen et al.

({{259..771, 514..5163}})).
constraint (({{1..1027}}), complement,
({{-257..259, 255..771}})).

7.4 Apply operator

We are now in a position to apply the operator in each case
according to whether it is a filter or a mapping constraint.
Counsidering the filter constraints first, all but the second are
satisfiable. Consequently the following pairs of locations are
valid locations for objects el and p1:

<{{0..2, 512..514}}, {{2568..770, 513..515}}>
<{{0..2, 512..514}}, {{514..1026, 769..771}}>
<{{0..2, 512..514}}, {{515..1027, 770..772}}>

Thus three possible solutions exist. The second constraint is
a mapping of the form:

{1..1027} \ {-257..259, 255..771} = {1025..1027}

Consequently the location space for b1 is refined to {1..1027}
and thus we have a location pair for bl and el of the form:

<{{1..1027}}, {{0..2, 512..514}}>

7.5 Grouping of results

Although, in the above subsection, satisfaction of the first
constraint appears to result in three solutions nothing is lost
if all three solutions are grouped together, i.e. expressed by
the pair:

<{{0..2, 512..514}}, {{258..770, 513..515},
{514..1026, 769..771}, {515..1027, 770..772}}>

thus the constraint has only one (compound) solution and
thus would not give rise to a new level in the solution tree.
The locations for each object with respect to the given object
space are illustrated in figure 3.

If we were now to add a third (mapping) constraint:

constraint(bl, intersects, pl)

and assuming a current solution as outlined above this con-
straint would be equivalent to:

constraint (({{1025..1027}}), intersects,
({{258..770, 513..515} {514..1026, 769..771}
{515..1027, 770..772}}).

which would break down to the following “pairs”:

constraint (({{1025..1027}}), intersects,
({{258..770, 513..5153}}).

constraint (({{1025..1027}}), intersects,
({{514..1026, 769..771}}).

constraint (({{1025..1027}}), intersects,
({{515..1027, 770..772}}).

which would evaluate to:

Spatio-temporal reasoning

{1025..1027} intersects {258..770, 513..515} = {}
{1025..1027} intersects {514..1026, 769..771} = {1026}
{1025..1027} intersects {515..1027, 770..772} = {1027}

The first of these solutions is not viable as it implies that
object b1l does not exist which, according to the script, is not
true. The remaining two solutions state that bl is at {1026}
if p1 is at {514..1026, 769..771} or that bl is at {1027} if
plis at {515..1027, 770..772}. These solutions are clearly not
compatible and thus a new level (comprising two nodes) in
the solution tree is indicated.

8 CONSTRAINT SELECTION
STRATEGY

Although in the above discussion, for illustrative purposes,
the example constraints have been processed in roughly simul-
taneously manner, in practice constraints are processed in a
sequential fashion. This implies an ordering and consequently
a selection strategy. We wish to process the constraints and
generate the solution tree in a manner which is as computa-
tionally efficient as possible. Thus we wish to limit the growth
of the search tree by delaying, for as long as possible, the sat-
isfaction of constraints that may cause the generation of a
new level in the solution tree ([9, 10]). When the selection of
a constraint that is likely to result in a new level in the tree
is unavoidable we wish to minimise the number of branches
that this new level will entail.

Selections are then made according to the cardinality of the
location sets. Given a constraint of the form:

constraint (L_{1}, intersects, L_{2}).

where
L_{1} = {{1025..1027}}
L_{2} = {{258..770, 513..515}, {514..1026, 769..771},

{515..1027, 770..772}}
the cardinality of the sets is:

num(L_{1})
mum (L_{2})

1

In the case of a shapeless object, which cannot have a lo-
cation, the cardinality is assumed to be NULL (interpreted
as no cardinality). Each constraint is given a primary and
a secondary weighting equivalent to the cardinality associ-
ated with the locations such that the primary weighting is
the lower of the two. Constraints with a primary weighting of
1 are guaranteed to result in only one solution and therefore
will not produce a branch in a tree. Selection is thus initially
made on the primary weighting with the aim of minimising
this. Given two constraints with identical primary weightings
the constraints are differentiated according to the secondary
weighting. The NULL weighting associated with shapeless
objects is considered to be the maximum for a particular ap-
plication.

This constraint selection strategy then has the effect of lim-
iting the growth of the search tree. In addition it causes the
most vulnerable constraints, i.e. those constraints hardest to
satisfy, to be selected early on in the satisfaction process.

Coenen et al.

1024/1025/1026/1027/1028| 1024/1025| .°_ °| " °[1028| [1024 1028

768769 770 | 771 |772| |768[o o[o o[o o o o |768|769|770|771|772
515 |516| |512| °.°.° o[o °/516| |512|513|514|515|516

256 | 257 | 258 | 250 | 260| | 256|257 [. °|259|260| |256 | 257|258 259|260
3| 4 0|1 3| 4 0| 1|2 |3]|a

Object el

Figure 3.

9 CONCLUSION

A quantitative spatio-temporal reasoning mechanism has
been described founded on a tesseral representation of space.
The mechanism offers the following significant advantages:

1. It is universally applicable regardless of the number of di-
mensions under consideration.

2. It is fully compatible with Raster representations rendering
it suited to a wide range of applications founded on such
representations.

3. It is conceptually simple and computationally effective.

The proposed mechanism has been incorporated into
a spatio-temporal reasoning system, the SPARTA system,
which has been tested against a great many spatial prob-
lems including, site identification for civil engineering projects
([11]), Geographic Information Systems (GIS) ([12]), envi-
ronmental impact assessment ([13]) and timetabling ([14]).
Other, more esoteric, applications include classic Al problems
such as N-queens problems and multi-dimensional shape fit-
ting scenarios ([15]). Current work is focused on noise pol-
lution modelling and assessment in the city of London, and
marine electronic chart interaction.

REFERENCES

[1] S.B.M. Bell, B.M. Diaz, F.C. Holroyd and M.J.J. Jack-
son, Spatially referenced methods of processing raster and
vector data, Image and Vision Computing 1(4) 211-220
(1983).

[2] B.M. Diaz and S.B.M. Bell, Spatial data processing using
tesseral methods, Natural Environment Research Council
publication, Swindon, England (1986).

[3] I. Gargantini, Linear octrees for fast processing of three
dimensional objects. Computer Graphics and Image Pro-
cessing 20 365-374 (1982).

[4] J.F. Allen, Maintaining knowledge about temporal inter-
vals, Communications of the ACM 26(11) 832-843 (1983).

[5] D. Hernandez, Relative representation of spatial knowl-
edge: the 2-D case, in D.M. Mark and A.U. Frank, Cogni-
tive and Linguistic Aspects of Geographic Space, Kluwer,
Dordrecht, Netherlands, 373-385 (1991).

[6] C. Freksa, Temporal reasoning based on semi-intervals, Ar-
tificial Intelligence 54 199-227 (1992).

Spatio-temporal reasoning

Object pl

Solution to example script

Object bl

[7] M.J. Egenhofer, Deriving the composition of binary topo-
logical relations, Journal of Visual Languages and Com-
puting 5 133-149 (1994).

[8] A.G. Cohn, J.M. Gooday, B. Bennet and N.M. Gotts,
A logical approach to representing and reasoning about
space, Artificial Intelligence Review 9 255-259 (1995).

[9] P. van Hentenryck, Constraint satisfaction in logic pro-
gramming, MIT Press, Cambridge, Massachusetts (1989).

[10] A.K. Mackworth, Consistency in networks of relations AT
Journal 8(1) 99-118 (1977).

[11] B. Beattie, F.P. Coenen, T.J.M. Bench-Capon, B.M.
Diaz and M.J.R. Shave, Spatial reasoning for GIS using a
tesseral data representation, in N. Revell, and A.M. Tjoa
(Eds), Database and Ezpert Systems Applications (Pro-
ceedings DEXA’95), Lecture Notes in Computer Science
978, Springer Verlag, 207-216 (1995).

[12] F.P. Coenen, B. Beattie, B.M. Diaz, T.J.M. Bench-Capon
and M.J.R. Shave, A temporal calculus for GIS using
tesseral addressing, in M.A. Bramer and A.L. Macintosh
(Eds), Research and Development in Expert Systems XI,
Proceedings of ES’94 261-273 (1994).

[13] F.P. Coenen, B. Beattie, B.M. Diaz, T.J.M. Bench-Capon
and M.J.R. Shave, Temporal reasoning using tesseral ad-
dressing: towards an intelligent environmental impact as-
sessment system, Journal of Knowledge-Based Systems
9(5) 287-300 (1996).

[14] F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, M.J.R.
Shave and B.M. Diaz, Spatial reasoning for timetabling:
the TIMETABLER system, Proceedings of the 1st Inter-
national Conference on the Practice and Theory of Auto-
mated Timetabling (ICPTAT’95), Napier University, Ed-
inburgh, 57-68 (1995).

[15] F.P. Coenen, B. Beattie, T.J.M. Bench-Capon, B.M. Diaz
and M.J.R Shave, A tesseral approach to N-dimensional
spatial reasoning, in A. Hameurlain and A.M. Tjoa (Eds),
Database and Expert Systems Applications (Proceedings
DEXA’97), Lecture Notes in Computer Science 1308,
Springer Verlag, pp633-642 (19977).

Coenen et al.

