
Tighter Bounds for theDeterminisation of B�uhi Automata?Sven SheweUniversity of Liverpoolsven.shewe�liverpool.a.ukAbstrat. The introdution of an eÆient determinisation tehniquefor B�uhi automata by Safra has been a milestone in automata theory.To name only a few appliations, eÆient determinisation tehniquesfor !-word automata are the basis for several manipulations of !-treeautomata (most prominently the nondeterminisation of alternating treeautomata) as well as for satis�ability heking and model synthesis forbranhing- and alternating-time logis. This paper proposes a determin-isation tehnique that is simpler than the onstrutions of Safra, Piter-man, and Muller and Shupp, beause it separates the priniple aep-tane mehanism from the onrete aeptane ondition. The priniplemehanism intuitively uses a Rabin ondition on the transitions; we showhow to obtain an equivalent Rabin transition automaton with approxi-mately (1:65 n)n states from a nondeterministi B�uhi automaton with nstates. Having established this mehanism, it is simple to develop transla-tions to automata with standard aeptane onditions. We an onstrutstandard Rabin automata whose state-spae is bilinear in the size of theinput alphabet and the state-spae of the Rabin transition automaton,or, for large input alphabets, ontains approximately (2:66 n)n states, re-spetively. We also provide a exible translation to parity automata withO(n!2) states and 2n priorities based on a later introdution reord, andhene onnet the transformation of the aeptane ondition to otherreord based transformations known from the literature.1 IntrodutionAutomata over in�nite words have been introdued by B�uhi in his proof that themonadi seond-order logi of one suessor (S1S) is deidable [B�u62℄. B�uhi au-tomata are an adaptation of �nite automata to languages over in�nite sequenes.They di�er from �nite automata only with respet to their aeptane ondition:While �nite runs of �nite automata are aepting if a �nal state is visited at theend of the run, an in�nite run of a B�uhi automaton is aepting if a �nal stateis visited in�nitely many times. Unfortunately, this lose relationship between �-nite and B�uhi automata does not imply that automata manipulations for B�uhiautomata are equally simple as those for �nite automata [RS59℄. In partiular,? This work was partly supported by the EPSRC through the grant EP/F033567/1Verifying Interoperability Requirements in Pervasive Systems



B�uhi automata are not losed under determinisation: While a simple subsetonstrution suÆes to eÆiently determinise �nite automata [RS59℄, determin-isti B�uhi automata are stritly less expressive1 than nondeterministi B�uhiautomata. Determinisation therefore requires automata with more involved a-eptane mehanisms [Saf88,MS95,Pit07,KW08℄, suh as automata with Muller'ssubset ondition [Mul63,MN66℄, Rabin's [Saf88℄ aepting pair ondition, orStreett [MS95℄ or parity [Pit07,KW08℄ automata. Also, an n
(n) lower boundfor the determinisation of B�uhi automata has been established [Yan08℄ even ifwe allow for Muller objetives, whih implies that a simple subset onstrutionannot suÆe.The development of determinisation tehniques for B�uhi automata was in-spired by the problem of synthesising reative systems [Chu63,PR89℄, a prob-lem originally introdued by Churh [Chu63℄ in 1962: Given a relation R �(2I)! � (2O)! represented by a B�uhi automaton (or an S1S or LTL formula),we want to �nd a funtion p : (2I)� ! (2O) suh that (�; p(�)) 2 R satis�es therelation for all in�nite sequenes � 2 (2I)! . Churh's problem was solved inde-pendently by Rabin [Rab69℄, and B�uhi and Landweber [BL69b,BL69a℄ in 1969.Sine their seminal works, the relation [Wil01℄ between �nite automata overin�nite strutures [Rab69℄ and �nite games of in�nite duration [BL69b,BL69a℄beame apparent.Determinisation is a key ingredient in these proofs. Rabin's extension of theorrespondene between automata and monadi logi to the ase of trees [Rab69℄,for example, builds on MNaughton's determinisation theorem [MN66℄, andMuller and Shupp's [MS95℄ eÆient nondeterminisation tehnique for alternat-ing tree automata is losely linked to the determinisation of nondeterministiword automata. Indeed, the standard tehnique to nondeterminise an alternat-ing automaton A with a memoryless aeptane onditions (suh as a parityor Rabin automata [Eme85℄) is to enrih the input tree with a (guessed) mem-oryless strategy. Nondeterminising A an then be redued to determinise theresulting universal automaton [MS95,Wil01℄, and projeting away the strat-egy. Improved determinisation tehniques thus have a onsiderable impat inautomata theory and its appliation to module heking [KV97℄, satis�abilityheking [B�u62,Rab69,EJ91,SF06,Sh08℄, and open synthesis [PR89,KV99℄.Contribution. This paper ontributes a determinisation tehnique for B�uhiautomata that simpli�es the onstrutions of Safra [Saf88℄ and Piterman [Pit07℄by separating the priniple data struture of the algorithm | the history treesproposed in Setion 3 | from the aeptane mehanism. It is my believe thatthis separations eases teahing and understanding the priniples, but it alsoprovides better bounds on the size of the resulting automata.The entral advanement of the proposed method over the previous leadingdeterminisation tehniques [Saf88,MS95,Pit07,KW08℄ is that we abandon theintrodution of expliit names for the nodes. One positive e�et of this deision1 Deterministi B�uhi automata annot, for example, reognise the simple !-regularlanguage that onsists of all in�nite words that ontain only �nitely many a's.2



is that it yields a leaner and simpler ore data struture: The number hist(n)of history trees for B�uhi automata with n states is in o�(1:65n)n�. We usethis observation to onstrut a deterministi Rabin automaton with only hist(n)states whose pairs are de�ned on the transitions, a bound whih has meanwhilebeen shown to be sharp by Colombet and Zdanowski [CZ09℄. As Rabin treeautomata have a memoryless aepting run if they aept a tree [Eme85℄, thisimplies a hist(n) bound on the size of a program that solves Churh's problemas well as an l � hist(n) bound on the size of an ordinary deterministi Rabinautomata on alphabets with l letters.If we want the size of the Rabin automaton to be independent of the alphabetsize, or if we want to onstrut a deterministi parity automaton beause of theomputational advantages attahed to parity objetives, we have to add memoryto the history trees. The required amount of memory depends on the aeptanemehanism. For Rabin automata, it suÆes to store the aeptane informationfrom the last transition, whih only leads to a minor blow-up of the state-spaeto o�(2:66n)n� states.For parity automata, we turn to the proved method of keeping a reord of themost reent relevant events in the tradition of later [GH82℄ and index appearanereords [MS95℄ We store (an abstration of) the order in whih the nodes of theurrent history tree have been introdued in a later introdution reord.The separation of onerns enables us to give a learer and more intuitiveexplanation of Piterman's onstrution [Pit07℄ and to better analyse its om-plexity, improving the known omplexity bound from O(nn n!) to O(n!2). Liuand Wang [LW09℄ have independently2 developed a omparable O(n �n!2) bounddiretly on Piterman's onstrution. Furthermore, the separation of onerns un-veils a potential optimisation that, although it does not alter the bound on thenumber of states, is likely to lead to smaller automata in pratie: We show thatthe update rule for the later introdution reord o�ers some leeway. The on-strution rule of the suessor therefore does not need to be strit, whih leadsto the formulation of a nondeterministi determinisation proedure.Organisation of the Paper. In the following setion, we reapitulate the dif-ferent types of automata used in this paper. Setion 3 then introdues historytrees, whih serve as the main data struture used in the proposed determinisa-tion tehniques, transitions between them, and a priniple approah to exploitthis data struture in an eÆient determinisation tehnique. Finally, we use thisblueprint of a determinisation tehnique in Setions 4 and 5 to devise di�erenttranslations from nondeterministi B�uhi tree automata to deterministi Rabinautomata, and one to deterministi parity automata, respetively.2 I was not aware of the work of Liu and Wang [LW09℄ when writing this paper, butI would like to point out that while their work looks younger (being submitted andpublished later), it is the older work. 3



2 Preliminaries | Rabin, Parity and B�uhi AutomataNondeterministi Rabin automata are used to represent !-regular languagesL � �! = ! ! � over a �nite alphabet�. A nondeterministi Rabin automatonA = (�;Q; I; Æ; f(Ai; Ri) j i 2 Jg) is a �ve tuple, onsisting of a �nite alphabet�, a �nite set Q of states with a non-empty subset I � Q of initial states, atransition funtion Æ : Q�� ! 2Q that maps states and input letters to sets ofsuessor states, and a �nite family f(Ai; Ri) 2 2Q � 2Q j i 2 Jg of Rabin pairs.Nondeterministi Rabin automata are interpreted over in�nite sequenes � :! ! � of input letters. An in�nite sequene � : ! ! Q of states of A is alleda run of A on an input word � if the �rst letter �(0) 2 I of � is an initial state,and if, for all i 2 !, �(i+ 1) 2 Æ��(i); �(i)� is an �(i)-suessor state of �(i).A run � : ! ! Q is aepting if, for some index i 2 J , some state q 2 Ai in theaeptane set Ai of the Rabin pair (Ai; Ri), but no state q0 2 Ri from the rejet-ing setRi of this Rabin pair appears in�nitely often in �. (9i 2 J: inf (�)\Ai 6= ;^inf (�)\Ri = ; for inf (�) = fq 2 Q j 8i 2 ! 9j > i suh that �(j) = qg). A word� : ! ! � is aepted by A if A has an aepting run on �, and the set L(A) =f� 2 �! j � is aepted by Ag of words aepted by A is alled its language.For tehnial onveniene we also allow for �nite runs q0q1q2 : : : qn withÆ�qn; �(n)� = ;. Naturally, no �nite run satis�es the Rabin ondition; �nite runsare therefore rejeting, and have no inuene on the language of an automaton.Two partiularly simple types of Rabin automata are of speial interest:parity (or Rabin hain) and B�uhi automata. We all a Rabin ondition a Rabinhain ondition if J is an initial sequene of the natural numbers !, and ifRi � Ai and Ai � Ri+1 holds for all indies. The Rabin hain ondition isnowadays usually referred to by the term parity ondition, beause it an berepresented by a priority funtion pri : Q ! ! that maps a state q to 2i + 2(alled the priority of q) if it appears in Ai but not in Ri, and to 2i+1 if it appearsin Ri but not in Ai�1. A run � of A then de�nes an in�nite trae of priorities,and the parity of the lowest priority ourring in�nitely often determines if � isaepting. That is, � is aepting if min(inf (pri (�))) is even. We denote parityautomata A = (�;Q; I; Æ; pri), using this priority funtion. B�uhi automataare even simpler: they are Rabin automata with only one aepting pair (F; ;)that has an empty set of rejeting states (or, likewise, parity automata with apriority funtion pri whose odomain is f0; 1g. A B�uhi automaton is denotedA = (�;Q; I; Æ; F ), and the states in F are alled �nal states.A Rabin, parity, or B�uhi automaton is alled deterministi, if it has a singleinitial state and its transition funtion is deterministi. (That is, if jÆ(q; �)j � 1holds true for all states q 2 Q and all input letters � 2 � of the automata A.)3 B�uhi DeterminisationThe determinisation tehnique disussed in this setion is a variant ofSafra's [Saf88℄ determinisation tehnique, and the main data struture | thehistory trees proposed in the �rst subsetion | an be viewed as a simpli�a-tion of Safra trees [Saf88℄. 4



a; b; ; d; e; f; gb; e; f  d; ge f g
0 1 20 1 0Fig. 1. Example History Tree. The labels of the hildren of every node are disjoint,and their union is a strit subset of their parent's label. The label of the root nodeontains the reahable states of the B�uhi automaton A on the input seen so far.

a
b

 d
ef gFig. 2. Relevant Fragment of a B�uhi Automaton. This �gure aptures all tran-sitions for an input letter � from the states in the history tree from Figure 1. Thedouble lines indiate that the states , f , and g are �nal states.3.1 History TreesHistory trees are an abstration of the possible initial sequenes of runs of aB�uhi automaton A on an input word �. They an be viewed as a simpli�ationand abstration of Safra trees [Saf88℄. The main di�erene between Safra treesand the simpler history trees introdued in this paper is the omission of expliitnames for the nodes.An ordered tree T � !� is a �nite pre�x and order losed (with respet toto siblings) subset of �nite sequenes of natural numbers. That is, if a sequene� = t0; t1; : : : ; tn 2 T is in T , then all sequenes s0; s1; : : : ; sm with m � n,sm � tm, and, for all i < m, si = ti, are also in T . For a node � 2 T ofan ordered tree T , we all the number of hildren of � its degree, denoted bydegT (�) = jfi 2 ! j � � i 2 Tgj.A history tree (f. Figure 1) for a given nondeterministi B�uhi automatonA = (�;Q; I; Æ; F ) is a labelled tree hT; li, where T is an ordered tree, and5



a; b; ; d; e; f; gb; ; d d e; f; g ; f; gb b;   d e; f f; g f
0 1 2 30 1 2 0 0 10 0 0Fig. 3. First Step of the History Transition. This �gure shows the tree resultingfrom the history tree of Figure 1 for the B�uhi automaton and transition from Figure 2alter the �rst step of the history transition. Every node of the tree from Figure 3 hasspawned a new hild, whose label may be empty (like the label of node 10) if no �nalstate is reahable upon the read input letter from any state in the label of the parentnode. (States printed in red are deleted from the respetive label in the seond step.)l : T ! 2Q r f;g is a labelling funtion that maps the nodes of T to non-emptysubsets of Q, suh that{ the label of eah node is a proper superset of the union of the labels of itshildren, and{ the labels of di�erent hildren of a node are disjoint.We all a node � the host node of a state q, if q 2 l(�) is in the label of � ,but not in the label of any hild of � .Our estimation of the number of history trees for a given B�uhi automatondraws from an estimation of Temme [Tem93℄ (in the representation of Friedgut,Kupferman, and Vardi [FKV06℄) for the number of funtions from a set withn elements onto a set with �n elements, where � 2℄0; 1[ is a positive rationalnumber smaller than 1: For the unique positive real number x that satis�es�x = 1� e�x, and for a = � lnx+ � ln(ex � 1)� (1� �) + (1� �) ln � 1��� �, thenumber of these funtions is in [(1+ o(1))M(�)n℄n for M(�) = � �1�� �1��e(a��).This simpli�es to m(x) = 1ex (ex � 1)�(x)for �(x) = 1�e�xx andm(x) =M��(x)� when using ea�� = 1ex (ex�1)�� 1��� �1�� ,where x an be any stritly positive real number.To estimate the number hist(n) of history trees for B�uhi automata with nstates, the number order (m) of trees with m nodes an be estimated by 4m.6



a; b; ; d; e; f; gb; ; d e; f; gb  e; f g f
0 1 2 30 1 2 0 0 10 0 0Fig. 4. Seond Step of the History Transition. This �gure shows the labelled treethat results from the seond step of the history transition. the states from the labels ofthe tree shown in Figure 3 that also our in the label of an older sibling (like the statef from the old label of the node 21) or in the label of an older sibling of an anestor ofthe node (like the state d from the old label of the node 10) are deleted from the label.In this tree, the labels of the siblings are pairwise disjoint, but may be empty, and theunion of the label of the hildren of a node are not required to form a proper subset oftheir parent's label. (The nodes olour oded red are deleted in the third step.)(More preisely, order (m) = (2m�2)!m!(m�1)! is the (m�1)-st Catalan number [Pit07℄.)The number of history trees withm nodes for a B�uhi automaton with n states isthe produt of the number order (m) of ordered trees with m nodes and funtionsfrom the set of n states onto the set ofm nodes (if the root is mapped to all statesof A), plus the funtions the automata states to a set with (m + 1) elements.Together with the estimation from above, we an numerially estimatehist(n) 2 supx>0O�m(x) � 4�(x)� � o�(1:65n)n�:3.2 History TransitionsFor a given nondeterministi B�uhi automaton A = (�;Q; I; Æ; F ), history treehT; li, and input letter � 2 �, we onstrut the �-suessor h bT ;bli of hT; li infour steps. (An example transition for the history tree shown in Figure 1 for the�-transition of an automaton A shown in Figure 2 is desribed in Figures 3{6.)In a �rst step (shown in Figure 3), we onstrut the labelled tree hT 0; l0 :T 0 ! 2Qi suh that{ � 2 T 0 � T is a node of T 0 if, and only if, � 2 T is in T or � = � 0 � degT (� 0)is formed by appending the degree degT (� 0) of a node � 0 2 T in T to � 0,7



a; b; ; d; e; f; gb; ; d e; f; gb 
0 20 1Fig. 5. Third Step of the History Transition. The nodes with (a) an empty label(nodes 000, 02, 1, 10 and 3 from the tree shown in Figure 4) and (b) the desendantsof nodes whose hildren's labels deomposed their own label (nodes 010, 20, 200 and21) have been deleted from the tree. The labels of the siblings are pairwise disjoint,and form a proper subset of their parent's label, but the tree is not order losed (withrespet to siblings). The nodes that are renamed when establishing order losedness(with respet to siblings) in the �nal step are depited in red. Node 01 is the onlyaepting node (indiated by the double line): Its siblings have been removed due to(b), and, di�erent to node 2, node 01 is stable.{ the label l0(�) = Æ(l(�); �) of an old node � 2 T is the set Æ(l(�); �) =Sq2l(�) Æ(q; �) of �-suessors of the states in the label of � , and{ the label l0(� � degT (� 0)) = Æ(l(�); �)\F of a new node � � degT (�) is the setof �nal �-suessors of the states in the label of � .After this step, eah old node is labelled with the �-suessors of the statesin its old label, and every old node � has spawned a new sibling � 0 = � � deg(�),whih is labelled with the �nal states l0(� 0) = l0(�)\F in the label of its parent � .The new tree is not neessarily a history tree: (1) nodes may be labelled withan empty set (like node 000 of Figure 3), (2) the labels of siblings do not need tobe disjoint (f and g are, for example, in the intersetion of the labels of nodes2 and 3 in Figure 3), and (3) the union of the hildren's labels do not need toform a proper subset of their parent's label (the union of the labels of node 20and 21, for example, equals the label of node 2 in Figure 3).In the seond step, property (2) is re-established. We onstrut the treehT 0; l00 : T 0 ! 2Qi, where l00 is inferred from l0 by removing all states in the labelof a node � 0 = � � i and all its desendants if it appears in the label l0(� � j) ofan older sibling (j < i). In Figure 3, the states that are deleted by this rule aredepited in red, and the tree resulting from this deletion is shown in Figure 4.Properties (1) and (3) are re-established in the third transformation step. Inthis step, we onstrut the tree hT 00; l00 : T 00 ! 2Qi by (a) removing all nodes �with an empty label l00(�) = ;, and (b) removing all desendants of nodes whoselabel is disintegrated by the labels of its desendants from T 0. (We use l00 in spiteof the type mismath, stritly speaking we should use its restrition to T 00.) The8



a; b; ; d; e; f; gb; ; d e; f; gb 
0 10 1Fig. 6. Final Step of the History Transition. The history tree that results from theomplete history transition, has the shape and labelling of the tree from Figure 5, butthe former node 2 has been renamed to 1 in order to re-establishing order losedness(with respet to siblings).part of the tree that is deleted during the third step is depited in red in Figure 4,and the tree resulting from this transformation step is shown in Figure 5.We all the greatest pre�x and order losed (with respet to siblings subsetof T 00 the set of stable nodes and the stable nodes whose desendants have beendeleted due to rule (b) aepting. In Figure 5, the unstable node 2 is depited inred, and the aepting leaf 01 is marked by a double line. (Note that only leavesan be aepting.)The tree resulting from this transformation satis�es the properties (1){(3),but it is no longer order losed with respet to siblings. The tree from Figure 5,for example, has a node 2, but no node 1. In order to obtain a proper historytree, the order losedness (with respet to siblings) is re-established in the �nalstep of the transformation. We onstrut the �-suessor h bT ;bl : bT ! 2Q r f;giof hT; li by \ompressing" T 00 to a an order losed (with respet to siblings)tree, using the ompression funtion omp : T 00 ! !� that maps the emptyword " to ", and � � i to omp(�) � j, where j = jfk < i j � � k 2 T 00gj is thenumber of older siblings of � � i. For this funtion omp : T 00 ! !�, we simplyset bT = fomp(�) j � 2 T 00g and bl(omp(�)) = l00(�) for all � 2 T 00. The nodesthat are renamed during this step are exatly those whih are unstable. In ourexample transformation this is node 2 (depited in red in Figure 5).Figure 6 shows the �-suessor for the history tree of Figure 1 and an au-tomaton with �-transitions as shown in Figure 2.3.3 Deterministi Aeptane MehanismFor a nondeterministi B�uhi automaton A = (�;Q; I; Æ; F ), we all the historytree hT0; l0i = hf"g; " 7! Ii that ontains only the empty word and maps it tothe initial states I of A the initial history tree.For an input word � : ! ! � we all the sequene hT0; l0i; hT1; l1i; : : : ofhistory trees that start with the initial history tree hT0; l0i and where, for every9



i 2 !, hTi; lii is followed by �(i)-suessor hTi+1; li+1i the history trae or �. Anode � in the history tree hTi+1; li+1i is alled stable or aepting, respetively,if it is stable or aepting in the �(i)-transition from hTi; lii to hTi+1; li+1i.Proposition 1. An !-word � is aepted by a nondeterministi B�uhi automa-ton A if, and only if, there is a node � 2 !� suh that � is eventually alwaysstable and always eventually aepting in the history trae of �.Proof. For the \if" diretion, let � 2 !� be a node that is eventually always stableand always eventually aepting, and let i0 < i1 < i2 < : : : be an asending hainof indies suh that � is stable for the �(j)-transitions from hTj ; lji to hTj+1; lj+1ifor all j � i0, and aepting for the �(i�1)-transition from hTi�1; li�1i to hTi; liifor all indies i in the hain.By de�nition of the �-transitions, for every j 2 !, the �nite automatonAj = (�;Q; lij (�); Æ; F ) has, for every state q 2 lij+1 (�), a run �qj on the �niteword �(ij)�(ij+1)�(ij+2) : : : �(ij+1 � 1) that ontains an aepting state andends in q. Also, A = (�;Q; I; Æ; F ) read as a �nite automaton has, for every stateq 2 li0(�), a run �q on the �nite word �(0)�(1)�(2) : : : �(i0 � 1) that ends in q.Let us �x suh runs, and de�ne a tree T � Q� that ontains, besides the emptyword and the initial states, a node iq0 of length 2 if q0 is in lij+1(�) and i is the�rst letter of �q0 , and a node iq0q1q2 : : : qkqk+1 of length k+1 > 2 if iq0q1q2 : : : qkis in T , qk+1 is in lik+1(n) and qk is the �rst letter of �qk+1k . By onstrution, Tis an in�nite tree with �nite branhing degree, and therefore ontains an in�nitepath iq0q1q2 : : : by K�onig's Lemma. By onstrution, �q0�q10 �q21 : : : is a run of Aon � that visits some aepting state in�nitely many times.To demonstrate the \only if" diretion, let us �x an aepting run, � =q0q1 : : : of A on an input word �. Then we an de�ne the sequene # = �0�1 : : :of nodes suh that, for the history trae hT0; l0i; hT1; l1i; : : :, �i is the host nodeof qi 2 li(�i) for the history tree hTi; lii. Let l be the shortest length j�ij of thesenodes that ours in�nitely many times.It is easy to see that the initial sequene of length l of the nodes in # even-tually stabilises: Let i0 < i1 < i2 < : : : be an in�nite asending hain of indiessuh that the length j�j j � l of the j-th node is not smaller than l for all j � i0,and equal to l = j�ij for all indies i 2 fi0; i1; i2; : : :g in this hain. This impliesthat �i0 ; �i1 ; �i2 ; : : : is a desending hain when the single nodes �i are omparedby lexiographi order, and hene almost all �i := � are equal. This also impliesthat � is eventually always stable.Let us assume that � is aepting only �nitely many times. Then we anhose an index i from the hain i0 < i1 < i2 < : : : suh that �j = � holds for allindies j � i, and � is not aepting for any j � i. (Note that every time thelength of �j is redued to l, �j is unstable, whih we exluded, or aepting, whihviolates the assumption.) But now we an pik an index i0 > i suh that qi0 2 Fis a �nal state, whih, together with �i0 = �, implies that � is aepting for�hTi0�1; li0�1i; �(i0 � 1); hTi0 ; li0i�. (Note that qi0 is in the label of � � degTi0�1(�)in the labelled tree hT 0i0�1; l0i0�1i resulting from the �rst step of the �-transitionof history trees.)  ut10



4 From Nondeterministi B�uhi Automata toDeterministi Rabin AutomataIn this setion, we disuss three determinisation proedures for nondeterminis-ti B�uhi automata. First we observe that the aeptane mehanism from theprevious setion already desribes a deterministi automaton with a Rabin on-dition, but the Rabin ondition is on the transitions. This provides us with the�rst orollary:Corollary 1. For a given nondeterministi B�uhi automaton with n states, wean onstrut a deterministi Rabin transition3 automaton with o�(1:65n)n�states and 2n�1 aepting pairs that reognises the language L(A) of A. utTo see that the number of aepting pairs is bounded by 2n�1, note that thelabels of siblings are disjoint, and that the label of every node ontains a statenot in the label of any of its hildren. Thus, the number of anestors and theirolder siblings of every node is stritly smaller than n. Thus, a node i0i1i2 : : : inan be represented by a sequene of i0 0's followed by a 1, followed by i1 0's andso on, suh that every node that an be aepting is representable by a sequeneof stritly less than n 0's and 1's.There are two obvious ways to transform an automaton with a Rabin on-dition on the transitions to an automaton with Rabin onditions on the states.The �rst option is to \postpone" the transitions by one step. The new states are(with the exeption of one dediated initial state bq0) pairs, onsisting of a stateof the transition automaton and the input letter read in the previous round.Thus, if the deterministi Rabin transition automaton has the run � on an inputword �, then the resulting ordinary deterministi Rabin automaton has the run�0 = bq0; ��(0); �(0)�; ��(1); �(1)�; ��(2); �(2)�; : : :.Corollary 2. For a given nondeterministi B�uhi automaton A with n statesover an alphabet with l letters, we an onstrut a deterministi Rabin automatonwith l � o�(1:65n)n� states and 2n�1 aepting pairs that reognises the languageL(A) of A. utGiven that the alphabets tend to be small in pratie | in partiular om-pared to (1:65n)n | a blow-up linear in the alphabet size is usually aeptable.However, an alphabet may, in priniple, have up to 2n2 distinguishable letters,and the imposed bound is not very good for extremely large alphabets. (Twoletters �1 and �2 an be onsidered equivalent or indistinguishable for a B�uhiautomaton A = (�;Q; I; Æ; F ) if Æ(q; �1) = Æ(q; �2) holds true for all statesq 2 Q of the automaton A.) As an alternative to preserving one input letter inthe state-spae, we enrih the history trees with information about whih nodeof the resulting tree was aepting or unstable in the third step of the transition.3 A transition automaton reords the history of transitions in addition to the history ofstates. For suh a history of transitions, we an translate the aeptane ondition1 : 1 by using the nodes as index set, and (A� ; R� ) where A� are the transitionswhere � is aepting, and R� are the transitions where � is unstable as Rabin pairs.11



To estimate the number of di�erent enrihed history trees with n nodes,we have to take into aount that the unstable and aepting nodes are notarbitrarily distributed over the tree: Only leaves an be aepting, and if a nodeof the tree in unstable, then all of its desendants and all of its younger siblingsare unstable, too. Furthermore, only stable nodes an be aepting and the rootannot be unstable. (An unstable root implies that the B�uhi automaton hasno run for this word. Instead of allowing for an unstable root, we use a partialtransition funtion.)The number eOrder(n) of ordered trees enrihed with this information anbe reursively omputed using the following ase distintion: If the eldest hild0 of the root is unstable, then all nodes but the root are unstable. Hene, thenumber of trees of this form is order(n) = (2n�2)!n!(n�1)! . For the ase that the eldesthild 0 of the root is stable, there are eOrder(n� 1) trees where the size of thesub-tree rooted in 0 is n� 1, and eOrder(i) � eOrder(n� i) trees where the sub-tree rooted in 0 ontains i 2 f1; : : : ; n � 2g nodes. (Every tree an be uniquelyde�ned by the tree rooted in 0, and the remaining tree. The speial treatmentof the ase that 0 has no younger siblings is due to the fat that the root annotbe aepting if it has a hild.) Thus, we have eOrder(1) = 2 (as a leaf, the rootan be aepting or stable but not aepting), andeOrder(n) = eOrder(n� 1) + order (n) + n�2Xi=1 eOrder (i)eOrder(n� 1)for n � 2. A numerial analysis4 of this sequene shows that eOrder(n) < 6:738n.This allows for an estimation of the number eHist(n) of enrihed history treesfor a B�uhi automaton with n states similar to the estimation of the numberhist(n) of history trees:eHist(n) 2 supx>0O�m(x) � 6:738�(x)� � o�(2:66n)n�:Corollary 3. Given a nondeterministi B�uhi automaton A with n states, wean onstrut a deterministi Rabin automaton with o�(2:66n)n� states and 2n�1aepting pairs that reognises the language L(A) of A. ut5 From Nondeterministi B�uhi Automata toDeterministi Parity AutomataFrom a pratial point of view, it is often preferable to trade state-spae for sim-pler aeptane onditions. Algorithms that solve Rabin games, for example, areusually exponential in the index, while the index of the onstrutions disussedin the previous setions is exponential in the size to the B�uhi automaton wewant to determinise.4 eOrder(n+1)eOrder(n) is growing, and � eOrder(n+1)eOrder(n) ��1 + 2n� is falling for growing n � 2.12



While a reasonable index has been a side produt of previous determinisa-tion tehniques [Saf88,MS95,Pit07℄, the smaller state-spaes resulting from thedeterminisation tehniques disussed in Setions 3 and 4 are partly paid for bya higher index.Traditional tehniques for the transformation of Muller and Rabin orStreett to parity aeptane onditions use later [GH82℄ and index appearanereords [MS95℄, respetively. However, using index (or later) appearane reordswould result in an exponential blow-up of the state-spae, and hene in a doublyexponential onstrution. We therefore introdue the later introdution reordas a reord tailored for ordered trees.A later introdution reord (LIR) stores the order in whih the nodes of theordered trees have been introdued. For an ordered tree T with m nodes, alater introdution reord is a sequene �1; �2; : : : �m that ontains the nodes ofT , suh that every node appears after its parent and older siblings. The expliitonsideration of the memory as a LIR leads to a onstrution that essentiallyreets Piterman's determinisation proedure [Pit07℄, and the following om-plexity analysis also implies for his onstrution.To analyse the e�et of adding a later introdution reord to a history treeon the state-spae, we slightly hange the representation: We represent the treestruture of a tree with m nodes and its later introdution reord by a sequeneof m � 1 integers i2; i3; : : : im, suh that ij points to the position < j of theparent of node �j in the later introdution reord �1; �2; : : : �m. (The root �1 hasno parent.) There are (m� 1)! suh sequenes.The labelling funtion of a history tree hT; li whose root is labelled withthe omplete set Q of states of the B�uhi automaton an be represented by afuntion from Q onto f1; : : : ;mg that maps eah state q 2 Q to the positions ofits host node in the LIR. In this representation, pairs of history trees and LIRsresemble the ompat Safra trees [Pit07℄ without the olouring funtion.Let t(n;m) denote the number of trees and later introdution reord pairsfor history trees with m nodes and n = jQj states in the label of the root. First,t(n; n) = (n � 1)!n! holds: There are (n � 1)! ordered-tree / LIR pairs, and n!funtions from a set with n elements onto itself. For every m � n, a oarseestimation5 provides t(n;m� 1) � 12 t(n;m). Hene, Pni=1 t(n; i) � 2(n� 1)!n!.Likewise, the labelling funtion of a history tree hT; li whose root is labelledwith the omplete set Q of states of the B�uhi automaton an be represented bya funtion from Q onto f1; : : : ;mg that maps eah state q 2 Q to the positionsof its host node in the LIR, or to 0 if the state is not in the label of the root. Lett0(n;m) denote the number of history tree / LIR pairs for suh history trees withm nodes for a B�uhi automaton with n states. We have t0(n; n� 1) = (n� 2)!n!5 If we onnet funtions by letting a funtion g from Q onto f1; : : : ;m � 1g be thesuessor of a funtion f fromQ onto f1; : : : ;mg if there is an index i 2 f1; : : : ;m�1gsuh that g(q) = i if f(q) = m and g(q) = f(q) otherwise, then the funtions onto mhave (m�1) suessors, while every funtion ontom�1 has at least two predeessors.Hene, the number of labelling funtions growth at most by a fator of m�12 , whilethe number of ordered tree / LIR pairs is redued by a fator of m� 1.13



and, by an argument similar to the one used in the analysis of t, we also havet0(n;m� 1) � 12 t0(n;m) for every m < n, and henePn�1i=1 t0(n; i) � 2(n� 2)!n!.Proposition 2. For a given nondeterministi B�uhi automaton A with n states,we an build a deterministi parity automaton with O(n!2) states and 2n prior-ities that reognises the language L(A) of A.Proof. We onstrut a deterministi parity automaton, whose states onsist ofthe history tree / LIR pairs, and an expliitly represented priority. The priorityis determined by the position i of the �rst node in the previous LIR that is eitherunstable or aepting in the �-transition: If it is aepting, the priority is 2i, if itis unstable, the priority is 2i�1. If no node is unstable or aepting, the priorityis 2n+1. The automaton has at most the priorities f2; 3; : : : ; 2n+1g and O(n!2)states | O�(n� 1)!n!� history tree / LIR pairs times 2n priorities.Let � be a word in the language L(A) of A. Then there is by Proposition 1a node � that is always eventually aepting and eventually always stable in thehistory tree, and will hene eventually always remain in the same position p inthe LIR and be stable. (A stable node an only move further to the front ofthe LIR, whih an only happen �nitely many times.) From that time onward,no node with a smaller position p0 < p is deleted (this would result � to movefurther to the front of the reord), nor is the node � on position p unstable.Hene, no odd number < 2p ours in�nitely many times. Also from that timeonward, the node � is aepting in�nitely many times, whih results in visitinga priority � 2p by our prioritisation rule. Hene the smallest number ourringin�nitely many times is even.Let, on the other hand, 2i be the dominating priority of the run of our deter-ministi parity automaton. Then eventually no lower priority than 2i appears,whih implies that all positions � i remain unhanged in the LIR, and the re-spetive nodes remain stable from that time onward. Also, the node that is fromthat time onward on position i is aepting in�nitely many times, whih impliesby Proposition 1 that � is in the language L(A) of A. utWhile the separation of onerns does not generate the same theoretialbene�t with respet to state-spae redution when we onstrut parity automatainstead of Rabin automata, the pratial advantage might be omparable. Whilethe update rule for history trees is strit, the update rule for LIR's is muh lessso: The only property of LIR updates used in the proof of Proposition 2 is thatthe position of aepting positions is redued, and stritly redued if there wasan unstable node on a smaller position of the previous LIR. This leaves muhleeway for updating the LIR | any update that satis�es this onstraint will do.Usually only a fragment of the state-spae is reahable, and determinisationalgorithms tend to onstrut the state-spae of the automaton on the y. Thesimplest way to exploit the leeway in the update rule for LIR's is to hek ifthere is a suitable LIR suh that a state with an appropriate history tree / LIRpair has already been onstruted. If this is the ase, then we an, dependingon the priority of that state, turn to this state or onstrut a new state thatdi�ers only in the priority, whih allows us to ignore the new state in the further14
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