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Summary

This report summarize the research outputs carried out within the MRes in Decision Mak-

ing under Risk and Uncertainty. The supervisors Edoardo Patelli, Matteo Broggi and Sven

Schewe, involved in the project “Robust Probabilistic Risk/Safety Analysis of Complex Sys-

tems and Critical Infrastructures”, have considered of primary interest for the year to improve

my knowledge on advanced methodologies for risk analysis and uncertainty quantification.

Hence, classical uncertainty quantification approaches, generalized uncertainty quantification

methodologies and new applications for health management of mechanical systems have been

explored. It has been assumed that, in addition to a methodological review, best learning ap-

proach to be endorsed was a pragmatic one. Thus, real case studies and real applications have

been analysed, more specifically three practical applications have been faced so far.

First, a purely classical uncertainty quantification problem have been tackled, named the

“Uncertainties in GPS positioning” challenge. It is an academic challenge launched by French

Institute for Transportation Science and Technology Geolocalisation Team (IFSTTAR/ CoSys/

Geoloc), jointly with the French Federation of Mathematical Games. The challenge have been

accepted and faced in collaboration with three students of the risk institute. Although authors

and supervisors have not considered the completed work novel enough to be published, it has

been extremely beneficial for the MRes, especially thanks to the issues and problems tackled

during the study. The main challenges were to deal with imprecise real world data, minimize

computational time and combine classical uncertainty quantification techniques such as Monte

Carlo to algorithms for optimization. It is worth remark that this unpublished work has been

rewarded by the organizing groups and the Liverpool team won the second price in the inter-

national competition (first price between the groups). The interested reader is remanded to the

web link for further details:

http://scmsa.eu/archives/SCM FFJM Competitive Game 2014 2015 comments.pdf

The second case study consist of a challenge launched by the independent, not-for-profit

membership association “National Agency for Finite Element Methods and Standards” (NAFEMS).

This application has been retained good starting point to approach novel uncertainty quantifi-
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cation methodologies, important tools to better cope with lack of information, imprecision and

not consistent data. The challenge has been faced by adopting classical but also generalized

(non-classical) uncertainty quantification approaches, therefore developing a more complex

framework. The computational framework can be seen as the original contribution of the work,

it allows to qualify uncertainty of the information regarding the model parameters, i.e. multi-

ple intervals, sampled values, imprecise intervals. The numerical implementation and solution

to the challenge have been summarised into a conference paper, recently presented during the

last NAFEMS World Congress (2015), which took place in San Diego, USA over four days in

June. The presenter M. Broggi has been awarded with the best presenter award. For the future,

possible journal targets have been already identified. Two possible targets are “Advances in En-

gineering Software” and “Computer Methods in Applied Mechanics and Engineering” which

are good quality journals treating computer science and engineering related problems. Indeed

the work is relevant for the future research project, which are going to be focused on novel

approaches for robust risk analysis of complex systems, therefore it will likely deal with robust

quantification of the uncertainty arising due to randomness and imprecision in the data.

The third application tackled within the Master of research year is a Bayesian model updat-

ing used to assess and manage the health state of a mechanical component, a suspension arm.

The main aims were to obtain an improved real-time crack detection framework accounting for

different sources of uncertainty i.e. unknown crack parameters, randomness in the device pa-

rameters and noisy measurements. The advancement of the work has been recently summarized

in a conference paper presented to the 25th edition of the conference, ESREL 2015, in Zrich.

Also in this case, uncertainty quantification is an important part of the work and Bayesian up-

dating framework have been tested under different prospectives. More specifically, in order to

meet computational time requirements which are strong constraints for real-time applications,

two surrogate model have been tested and selected. Furthermore, as known that effectiveness

of the procedure demand for accurate likelihood definition, three different ad-hoc likelihood

function have been applied and results compared and discussed. The framework resulted to be

a useful tool which require further analysis and tests. Journal publication has been considered,

possible targets are journals focused on prognostic health management and advanced Bayesian

model updating frameworks.
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Highlights

This section are summed up in bullet points the main contributions and achievements of two of

the work proposed in the MRes academic year.

The NAFENS Challenge Problem

• Numerical rigorous framework to deal with incomplete, imprecise information.

• No unjustified hypothesis on data, no subjective and biased exemptions.

• Neglecting epistemic uncertainties might lead to severe over/under estimation of the re-

liability.

• Solution to the NAFEMS uncertainty quantification challenge problem shows effective-

ness of the framework.

The Bayesian Updating Framework for Real-Time Crack identification

• Bayesian Model Updating to estimate posterior distribution of crack parameters.

• Three empirical likelihood investigated and two surrogate model have been investigated

and discussed.

• Code parallelization strategy adopted and time saving framework thanks to surrogate

model obtained.

• Aleatory uncertainty in the Young’s modulus and measurement noises shows to be im-

portant factor in a good crack parameters updating.
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Preliminary Conclusions and Future Directions

Risk is the potential of experiencing a loss when a system does not operate as expected due

to the occurrence of uncertain and difficult-to-predict events. The more general qualitative

definition of risk accounts for both uncertainty in the occurrence of hazardous events and the

consequences of these events. Hence, it seems intuitively correct to consider the risk concept

as pervasive and multidisciplinary by definition. In facts, discipline and sector of interest are

involved depending on the type of consequences addressed and on the events considered in the

study. Depending o the discipline, the Decision-Makers will have to face different risky deci-

sions, all affected by uncertainties in at least one of its forms. Point out the limitations of uncer-

tainty quantification approaches and improve the robustness of the decisions is hence essential

to better understand what can change and what can go wrong in achieving goals. In order to in-

crease the robustness of risk assessment several approaches and uncertainty quantification tech-

niques have been reviewed during the year. Indeed classical uncertainty analysis is an important

tool to obtain a representation of model predictions consistent with the state-of-knowledge and

available information. Within an imprecise-information scenario, combination of probabilistic

and non-probabilistic approaches are appealing tools to give different prospective to the results

without a demand of strong initial assumptions. The applicability of the different uncertainty

quantification techniques have been confirmed useful by the NAFEMS challenge case study

and the Bayesian Model Updating case study. The flexibility of the frameworks adopted in

both the works will be further improved and tested on different real-life problems.

For the future are expected beneficial collaboration with the project partners, firstly with the

industrial European Center for Soft Computing (ECSC) but also the academic partner profes-

sor Enrico Zio (Politecnico di Milano and/or Ecole Central de Paris). As example, the ECSC

research activity mainly focus on research units such as fuzzy evolutionary applications, in-

telligent data analysis (data mining, pattern recognition), cognitive computing (computational

systems able to provide linguistic descriptions of complex phenomena). Indeed their expertise

in advanced risk analysis techniques and competence in dealing with uncertainty and impreci-

sion are going to be uttermost important contribution to the final research output quality.
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A Computational Framework for Classical and Generalized Uncertainty
Quantification: Solution to the NAFEMS Challenge Problem

R. Rocchetta & M. Broggi & E. Patelli
Institute of Risk and Uncertainty, University of Liverpool, United Kingdom Tel.: 0044 (0) 151 7944079

ABSTRACT: Classical probabilistic approaches are well-established techniques often used to enhance ro-
bustness of simulations by accounting for uncertainty from different sources. Application of classical proba-
bilistic frameworks, especially in cases affected by lack of information, may require strong initial assumptions
often hardly justifiable. The assumptions made to deal with uncertainty due to data unavailability can deeply
influence the final results and lead to severe risk misjudgement. Generalised probabilistic approaches have been
recently introduced to better deal with scarce or limited information. The strengths and the shortcoming of clas-
sic and generalised approaches have been pointed out in literature. However, to help acceptance and to better
understand their strengths, further comparisons seems to be needed, especially from an applicative prospective.
In this paper, different probabilistic approaches are implemented in a common computational framework, which
has been adopted to solve the NAFEMS uncertainty quantification challenge problem. Strength and weakness
of both the methodologies have been directly faced and presented. The results obtained have confirmed that
classic probabilistic approaches when bearing strong artificial assumptions may lead to misleading conclusion
which not fully representative the real available information quality. Generalised probabilistic approaches have
shown to be versatile and powerful tools.

1 INTRODUCTION

Nowadays, it is generally well understood that is nec-
essary to include uncertainties in simulations, e.g. due
to variation in parameters and operational conditions,
in order to achieve robust design of new products,
execute model validation or ensure reliable operation
for the whole product-life. It is important that easy
to follow and accurate guidance, best practices and
computational tools are available to make uncertainty
quantification a standard techniques adopted by a
larger public of engineering practitioners.

Classical probabilistic approaches are well es-
tablished techniques which can be used to enhance
robustness of the desired results, accounting for
uncertainties which can arise from different sources.
However, in order to create probabilistic classical
frameworks and overcome lack of or imprecise
information, strong initial assumption may be needed
and are often hardly justifiable. Those assumptions,
such as predefined probability distributions, can sub-
stantially influence the final outcomes and especially
in reliability analysis may led to misleading results
(Beer, Ferson, & Kreinovich 2013).

Generalized approaches are powerful methodolo-

gies which could in some cases be coupled to the
traditional approaches in order to give a different
prospective on the results, enhancing the overall
robustness. Examples of such flexible frameworks
are provided by e.g. (Ferson, Kreinovich, Ginzburg,
Myers, & Sentz 2002) and (Patelli, Alvarez, Broggi,
& de Angelis 2014). In the last years some efforts
have been putted in comparing different generalized
and classical approaches, e.g. see (Zio & Pedroni
2013), (Laura P. Swiler 2009), (Alex Diaz De La O
2014). However, further confrontations of different
methodology, especially applied to real study cases,
are required to showcase and promote generalized
approaches, as well as the use of dedicated software
tools to automate the analysis.

In this paper, a computational tool useful to
implement generalized and classical uncertainty
quantification in a common framework is presented.
The computational framework has been tested
providing solution of the uncertainty quantifica-
tion challenge problem proposed by the NAFMS
stochastic group (NAFEMS 2013). The problem is
tackled by adopting classical, but also generalised
probabilistic approaches, which fits in the framework
of imprecise probabilities. The results obtained by
these novel approaches, which account for both epis-



temic and aleatory source of uncertainty and require
weaker initial assumptions, will be compared with the
previous solution to take sides of the limitations and
shortcomings of both the methodologies. This will
confirm the increased flexibility in the uncertainty
treatment found when also imprecise probabilities
are employed, as well will provide guidance to im-
plement classical and generalized approaches when
different type of imprecise information is provided.
Increased flexibility can be achieved by improving
the uncertainty models with provided information of
different quality and by efficiently including evidence
from wide range of sources.

At the last NAFEMS world congress, held in 2013
Salzburg, the NAFEMS Stochastic Working Group
has launched a challenge problem open to contribu-
tors from Academia, Government and Industry. The
system subject to the analysis is a simple RLC series
electric circuit with different levels of uncertainty
estimated around the model input parameters (i.e.,
intervals from multiple sources, finite number of
sampled values, incomplete intervals). The scope
of the challenge was to evaluate the reliability of
this circuit under the different input uncertainties
as well as to quantify the value of information in
each case. The interested readers are reminded to
reference (NAFEMS 2013) and (NAFEMS 2014)
for further details about the problem definition. This
case study has been retained particularly suitable to
be solved using probabilistic and also generalized
approaches and serve as platform for further compar-
isons between different methodologies. The proposed
computational framework has been embedded to
OpenCOSSAN, see (Patelli, Broggi, Angelis, & Beer
2014), open general purpose software for uncertainty
quantification which has been employed in all the
steps of the analysis.

This paper is structured as follows: Section 2
presents theoretical background, a brief review
of generalized approaches and an introduction to
Dempster-Shafer methodology. In Section 3 a syn-
thetic overview the numerical framework is made.
Section 4 shows the NAFEMS challenge problem,
the reliability requirements and computational chal-
lenges. In Section 5 the classical and generalized ap-
proaches and results for the different tasks of the chal-
lenge are presented. In Section 6 a brief discussion on
the limitations of the different approaches is presented
In Section 7 conclusions are drawn.

2 THEORETICAL BACKGROUND

Uncertainties can generally be described in two
groups, the so called aleatory and epistemic uncer-
tainties (Der Kiureghian and Ditlevsen 2009). The
aleatory, also indicated in literature as Type I or irre-
ducible uncertainty, is related to stochastic behaviours

and randomness in events and variables. Hence, due
to its intrinsic random nature is normally regarded as
not reducible, that means the degree of uncertainty
cannot be decreased even if the knowledge of the
system or of the physical phenomena is improved.
The epistemic, also called Type II or reducible un-
certainty, is commonly related to lack of knowledge
about a particular behaviour, imprecision in measure-
ment and poorly designed models. It is considered as
reducible since further data can reduce the level of
uncertainty, but this is not always practical or feasible.

The Monte Carlo is a broadly applied classical ap-
proach often used to deal with uncertainties without
differentiates between aleatory and epistemic types
(Marseguerra and Zio 2002). It has been considered
in the study because is flexible and is one of the
most well-established classical methodology to char-
acterize and propagate uncertainty. As mentioned,
the Monte Carlo (MC) approach has been applied
in several survey, e.g. Rocchetta et al. 2015 and
Ching and Chen 2007, no further details about this
technique will be provided in this paper.

Nevertheless, it is well-understood that MC ap-
proach have to face serious limitation, especially
in the computational aspect, e.g. high number of
simulations are needed in order to sample just one
rare event. Moreover, MC classical approach cannot
differentiates between aleatory and epistemic uncer-
tainty, hence assumptions may be needed to deal with
imprecise information. In the last decades, efforts
were focused in the treatment of imprecise knowl-
edge, non-consistent information and both epistemic
and aleatory uncertainty by efficient approaches.
The methodologies are discussed in literature by
different mathematical concepts: Dempster-Shafer
Evidence theory (Dubois and Prade 1988, Shafer
1976, interval probabilities (Augustin 2004), level
two probably approach (Helton et al. 2004, Pedroni
et al. 2013), Fuzzy-based approaches (Blair et al.
2001) and Bayesian updating approaches (Faber 2005
Kiureghian 2008, Veneziano et al. 2009 Ching and
Chen 2007), are some of the most intensively applied
concepts.

Considering all the reviewed methodologies, the
Dempster-Shafer approach based on the theory of
Evidence has been selected to tackle the challenge
problem through a generalized framework. The main
reasons for this selection are that Dempster-Shafer
approach requires little assumption and can be easily
implemented and coupled to classical probabilistic
frameworks; moreover it is generally applicable
allowing solving all the tasks proposed in the chal-
lenge problem. Kolmogorov-Smirnov test and Kernel
Density Estimator have been also used to represent
the sample uncertainty for extremely small sample
size, one of the challenge tasks (see Section 4) The



first is used combined to Dempster-Shafer approach
in a Generalized framework; the latter is combined
to Monte Carlo simulation to provide a classical
solution to the task.

2.1 Dempster-Shafer Structures and Probability
Boxes

One of the largely used frameworks of subjective
probability is the DempsterShafer theory which is
a well-suited framework to represent both aleatory
and epistemic uncertainty and it can be seen as
a generalization of Bayesian probability. In the
Dempster-Shafer theory, numerical measures of
uncertainty (a degree of belief also referred to as
a mass) may be assigned to overlapping sets and
subsets of hypothesis, events or propositions as well
as individual hypothesis, see e.g. Beer et al. 2013.
Probability values are assigned to sets of possibilities
rather than single events. In the Shafer theory the sets
are represented as intervals, bounded by two values,
belief and plausibility.

In order to characterize both epistemic and aleatory
uncertainty, probability boxes (referred as P-boxes)
are often used. P-boxes can be seen as a further gener-
alization of the Dempster-Shafer structures where the
sets are represented by distributions. The Dempster-
Shafer structures are similar to discrete distribution
but rather than precise points, the locations where the
probability mass resides are set of real values, it can
be expressed as set of focal elements as presented by
Ferson et al. 2002:

(
([x1, x1],m1), ([x2, x2],m2)..., ([xn, xn],mn)

)
(1)

Where[xi, xi] is the ith focal element with upper
bound xi and lower bound xi, mi is the probability
mass associated with the ith focal element. P-boxes
are set of cumulative distribution functions (CDFs)
for which lower and upper bounds are assigned
[FX , FX ]. Note that the probability distribution
associated to the random variable of interest can
be either defined or not. As summarized by (Patelli
et al. 2014) the first are generally named distribu-
tional P-boxes (or parametric P-boxes) the latter are
called distribution-free P-Boxes (or non-parametric
P-Boxes). Figure 1 shows an illustrative example of
distributional P-Box, the parent distribution is the
normal distribution; the red dashed line is the lower
bound FX , black solid line is the upper bound FX .

The wider the distance between upper and lower
bound the higher epistemic uncertainty is associated
to the random variable. The bounds for the CDFs
mean bounds on probabilities, upper and lower prob-
ability bounds can be hence obtained as:

Figure 1: Illustrative example of distributional P-Box.

FX = P (X ≤ x) = 1− P (X ≤ x) (2)

FX = P (X ≤ x) (3)

In literature the lower bound on probability is some-
time referred as plausibility Equation (4( and the up-
per bound as belief, Equation (5). Cumulative Plausi-
bility and Belief function can be computed as:

Pl(z) =
∑
xi≤z

mi (4)

Bel(z) =
∑
yi≤z

mi (5)

Dempster-Shafer structures can be always translated
into a P-box but without forgetting that is not an infor-
mation preserving procedure. These approaches are
straightforward to deal with some of the cases pro-
posed in the NAFEMS challenge, such as multiple
and overlapping intervals and inconsistent sources of
information. The drawback is that the propagation of
intervals and P-boxes through the system can results
computational expansive. Nevertheless, the quantifi-
cation approaches are generally not-intrusive and
hence applicably to any model. For further acknowl-
edgement the reader is reminded to Laura P. Swiler
2009. This is an interesting feature of the approach
which is therefore suitable to be used in parallel to
classical uncertainty quantification method to give
wider prospective on the analysis.

2.2 The Kernel Density estimator

It is in general difficult to get the true distribution
from a small number of samples using parametric
methods. This is because there is no enough informa-
tion to estimate the PDF when only few data points
are available. Kernel density estimator is another non-
parametric approach that can be used to estimate
the probability density function of a random variable



(Pradlwarter and Schuller 2008). The approach does
not need any assumptions regarding the underlying
distribution. A commonly used univariate parametric
kernel is the Gaussian or normal Kernel:

f̂(x) =
1

nσ
√

2π

n∑
i=1

(
−(x− xi)2

2σ2

)
(6)

where f̂(x) represents the estimated probability
density function of n samples xi drawn from an un-
known density function f . The variance (or band-
width) σ2 is the only parameter that needs to be es-
timated. The best bandwidth can be estimated using
for instance the Silverman’s rule of thumb (Silverman
1986) or in case of very small sample sizes the ap-
proach proposed by Pradlwarter and Schuller 2008.

2.3 Kolmogorov-Smirnov Test

The so called Kolmogorov-Smirnov statistical test
(Massey 1951) is one possible non-parametric ap-
proach that can be used to characterize the uncer-
tainty of a process starting from samples with a
reference probability distribution. The Kolmogorov-
Smirnov (KS) test is a distribution-free statistical test
based on the maximum difference between an empiri-
cal CDF and a hypothetical CDF. It returns upper and
lower bound of CDFs assuming a predefined confi-
dence level. The bounds can be computed by use of
Equation (7) as:

min (1,max(0,DF (x),D(α,n))) (7)

where DF (x) denotes the best estimate of the dis-
tribution function and D(α,n) is the one-sample KS
critical statistic for confidence level 100(1 − α)%
where is the selected significance level and n the sam-
ple size. The KS critical statistic can be therefore used
to obtain different confidence limits on the CDFs by
choosing different critical values of the statistic test.
Different level of confidence lead to different confi-
dence bounds on the CDFs which, when propagated,
produce boarder or narrow bounds of the resulting P-
boxes.

3 NUMERICAL IMPLEMENTATION

Generalized and classical probabilistic uncertainty
quantification methods are powerful techniques to
deal with uncertainty and combine methodologies in
a common computational framework is of high in-
terest for the uncertainty analyst. OpenCossan is a
collection of methods and tools under continuous de-
velopment, coded exploiting the object-oriented Mat-
lab programming environment. It allows defining spe-
cialized solution sequences including any reliability

methods. Hence optimization algorithm, new reliabil-
ity methods or uncertainty quantification and prop-
agation techniques can be easily added. In the pre-
sented work a computational tool useful to implement
Generalized and Classical probabilistic approaches in
a common framework is presented. Schematic repre-
sentation of the computational framework is shown in
Figure 2.

Figure 2: Simplified representation of the computa-
tional tool

Algorithm 1 Dempster-Shafer structures Propagation
Algorithm
1: procedure DS PROPAGATION
2: for each Parameterj do
3: Assign mass mj

i∀ focal elements i ∈ Parameterj
4: end for
5: if

∑
i

mj
i 6= 1 then

6: ERROR. Masses have to be normalized
7: end if
8: for each ω ∈ Ω which is the set of all possible interval

combinations do
9: for K=1: last performance variable do

10: Compute Minimum and Maximum of K
11: [Min(K),Max(K)]ω
12: end for
13: Compute mass for the combination ω

14: mω =
∏

j m
j
i

15: Save [Min(K),Max(K),m]ω
16: end for
17: Save the Propagated DS structure
18: ([Min(K),Max(K),m]1, ..., [Min(K),Max(K),m]Ω)
∀ variable K

19: Plot the DS structure translated as P-box
20: end procedure



In the proposed framework, the parameters infor-
mation is stored in UncertainParameter which con-
tain parameters name, type of uncertainty and nu-
merical information such as bound values or sam-
ples values. The propriety Stype identify the un-
certainty type affecting the parameter e.g. single
or multiple intervals, samples or imprecise intervals
for which only upper or lower bound are well de-
fined. Whereupon UncertainParameter is defined, pa-
rameter uncertainty is further characterized by use
of Kolmogrov-Smirnov test, Kernel Density estima-
tion or by defining random variables from a set of
well-known distribution (e.g. uniform). Depending on
the uncertainty type, only some characterization and
propagation methodology are available, as schemati-
cally explained in Table 1. Among the different reli-
ability and uncertainty propagation methods not just
classical methods are available, e.g. Monte Carlo,
Latin Hypercube, but also some generalized methods
such as Dempster-Shafer (DS) propagation and P-box
approaches.

Table 1: Scheme of Methods for the uncertainty char-
acterization propagation depending on the uncertainty
type

Type of un-
certainty

Characterize Propagate

Single or
Multiple
Intervals

Random
Variable, DS
structure

Monte Carlo,
DS propaga-
tion

Sampled Val-
ues

Kernel
Density,
Kolmogrov
Smirnov test

Monte
Carlo,P-box
propagation

Imprecise In-
tervals

Random
Variable, DS
structure

Monte Carlo,
Line Sam-
pling, DS
propagation

Pseudo-code for the Dempster-Shafer structure
propagation is presented in Algorithm 1. Further de-
tails on the propagation algorithm are provided in sec-
tion 5.1.

4 THE NAFEMS CHALLENGE PROBLEM

The challenge problem, prepared by the stochastic
group NAFEMS (2013), consist of four uncertainty
quantification and information qualification tasks,
ideate to identify and promote to the industry best
practices to deal with uncertainty. In the challenge,
the analysts are asked to evaluate the reliability of an
electronic resistive, inductive, capacitive (RLC) series
circuit shown in Figure 3, on meet performance re-
quirements.

Four different cases (A, B, C and D) have been
proposed, each one having incomplete, scarce or im-
precise information about the system parameters, as

Figure 3: RLC series circuit. Input signal is the step
voltage source for a short duration. Output response
is the voltage at the capacitor.

Table 2: CASE-A CASE-B CASE-C and CASE-D,
available information

CASE A R[Ω] L[mH] C[µF]
Interval [40,1000] [1,10] [1,10]
CASE B R[Ω] L[mH] C[µF]
source 1 [40,1000] [1,10] [1,10]
source 2 [600,1200] [10,100] [1,10]
source 3 [10,1500] [4,8] [0.5,4]
CASE-C R[Ω] L[mH] C[µF]
Sampled
Data

861, 87,
430, 798,
219, 152,
64, 361,
224, 61

4.1, 8.8,
4.0, 7.6,
0.7, 3.9,
7.1, 5.9,
8.2, 5.1

9.0, 5.2,
3.8, 4.9,
2.9, 8.3,
7.7, 5.8,
10, 0.7

CASE D R[Ω] L[mH] C[µF]
Interval [40,RU1] [1,LU1] [CL1,10]
Other info RU1 >650 LU1 >6 CL1 <7
Nominal
Value

650 6 7

shown in Table 2. In the CASE-A single intervals,
one upper bound and one lower bound for parameter
R L and C are given. In the CASE-B, each parame-
ter can lay within multiple intervals, i.e. three upper
and lower bounds. In CASE-C small sample sizes of
ten sampled points for each parameter are provided.
Finally for the CASE-D, imprecise bounds are the
only available information; this last case is similar
to CASE-A, but one bound is not precisely defined.
Uncertainty is characterized using different classical
and generalized approaches according to the level of
knowledge available for the parameters R, L and C.

The equations governing the RLC circuit are pro-
vided by the challengers. The transfer function of the
system is defined as:

Vc(t)

V
=

ω2

S2 + R
L
S + ω2

(8)

Depending on the values of R, L and C, the system



may be classified as under-damped critically damped
or over damped.
Under damped (Z <1):

Vc(t) = V + (A1cos(ωt) +A2sin(ωt)) exp−αt (9)

Critically damped (Z =1):

Vc(t) = V + (A1 +A2t) exp−αt (10)

Over damped (Z >1):

Vc(t) = V + (A1 expS1t+A2 expS2t) (11)

where roots are computed as:

S1,2 = −α±
√
α2 − ω2 (12)

and damping factor Z, values of ω and α are deter-
mined as follow:

α =
R

2L
;ω =

1√
LC

;Z =
α

ω
(13)

Coefficients A1 and A2 are determine by assuming
initial voltage and voltage derivative equal zero,
unitary step voltage function were considered.

In the challenge, the main goals consist in qualify
the value of information and evaluate the reliability
of the system with respect to three requirements. The
first two are on the voltage at the capacitance Vc (since
the second requirement on rise time can be translated
into a voltage requirement as well). More specifically:

Vc(t = 10ms) > 0.9V (14)

Vc(t = tr) > 0.9V (15)
where tr is the voltage rise time, the time from 0
to 90% of the input voltage, and have to be less
than 8 ms. The third requirement is on the under-
damped system responses which have to be dis-
charged (Z ≤1). It can be observed that the third re-
quirement imply a monotonic behaviour for Vc, there-
fore it is trivial rewrite the second requirement as in
Equation (16):

Vc(t = 8ms) > 0.9V (16)

The cumulative distribution function (CDF) of a ran-
dom variable is commonly used in reliability analysis
to extract useful knowledge about the so called prob-
ability of failure as follows:

FX(x) = P (X ≤ x) (17)

Specifically, Vc(10ms), Vc(8ms) and Z are con-
sidered as random variable and Equation (17) can
be used to compute the probabilities that the sys-
tem fail on meet the three requirements by estimating
FVc(10ms)(0.9), FVc(8ms)(0.9), and FZ(1)

If bounds on the CDFs are obtained, Equations (2)-
(3) can be used to compute the bounds on probabil-
ity of not meet the requirements, [PV c10fail , PV c10fail ],

[Ptrfail , Ptrfail ], and[PZfail
, PZfail

].

5 CLASSICAL AND GENERALIZED
APPROACHES FOR THE NAFEMS CASES
SOLUTION

Within this section, classical and generalized ap-
proaches are adopted to tackle the four cases of the
NAFEMS challenge problem. Uncertainty character-
ization, propagation are presented for each case, fur-
thermore available information quality and system re-
liability is discussed.

5.1 CASE A and CASE B

In CASE-A single interval information is provided
for the parameters (see, Table 2) while multiple in-
terval information is available in CASE-B. Adopting
the generalised probabilistic method and in particular
the Dempster-Shafer approach, the CASE-B degener-
ate to CASE-A if probability mass equal one is as-
signed to the first source of information. This because
in CASE-B intervals values for source 1 correspond
to interval values in CASE-A. Due to the consider-
ations made, the two cases are presented and solved
together.

Classical Approach
In the Case-A, a Monte Carlo simulation-based
approach has been implemented. Classical proba-
bilistic approaches do not allow to model explicitly
intervals. A largely used approach is to model the
parameters as random variables which may vary
uniformly between the provided interval bounds,
assumption made with respect to the Principe of
maximum entropy. However, this implies that each
value inside the interval is equally probable and this
is a very strong assumption that might not be justified
by the evidence from experimental data or expert
judgement. Uncertainty propagation and reliability
assessment are performed by randomly sample R
L and C from the associated uniform distributions
and evaluating if the system requirements are met
(e.g. system is under failure with respect to the first
requirements, if Equation (14) is not satisfied).

The solution of the Case-B follows the same proce-
dure as the Case-A. Each interval is considered indi-
vidually. Hence, three different uniform distributions
for each R, L, and C variables are used to modelling,
one for each source of information. The reliability
analyses have been performed to estimate compute 3
probabilities of failure, one for each source of infor-
mation. Furthermore, for comparative purpose, over-
all probability of failure is obtained in CASE-B by av-
eraging the results, this is done assuming each source
of information as equally likely.



Table 3: Results CASE-A, comparison between Co-
efficients of Variation when computing different sam-
ples.

1000 samples 10000 samples
CASE-A Prob. Cov Prob. Cov
PV c10fail 0.284 0.050 0.268 0.017
Ptrfail 0.346 0.044 0.364 0.013

Table 4: Results CASE-B: Monte Carlo resulting
probability of failure for the three sources, 10000
samples.

CASE-
B

Source
1

Source
2

Source
3

Mean
Sources

PV c10fail 0.270 0.512 0.123 0.303
Ptrfail 0.354 0.670 0.209 0.411

Classical Results
The Monte Carlo simulation has been performed in
order to compute failure probabilities and Covariance
for CASE-A and CASE-B. First, the failure probabili-
ties has been estimated using 1000 samples, secondly
new analyses with 10000 samples has been carried to
compare the Coefficients of Variation (Cov) of the es-
timated probabilities, as shown in Tables 3. It has been
noticed that, as in the CASE-A, also in CASE-B the
probability of failure slightly changes even after in-
creasing the samples. The probability of fail to meet
the requirement one, as expected, is lower than the
probability of fail to meet the requirement two.

It is possible to see from Table 4 that the system
considering source 2 has the lower reliability. In 1000
samples, approximately 512 will be out of the first re-
quirements. The Source 3 has the lowest estimated
probability of failure and the Source 1 shows an in-
termediate Probability of failure. The averaged prob-
ability of failure is about 0.3 and 0.41 for the first and
second requirement, respectively.

Generalized Approach
The intervals that define the possible values of the pa-
rameters can be represented by means of the gener-
alised probabilistic approach without making any as-
sumption about the possible distribution of the values.
Parameter uncertainty has been characterized by use
of Dempster-Shafer structures. A general Dempster-
Shafer structure for each parameter is defined by
Equation (1). For CASE-A three Dempster-Shafer
structures composed by a single focal element have
been defined as follows:

(
[R1,R1],m1

) (
[L1,L1],m1

) (
[C1,C1],m1

)
(18)

where m1 is equal one. For CASE-B, three structures
have been considered as in Equation (19)-(21), each
composed by three focal elements:

(
([R1,R1],m1), ([R2,R2],m2), ([R3,R3],mn)

)
(19)

(
([L1,L1],m1), ([L2,L2],m2), ([L3,L3],mn)

)
(20)(

([C1,C1],m1), ([C2,C2],m2), ([C3,C3],mn)
)

(21)

m1 +m2 +m3 = 1 (22)

where [Ri,Ri] represents the ith interval bound for
the resistance, [Li,Li] is the ith bound for the induc-
tance, [Ci,Ci] is the ith bound for the capacitance
and mi is the probability mass associated to the ith
source. The probability masses associated to the dif-
ferent sources have been considered equal and nor-
malized. The CASE-B degenerate to the CASE-A if
the probability mass m2 and m3 are set equal to zero.
It is not possible here to establish if some sources of
information are better, thus information derived from
different sources is assumed as equally likely.

Dempster-Shafer structures Propagation
The following procedure was adopted in order to
propagate the uncertainty characterized by Dempster-
Shafer structures:

• First, probability mass is assigned to each focal
element (interval) of R L or C, e.g. for CASE-B
m1,m2,m3 are assigned to intervals of source 1
2 and 3, respectively.

• n ’Parameter cells’ are constructed by permuta-
tion of the focal elements, i.e. in CASE-B n=3!.
The first parameter cell is built by selecting the
first interval of the parameter R and first inter-
val of the parameter L and combining them with
the first interval of C. The second cell is built se-
lecting the first interval of R and first of L and
combining them with the second interval of C,
so on in a combinatorial manner .

• For each cell, Latin Hypercube Sampling (LHS)
strategy is used to samples parameter values.
Then the system responses are evaluated in terms
of Vc and Z and the minimum and maximum
of the outputs are calculated. An alternative ap-
proach based on optimization technique can be
used to identify the output bounds for interval
cells .

• The results are stored and n min-max intervals
of Vc(8ms), Vc(10ms) and n min-max interval of
Z are saved, each interval correspond to a fo-
cal element for the output of interest. The Re-
sults are used to create Dempster-Shafer struc-
tures, see Equation (1,where probability masses
have been assigned depending on the probabil-
ity masses of the focal elements composing the
cells. As example Dempster-Shafer structure for
Z and Vc(8ms) will result:

([Z1,Z1],mc1), ..., ([Zn,Zn],mcn)

([Vc(8)1, Vc(8)1],mc1), .., ([Vc(8)n, Vc(8)n],mcn)



Where the probability mass computed for n
parameters cells are mc1 = m1m1m1, mc2 =
m1m1m2, etc.

• Finally intervals the Dempster-Shafer structures
are used ,as explained in (Ferson et al. 2002),
to create probability boxes of Vc(8ms), Vc(10ms)
and Z. Equations (4)-(5) are used to compute the
Belief and Plausibility bounds and failure proba-
bility intervals.

Generalized Results
Applying the procedure to the CASE-A, the resulting
P-boxes gave no valuable information on the failure
probability for the three performance requirements.
The probability of failure is in fact just bounded in
the interval [0,1] for all three the requirements.

In CASE-B equal probability mass have been
assigned to the three distinct sources of information,
such that m1 = m2 = m3 = 1/3. The resulting
P-boxes of V c and Z are shown in Figures 4-6.
Resulting bounds are presented in Table 5, it can be
seen that outputs have high uncertainty associated,
but reduced if compared to the Case-A. Figure 5
shows that Ptrfail lay within the interval [0,0.9]. It
can be also observed that PZfail

upper and lower
bounds are [0,0.7] and that PV c10fail lay within
the interval [0,1]. The CASE-B includes all the
information available for the CASE-A (information
in source 1 coincide with information of CASE-A)
plus two additional sources of information. In this
particular case, the additional sources of information
contribute on reducing the uncertainty on the system
performance.

Comparison between CASE-B and A show that the
first produces narrower intervals for the probability of
fail to meet requirement one and three. On the other
hand, failure probability for requirement two do not
show any uncertainty. It can be therefore argued that,
with respect to the first and third requirements, the
quality of the information given in CASE-B is higher
compared to the quality of the information given in
CASE-A. On the other hand, results have the same
quality with respect to the second reliability require-
ment.
By comparing classical and generalized results, val-
ues obtained for the failure probability (classical
approach) lay within the bounds obtained using
the Dempster-Shafer methodology (generalized ap-
proach). Obtaining a solution for the generalized ap-
proach point out that the uncertainty affecting the in-
formation for both CASE-A and CASE-B seems to
be strongly underestimated by the classical approach.
This is probably due to the assumption made on the
parent distribution needed to apply classical method-
ology.

Figure 4: P-box Vc(10ms) CASE-B

Figure 5: P-box Vc(8ms) CASE-B

Figure 6: P-box Damping coefficent CASE-B



Table 5: Results CASE-B, comparative table.
CASE-B Source

1
Source
2

Source
3

All
Sources

PV c10fail [0,1] [0,1] [0,1] [0,0.9]
Ptrfail [0,1] [0,1] [0,1] [0,1]
PZfail

[0,1] [0,1] [0,1] [0,7]

5.2 CASE C

The available data consists of 10 sampled values
for each parameter of R, L and C, respectively. Ta-
ble 3 summarize the parameter information given for
CASE-C. No additional information about the param-
eter such as, sampling procedure or parent probability
distribution functions has been provided.

Classical Approach
Two classical approaches for the solution CASE-C
have been developed:

First, only finite number of combinations of the
input values is accounted. A Full Factorial Design
of Experiments (DOE) was created to generate all
the possible combinations of the defined points and
a failure analysis was performed for each of them.
This approach is fast and rather easy to implement,
but clearly have severe limitations, e.g. assume that
sampled values are the only allowed values for the
parameters.

In the second classical approach, the Kernel Den-
sity Estimator (KDE) is used to fit probability distri-
bution to small sample data. Probability distribution
functions for the parameter have been fitted using the
small samples and the Gaussian Kernel Density esti-
mation as explained in subsection 2.2. Then, a Monte
Carlo simulation is carried out to sample parameters
value from the fitted distributions, the system perfor-
mance is evaluated and the reliability computed. This
second approach has been implemented assuming a
Gaussian Kernel and assuming samples as indepen-
dent samples of a random variable.

Classical Results
First attempt to solve classically CASE-C consider
only a finite number of parameter values and parame-
ter combinations. Just 10 sampled points for each ele-
ment R, L and C are available, which means 1000 pos-
sible combinations. Within the 1000 possible combi-
nations, 150 lead to system requirement failure be-
cause Vc(10ms) was lower than 0,9V, 230 input com-
binations produce rise times greater than 8ms and 71
input combinations lead to under-damped responses.
The Figure 7 shows combinations of input values that
produce systems that satisfy or not each requirement.
Note that the probabilities of failure are exact, not an
estimation, since all the possible combinations were
analysed. Red triangular marks correspond to failure

Figure 7: Design of experiment results

combinations, blue dots correspond systems which
have sanctified the requirements.

In the second approach, the Kernel Density Estima-
tor is used to fit probability distribution to small sam-
ple data. The results obtained in the first classical ap-
proach, which adopted Design of experiment to rep-
resent the uncertainty are PV c10fail=0.15,Ptrfail=0.23
and PZfail

=0.071. Kernel Density fitting and Monte
Carlo sampling from the fitted distributions lead to
probability slightly major if compared to the DOE so-
lution, PV c10fail=0.232, Ptrfail=0.292, PZfail

=0.121.
This is probably due to the longer tail of the parame-
ters fitted by KDE, which result having a very long
right tails. Figures 8-10 shows the resulting CDFs,
Z CDF has been zoomed around the value Z=1 for
graphical reasons.

Compared to the results obtained for CASE-A ap-
plying classical methodology, the probability of fail-
ure for CASE-C result generally lower. Same consid-
eration can be done by comparison to the overall re-
sults obtained for case CASE-B but not all the single
sources of information.

Generalized Approach
CASE-C has been solved also by using generalized
approaches, first confidence bounds have been ob-
tained by applying the KS test, see Section 2.3. After
this first characterization for the sample uncertainty
the obtained P-boxes for the parameter are propa-
gated through the system and the outputs of inter-
est computed. The uncertainty propagation procedure
adopted is similar to the procedure used in CASE-A
and CASE-B. Three different confidence levels are
been considered for the KS test, therefore three dif-
ferent bounds have been propagated. To characterize
the uncertainty, Kolmogorov-Smirnov critical statis-
tic is used as shown in Equation (7). The results are
bounds on the empirical distribution function of the
sampled parameters. Figures 11-13 display upper and
lower bounds (dashed and solid black lines) for the
empirical CDF (solid blue line) of the inductance L,
R and C. The bounds in figure refer to a confidence
level α=0.05. Some assumptions have to be made in
order to apply the KS test, the samples are regarded as
independent and identical distributed and maximum



Figure 8: CDF of Vc(10ms) CASE-C

Figure 9: CDF of Vc(8ms) CASE-C

Figure 10: CDF of Z

Table 6: Results CASE-C, probability Bounds for the
three requirements, three confidence levels .

CASE-C α=0.01 α=0.1 α=0.2
PV c10fail [0,0.87] [0,0.7] [0,0.63]
Ptrfail [0,0.92] [0,0.77] [0,0.7]
PZfail

[0,0.83] [0,0.7] [0,0.64]

and minimum parameter values have been assumed
in order to truncate the CDF bounds. Due too physical
constraint, all the parameters must be positive and this
condition allows to set then lower bound. The upper
bound is in first instance assumed equal to the sam-
ple mean plus three times the standard deviation of
the samples. It is important to notice that very long
tails if underestimated can lead to safety overconfi-
dence especially in reliability studies. Hence, follow-
ing the considerations made, it has been selected a rel-
atively high upper bound to truncate the CDF. In order
to better investigate the goodness of the assumptions,
analysis of the results (i.e. Failure probability) due to
the variation of the assumed upper bounds has been
performed. An increasing of the upper bounds (e.g.
6 time the standard deviation of the sample) slightly
change the resulting probability bounds, as displayed
in Figure 14.

Generalized Results

Even for CASE-C, the failure probabilities obtained
by classical approach lay within the probability in-
terval obtained by Generalized approaches. In Fig-
ures 15-17 P-Boxes for the voltage at the 10th ms,
8th ms and Z are presented, red blue and black
colour lines refer to α=0.01, α=0.1 and α=0.2 respec-
tively.Figure 17 has been zoomed around the value
Z=1 for improve the graphical output. Each confi-
dence level lead to different probability bounds on the
CDFs and resulting P-Boxes. The bounds on prob-
ability of fail to meet the requirements are shown
in the Table 6. It can be noticed that, on the first
hand probability intervals still wide, as already ob-
served in CASE-A and CASE-B, which is typical of
case denoted by high epistemic uncertainty. On the
second hand, CASE-C shows an increased precision
compared to the CASE-B and A. The resulting fail-
ure probability bounds obtained applying Dempster-
Shafer approach to CASE-C, appear less uncertain
compared to all the four cases. This increased pre-
cision may find intuitive explanations in the as-
sumptions made in order to apply the Kolmogorov-
Smirnov approach or may be due to the higher qual-
ity of the information provided in the challenge. Also
for CASE-C, results show that uncertainty on the sys-
tem reliability has been underestimated by using the
classical approaches.



Figure 11: P-box R parameter CASE-C

Figure 12: P-box L parameter CASE-C

Figure 13: P-box C parameter CASE-C

Figure 14: Qualitative variation in the probability
bounds if maximum selected equal to mean plus 3 or
6 standard deviations

5.3 CASE D

In this last task, bounds of the parameters are
provided, similarly to CASE-A. However, just one
bound is precisely defined for each parameter. More
precisely, the imprecisely defined bounds are the
upper bounds of R and L and the lower bounds of C.
Information for CASE-C is provided in the challenge
as shown in Table 5.
The case-D, similarly to CASE-B, does not have
a precise information about the parameters range.
The lower bound of C could be any value between
zero and 7 while the upper bound of R and L could
take any value up to the infinite (even thought, in
practice, it is not possible). Lower bounds can be
fixed by physical consideration on the parameter C,
which have to be positive. The upper bounds of L
and R can be better defined by e.g. some physical
consideration, but to do this further information have
to be assumed available. It is clear that in the real
world the parameter cannot be infinite. Thus, in order
to solve this case, the upper bound for the resistance
RU has been considered varying within the interval,
[650,RUmax], the upper bound of the inductance
LU has been assumed varying within the interval
[6x10−3,LUmax] and finally, the lower bound for the
capacitance CL has been assumed lying within the
interval [CLmin,7x10−6].

Classical Approach
Within the different bounds the parameters are mod-
elled as random variable having uniform parent dis-
tribution, consistently with the maximum entropy
Principe. Finally, all the combinations of upper and
lower bounds have been analysed and failure proba-
bilities computed via Monte Carlo simulation. In or-
der to make this problem tractable using conventional
probabilistic approaches, the bounds have been re-
defined as m times its nominal value for the upper



Figure 15: P-box Vc(10ms), CASE-C

Figure 16: P-box Vc(8ms), CASE-C

Figure 17: P-box Z, CASE-C

bounds and m divided by its nominal value for the
lower bound , with m=[1,10,100,1000]. Having re-
duced the semi definite intervals to set of defined in-
terval, it is now possible to estimate the reliability of
the systems, adopting the same approach of case B.

Classical Results
It has been computed all the possible combinations
of the lower and upper bounds, in order to see how
the parameters interval combinations influence the re-
sults. Some combinations show probability of failure
equal to 0.104. But, on the other hand, other combina-
tions present probability of failure that is equal 1. This
is due to the low efficiency of the Monte Carlo method
which is not able to give a very accurate answer for
small probability values. In order to accurately esti-
mate the probability of failure in these cases, it would
be necessary to estimate the probability of failure us-
ing either many more samples or by means of ad-
vanced MC methods. However, applications of ad-
vanced MC methods are out from the final purpose
of this paper and have not been considered here.

Generalized Approach
The uncertainty in the parameters has been charac-
terized by partition of the three imprecise intervals
in n defined intervals, forming sets of n intervals
and given by the Equations (23)-(25). Finally, same
probability mass function equal to 1/n has been as-
signed to each interval (for normalization reasons)
and Dempster-Shafter structures propagate similarly
to previous cases.

(
([RL,RU1],

1

n
), ..., ([RL,RUmax],

1

n
)

)
(23)(

([LL,LU1],
1

n
), ..., ([LL,LUmax],

1

n
)

)
(24)(

([CL1,CU ],
1

n
), ..., ([CLmin,CU ],

1

n
)

)
(25)

Where ith bound on the parameter (e.g. the resis-
tance) is defined as:

RUi = RU1 + (i− 1)
RUmax −RU1

n

Where RL=650Ω, LL=6mH and CU=7µF. Assuming
different values ofLUmax,RUmax andCLmin may lead
to different results; hence the variations in the result-
ing P-Boxes, due to variations the three threshold val-
ues, have been investigated. The created Dempster-
Shafer structures have been propagated through the
system by intervals combination similarly to the other
cases. Minimum and maximum values for Vc(8ms),
Vc(10ms) and Z are computed and stored for each in-
terval cell. The resulting Dempster-Shafer structures
are assembled and translated to Probability boxes for
the Voltages and damping factors.



Figure 18: P-box Vc(10ms), CASE-D

Figure 19: P-box Vc(8ms), CASE-D

Figure 20: P-box Z, CASE-D

Generalized Results
Figures 18-20 show resulting P-Boxes for
Vc(8ms),Vc(10ms) and Z assuming RUmax=6500Ω,
LUmax=60mH, CLmin=0.7µF and n=10. It can be
noticed that probability of failure considering for the
voltage requirements lays within the interval [0,1]
and for the third requirements on Z lay in the interval
[0,0.99]. Thus, the uncertainty in the inputs defined
in the CASE-D is too large to provide useful results.
The probability bounds for CASE-D results slightly
different form the probability intervals for CASE-A
(bounds equal to [0,1] for all the requirements), hence
the information compared to CASE B or CASE C
can be seen having the highest amount of uncertainty
associate and be of lower quality for the meeting
requirements prospective.
Additionally, in order to investigate the effect of the
assumptions on the results, the uncertainties have
propagated changing the values of RUmax, LUmax and
CLmin. Results of this analysis show that RUmax is
affecting more the shape of the P-Boxes. On the other
hand, it has not highlighted any relevant changes in
the bounds of the failure probability.
Comparing the results of probabilistic approaches and
generalized approaches point out that the generalized
probabilistic approaches can gave valuable prospec-
tive on the final solutions providing evidence of the
low empirical quality of the available parameter data.

6 LIMITATION FACED IN APPLYING THE
APPROACHES

Classical probabilistic approaches required the defi-
nition of distributions. The uniform distribution was
assumed to characterize parameter uncertainty in
CASE-A, CASE-B and CASE-C, since it is a typical
assumption for model uncertainty if no information
but bounds information is given. This assumption is
often regarded as a rational hypothesis that found the-
oretical support in the Laplaces principle of indiffer-
ence (or more in general principle of maximum en-
tropy). In CASE-C first has been assumed a finite
number of combination and a DOE, secondly it has
been considered just a pdf fitted using Gaussian Ker-
nel Density estimation. Subjectively assuming proba-
bility distribution functions can bear an underestima-
tion of the uncertainty. As example consider the cu-
mulative distribution function (CDF) of the uniform
distribution; the CDF will have a well-known linearly
increasing shape between minimum and maximum
values. If these minimum and maximum bounds val-
ues are the only available data, the assumption can
led to misleading results, especially in reliability as-
sessments. Within an imprecise-information scenario
(e.g. parent distribution not specified or unknown,
or known but with vague parameters, conflicting and
limited knowledge, linguistic incomprehension, inter-
vals etc.), it seems more conservative and robust for
the reliability assessment to take into account not just



one single CDF but all the plausible CDFs accord-
ingly to the available data. Indeed, this approach is
computationally expansive and will produce impre-
cise results in reliability evaluation, but has the un-
deniable advantage of not introducing artificial model
assumption.
The analysed case study confirm that artificial model
assumptions might lead to uncertainty underestima-
tion, hence reliability results that do not represent pre-
cisely the real data’s quality. Another point to be high-
lighted is the low efficiency of Monte Carlo method
to compute small probabilities of failure. For extreme
cases, where there are too few failures or too few suc-
cesses, Monte Carlo is not efficient in producing accu-
rate result. To have it more precise, it would be nec-
essary to use another method of accuracy, e.g. Line
Sampling. In the proposed study a simple system has
been analysed, therefore computations were not time
expensive. Drawback of the generalized approach is
that high computational effort may be required, espe-
cially for the analysis of more complex systems.
Nevertheless, results obtained by generalized ap-
proaches provide valuable evidence about the quality
of the information available in all the tasks which, in
this case, result fairly low. The large epistemic uncer-
tainty and lack of knowledge about the system param-
eters may suggest to consider an investment on col-
lecting more valuable empirical data rather than refine
the model for the reliability assessment. Overall out-
comes of the study highlighted some of the positive
and negative aspects of embed generalized approach
to classical uncertainty quantification methodologies.

7 CONCLUSIONS AND DISCUSSIONS

In this paper, the NAFEMS uncertainty quantification
challenge problem has been tackled by use of clas-
sical and generalized uncertainty quantification ap-
proaches implemented in a common computational
framework. Dempster-Shafer structures, P-Boxes and
Kolmogorov-Smirnov tests are the tools used to tackle
the problem within the generalized approach. Results
have been carried out using both the approaches and
comparison and discussion provided. Classical proba-
bilistic methods provide results characterized by pre-
cise estimation of the failure probabilities. Such pre-
cise estimations are based on strong assumptions re-
quired to characterise the uncertainties. By applying
generalized probabilistic methods, only bounds of the
failure probability can be obtained giving a lower pre-
cision in the prediction of the system performance but
on the concession for less restrictive assumptions in
the uncertainty characterization. Generalised proba-
bilistic methods propagate the imprecise in the input
into imprecision on the estimation, giving a clear in-
dicator on the quality of the analysis. On the other
hands, classical probabilistic approaches are hiding
such information providing a false sense of accuracy.

In fact, the results obtained using classical proba-

bilistic approaches are, as expected, included in the
bounds obtained by generalized approaches. On the
other hand, the values are not close to the upper
bounds of the failure probability obtained by use of
generalized approach. Hence it can be stated that, in
the analysed case, the less reliable or worst case sce-
nario reveals to be underestimated by classical ap-
proach. Possible explanations are the strong initial as-
sumptions used to define the underlying distribution
for the parameters (e.g. using uniform distribution).
The results seem confirming that Dempster-Shafer ap-
proach produces bounds that get narrower with better
empirical information. Moreover, Dampster-Shaffer
approach seems particularly useful especially in reli-
ability assessments where probabilistic characteriza-
tions are desired and empirical information is limited.
In conclusion, some of the limitation and shortcom-
ing of the approaches have been highlighted, strength
of combine classical and generalized approaches have
been outlined and the computational tool verified to
be flexible and effective. Generalized methods, al-
though computational expensive, are generally appli-
cable and they are able to provide essential informa-
tion about the quality of the analysis, an unavoidable
tool for the industry which may rely on more accurate
information qualification approaches, understanding
if the data is of high quality or poor quality aiming
at designing safer and more reliable systems or com-
ponents.
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ABSTRACT: Fatigue is the most dangerous failure mode for mechanical components subject to alternating
loads. Due to repeated loading and unloading, one or several cracks can be initiated and propagated through the
cross section of the structure. Once a critical crack length is exceeded, the structure will catastrophically fail
even for stress level much lower than the design stress limit. Non-destructive inspections may be performed at
predetermined time intervals in order to detect the cracks. Alternatively, a continuous monitoring of the dynamic
response of the structure can allow real-time cracks detection and corrective maintenance procedures might be
taken in case the monitoring procedure identifies a crack.
In this paper, Bayesian model updating procedures is adopted for the detection of crack location and length on a
suspension arm, normally used by automotive industry. Experimental data of the damaged structure (frequency
response function) are simulated using a high-fidelity numerical model of the arm. A second, coarse-model
represents the model to be updated where cracks of random locations and dimensions are introduced. The idea
underlining the approach is to identify the most probable model consistent with the observations.
The likelihood is the key mathematical formulation to include the experimental knowledge in the updating of the
probabilistic model. Different likelihood functions can be used based on different mathematical assumptions.
In this work, the effect of different likelihood functions will be compared to verify the capability of Bayesian
procedure for system health monitoring. The different likelihoods will be categorized according to the accuracy
of the results and the efficiency of the numerical procedure.

1 INTRODUCTION

Failure for mechanical components subject to alter-
nating loads may occur in several different ways,
and failures due to fatigue are one of the most
dangerous types. It is well known that cyclic loads
can initiate cracks which propagate through the
cross section of the structures. Once a critical crack
length is exceeded, the structure will catastrophically
and suddenly fail, even for stress level much lower
than the design stress (Paris and Erdogan 1963). In
particular, interactions may occur between the struc-
tural responses and cracks in components subject
to high frequency dynamic excitations, leading to
vibration-induced fatigue. Consequences may be a
premature failure of the component or even worst the
loss of the structures which rely on the component
integrity.

Several strategies are accountable to prevent sud-
den failures; for instance, non-destructive inspections
may be performed at predetermined time intervals,
in order to detect the cracks (Faber et al. 1996);
however failure can occur between inspections

(Beaurepaire et al. 2012). Alternatively, a continuous
monitoring of the dynamic response of the structure
can allow for real-time crack detection and for a
timely intervention with maintenance procedures
(Chang et al. 2003). Repair actions are taken in case
the monitoring procedure successfully identifies a
crack which jeopardizes the structure.

In both cases, the procedure may fail in identifying
a crack, leading to fatigue failure. Thus, an efficient
crack detection procedure is required in order to
avoid the loss of the structure. New emerging tech-
niques are now available in the field of computational
mechanics, which can be employed to assist in the
monitoring of the health of the structures. These
techniques modify some specific parameters in a
numerical model to ensure a good agreement with the
data, a so-called inverse problem. A computational
framework well fitted for the solution of such inverse
problems is the model updating (Fritzen et al. 1988).

In previous work (Beaurepaire et al. 2013), some
of the authors implemented an updating framework
for the detection of cracks in a suspension arm,



as normally used by automotive industry. The me-
chanical behaviour of a device was characterized by
collecting Frequency Response Functions (FRF) data
at a specific location.

In this paper, the updating procedure for crack
detection has been further investigated and extended,
aiming at better understand its limitations and
strengths. Different empirical likelihood expressions
have been proposed in order to fit the procedure
with different features of experimental evidence. The
empirical formulation are compared and discussed
in two representative cases; first, the detection of
a single crack of known position and not-known
length, secondly, the detection of a single crack of
not-known position and not-known length.

Computational time is a an issue for real-time ap-
plication of the procedure and it has been addressed.
As a matter of fact, many model evaluations are
required for the approach, thus a strategy for the par-
allelization of the simulations is provided. Moreover,
adopting surrogate models such as Artificial Neural
Networks (ANN) and Poly-harmonic spline (PHS)
the computational time has been further reduced.
The general purpose software OpenCossan (Patelli
et al. 2014) has been employed in all the stages of the
procedure.

The paper is structured as follows: Section 2 deals
with the modelling of fracture in a Finite Element
framework. Section 3 outlines the main concept of
Bayesian model updating and the efficient simulation
algorithm employed in the particular case of structure
with cracks under dynamic excitation. A numerical
example and results are presented and discussed in
Section 4, and likelihood expressions are compared
for the two considered cases. Finally, conclusions and
remarks are drawn in Section 7

2 MODELLING AND RELATED
BACKGROUND

Finite element (FE) analysis has become established
as a powerful family of methods for the spatial
approximation of systems of partial differential
equations and variational problems. It has been used
in a multitude of areas in the engineering field, e.g. in
the analysis of mechanical components or structures.
Nevertheless, the mechanical behaviour of structures
may be altered if the elements are crossed by cracks.
The cross section of the component is reduced, which
causes a reduction of the stiffness. Moreover, the
stress field is also modified in the vicinity of a crack.

Specific FE methods have been conceived to
modelling efficiently the mechanical behaviour of
structures containing cracks. The extended finite
elements method (XFEM), first introduced by (Moës

et al. 1999), has received considerable attention
over the past few years. It consists of enriching the
elements affected by a crack by introducing addi-
tional shape functions, which increases the number
of degrees of freedom associated with the nodes. The
stress field in these elements is then expressed using
a combination of the standard and of the enrichment
shape functions.

In case an element is crossed by a crack, a Heav-
iside function centred on the crack is introduced
as an additional shape function. This step function
accounts for the discontinuity of the displacements
between the two lips of the crack. In case an element
includes the crack tip, the corresponding nodes of the
finite element model are enriched with specific shape
functions. These functions correspond to the asymp-
totic displacement field at the vicinity of a crack
tip, which can be determined analytically. For more
details about the enrichment of the tip elements see
(Moës et al. 1999). This allows capturing efficiently
the displacement and strain fields near the crack tip,
without excessive refinement of the mesh.

Details on the XFEM as implemented in the
analysis here presented may be found in the works Zi
and Belytschko 2003 and Abdelaziz and Hamouine
2008. However, mesh refinement in the vicinity of the
crack tip may be necessary when the extended finite
elements method is used, in spite of the enrichment
of the nodes at the crack tip (Geniaut 2011). Nev-
ertheless, the mesh does not have to be compatible
with the crack, which considerably simplifies the
re-meshing.

In case the behaviour of a cracked structure under
dynamic excitation needs to be determined, the stiff-
ness matrix may be computed using the XFEM, as
stated above. The mass matrix is not modified by the
presence of cracks, and no special action needs to be
taken. The problem is subsequently solved using the
standard procedure for linear dynamics: the modes
and frequency of vibration are determined by solving
the eigen-value problem associated with the mass and
stiffness matrices; and the FRF associated with any
node of the finite element model are determined.

3 MODEL UPDATING PROCEDURE FOR
CRACK DETECTION

3.1 Bayesian updating of structural models

A Bayesian model updating procedure is based on the
very well-known Bayes theorem (Bayes 1763). The
general formulation is the following:

P (θ|D,I) =
P (D|θ, I)P (θ|I)

P (D|I)
(1)



where θ represents any hypothesis to be tested, e.g.,
the value of the model parameters, D is the available
data or observations, and I is the background infor-
mation. Main terms can be identified in the Bayes the-
orem:

• P (D|θ, I) is the likelihood function of the data
D;

• P (θ|I) is the prior probability density function
(PDF) of the parameters;

• P (θ|D,I) is the posterior PDF;

• P (D|I) is a normalization factor ensuring that
the posterior PDF integrates to 1;

The theorem introduces a way to update some
a-priori knowledge on the parameters θ, by using
data or observations D and conditional to some
available information or hypothesis I .

Bayes law has been successfully applied in the
updating of structural models see (Beck and Katafy-
giotis 1998) and (Katafygiotis and Beck 1998); in
particular the Bayesian structural model updating has
been successfully used to update large finite element
models using experimental modal data (Goller et al.
2011). In a structural model updating framework,
the initial knowledge about the unknown adjustable
parameters, e.g. from prior expertise, is expressed
through the prior PDF. A proper prior distribution
can be a uniform distribution in the case when only a
lower and upper bound of the parameter is known, or
a Gaussian distribution when the mean and a relative
error of the parameter is known.

The likelihood function gives a measure of the
agreement between the available experimental data
and the corresponding numerical model output.
Particular care has to be taken in the definition of the
likelihood, and the choice of likelihood depends on
the type of data available, e.g. whether the data is a
scalar or a vector quantity. Different likelihood leads
to different accuracy and efficiency in the results of
the updating procedure and should be selected with
caution; as an example, the use of unsuitable likeli-
hood function might cause that the model updating
do not produce any relevant variation in the prior.

Finally, the posterior distribution expresses the up-
dated knowledge about the parameters, providing in-
formation on which parameter ranges are more proba-
ble based on the initial knowledge and the experimen-
tal data.

3.2 Transitional Markov-Chain Monte-Carlo

The Bayesian updating expressed in equation 1 needs
a normalizing factor, that can be very complex to

obtain and computationally expensive. An effective
stochastic simulation algorithm, called Transitional
Markov Chain Monte-Carlo (Ching and Chen 2007),
has been used in this analysis. This algorithm allows
the generation of samples from the complex shaped
unknown posterior distribution through an iterative
approach. In this algorithm, m intermediate distribu-
tions Pi are introduced:

Pi ∝ P (D|θ, I)βi P (θ|I) (2)

where the contribution of the likelihood
is scaled down by an exponent βi, with
0 = β0 < .. < βi < .. < βm = 1, thus the first
distribution is the prior PDF, and the last is the poste-
rior. The value of these exponents βi is automatically
selected to ensure that the dispersion of the samples
at each step meet a prescribed target. For additional
information the reader is reminded to (Ching and
Chen 2007). These intermediate distributions show
a more gradual change in the shape from one step
to the next when compared with the shape variation
from the prior to the posterior.

In the first step, samples are generated from the
prior PDF using direct Monte-Carlo. Then, sample
from the Pi+1 distribution are generated using Markov
chains with the Metropolis-Hasting algorithm (Hast-
ings 1970), starting from selected samples taken from
the Pi distribution, and βi is updated. This step is re-
peated until the distribution characterized by βi = 1 is
reached. By using the Metropolis-Hasting algorithm,
samples are generated from the posterior PDF with-
out the necessity of ever computing the normalization
constant. By employing intermediate distributions, it
is easier for the updating procedure to generate sam-
ples also from posterior showing very complex dis-
tribution, e.g., very peaked around a mean value or
showing a multi-modal behaviour.

3.3 Model updating for crack detection and
likelihood expression

In the FE model, the cracks are modelled using
XFEM. Experimental data from the reference struc-
ture are taken into account in the form of Frequency
Response Functions. Knowing that cracks will
develop most probably in certain locations, charac-
terized by high concentration of stresses, cracks are
inserted in these specific positions assuming their
lengths are random parameters.

Within the model updating framework, the cracks
present in the damaged structure are seen as uncer-
tain model properties. The prior will use uniform
distribution for the crack parameters, allowing the
possibility of crack in any stress concentration
point and with any possible physically acceptable
length, i.e. compatible with geometric constraints and



material proprieties.

The likelihood is the key mathematical component
of any Bayesian updating procedure. Within the pro-
posed crack detection framework, synthetic experi-
mental FRFs are compared with the numerical FRF of
the numerical model. Within the case study, three em-
pirical likelihood formulations are proposed and used
to compare the experimental data with the numerical
information. Expressions are discussed on the basis of
the accuracy of the results, i.e. the ability in detecting
true cracks positions and lengths.
The likelihoods have been be expressed as:

P (D|θ, I) =
Ne∏
k=1

P (xek;θ) (3)

or, equivalently, in the form of the log-likelihood:

P (D|θ, I) =
Ne∑
k=1

log(P (xek;θ)) (4)

where xek represent the kth experimental evidence,
Ne is the number of available experimental data and
θ is the vector of random crack lengths. The term
P (xek;θ) which include the experimental evidence
have been assumed as exponentially distributed.
Three heuristic formulations have been defined as fol-
lows:

P (xek;θ) ∝ exp

(
δk

MSEpks[h(θ)− hke ]

)
(5)

P (xek;θ) ∝ exp

(
δk

MSElow[h(θ)− hke ]

)
(6)

P (xek;θ) ∝ exp

(
δk

MSEall[h(θ)− hke ]

)
(7)

where hke is the experimental FRF k, h(θ) repre-
sents the numerical FRF, δk is the variance of the
Means Square Errors (MSE) for the experiment k.
The Means Square Errors have been obtained consid-
ering different frequency ranges, e.g. MSEall is com-
puted between experimental FRF and numerical FRF
over the entire frequency domain, MSElow is com-
puted considering lower frequencies and MSEpks is
obtained around the main resonance peaks. The pro-
posed expressions and the selection of the frequency
ranges were defined on empirical basis therefore de-
tails will be discussed in the case study, Section 4.
After the updating procedure, the posterior distribu-
tions provide a qualitative indication of the crack
length and positions, i.e. it will concentrate around the
unknown length and position of the crack with most
similar response if compared to the experimental ob-
servations.

It worth remark that even if the procedure in gener-
ally applicable to detect cracks, the component anal-
ysed have a specific FRF, which therefore limit the
consideration on the validity of the defined likeli-
hoods to the specific mechanical device in exam.

4 NUMERICAL EXAMPLES

This numerical example is similar to those used in
the automotive industry (Mrzyglod and Zielinski
2006) and it has been recently applied (Beaurepaire
et al. 2013) to detect cracks in a suspension arm,
shown in Figure 1. It can freely rotate along the axis
indicated by the dashed line; the suspension spring
and the wheel structure are connected at the location
indicated by “S”. The stress concentration points, and
candidate crack locations, are indicated in the figure
by the numbers 1 to 6.

In this case study, “simulated” experimental data
are generated using a Finite Element (FE) model. The
software used to construct the model and in the anal-
ysis is Code Aster (Geniaut 2011). A crack with fixed
length is inserted in one of the candidate position, and
the reference FRF is computed at the position indi-
cated by “O”. Both the FRF in direction X and Y are
considered, while no FRF is obtained in the direction
Z since the structure is not constrained in that direc-
tion. Figure 2 display the FRFs in the directions X and
Y when a 5 mm length crack is considered. Just three
out of six possible position are shown for graphical
reasons.

The crack lengths are considered as uncertain
parameters, and are modelled using uniformly
distributed random variables. Since the crack is phys-

Figure 1: The suspension arm FE model with indi-
cated the six possible crack positions and the FRF
measurement point.



Figure 2: Frequency response functions of the high
fidelity FE model. A single crack of 5mm length is
inserted in each of the stress concentration points.

ically constrained to not touch the flanges of the arm,
a maximum crack length of 5 mm is assigned to the
cracks in position 1 and 2, while the length is limited
to 10 mm for the cracks in positions 3 to 6. The
sampled values of the random variables are inserted
into the FE model by using the ASCII file injection
routine provided by OpenCossan (Patelli et al. 2014),
providing a deterministic FRF. Additionally, the
simulations run in parallel on a computer cluster and
surrogate model are used, allowing further reduction
of the overall computational time.

The goodness of the procedure in detecting cracks
has been tested for two updating cases:

• detection of single crack having known position
and unknown length

• detection of a single crack of unknown position
and length.

In both the cases analysis have been carried out by
using empirical likelihood expressions. Results com-
pared and discussed point out positive and negative
features of the different formulations.

The likelihoods expressions and frequency ranges
have been selected after considerations on the com-
putational inaccuracy affecting numerical FRFs,
especially in the high frequencies domain. It can
be argued that likelihoods defined as in Equations
5 - 6 might detect cracks with higher precision if
compared to Equation 7 which computes MSE
including FRF values in the high frequency range.
MSElow in Equation 6 has been computed over the
low frequency range from 0 Hz to 1.7x104 Hz while
MSEall is computed over the entire domain (from
0 Hz to 5x104 Hz). Furthermore, it has been noticed
that the FRFs around the main resonance peaks (e.g.
around 2.4x104 Hz in Fig. 2) appear to be particularly
variable with respect to the crack positions and

lengths. Hence, MSEpks has been computed around
the main resonance peaks (2.4x104 Hz) to verify if
it is a good indicator to distinguish different crack
lengths and locations.

4.1 Surrogate model calibration and selection

The Bayesian model updating procedure is computa-
tionally expensive, thus surrogate models have been
adopted to reduce the computational time. Among
the different surrogate models, Artificial Neural
Networks (ANN) and Poly-harmonic Spline (PHS)
have been tested and the best model has been selected.

The classical architecture type for Artificial Neural
Network (Chojaczyk et al. 2015) consists of one
input layer, one or more hidden layers and one output
layer. Each layer employs several neurons and each
neuron in a layer is connected to the neurons in the
adjacent layer with different weights. Poly-harmonic
Spline is popular tool for model interpolation and
has been considered as alternative surrogate model
to be compared with the ANN due to their good
proprieties, see e.g. in (Madych and Nelson 1990).

The coefficient of determination R2 is often used
to evaluate the quality of the regression model and
have been adopted to choose the most suitable meta-
model to use in the procedure. This coefficient can be
expressed as follows:

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(8)

where yi is the ith mean square error, ŷi is the mean
square error predicted by the surrogate model, ȳ is
the average of the mean square errors from the FE
analysis.
It goes without saying that R2 values have to be fairly
compared between the two considered surrogates,
therefore the coefficient have to be compared on
the validation set. Otherwise the R2 for the PHS,
computed using the calibration set, will result by
definition equal to 1.

Input data for the surrogate models is the vector θ
of simulated cracks, outputs are MSE between the
simulated FRFs and a preselected synthetic experi-
mental FRF. Both direction X and Y are considered,
hence MSE in X and Y directions are the outputs of
the surrogate models. In order to reduce complexity
and limit the number of outputs, the entire FRF has
not been considered as output for the surrogates
model.
The proposed ANN layout consists of hidden layer
with 11 nodes for the first two layers and 13 for
the last layer. The described architecture have been



(a) PHS (b) ANN
Figure 3: Regression plots of meta-models for a single crack with fixed known position.

(a) PHS (b) ANN
Figure 4: Regression plots of meta-models for a single crack of unknown position and length.

selected based on precedent results and in order
to capture the highly non-linear behaviours of the
outputs. Cubic PHS has been considered for model
the behaviour of the MSE in x and y directions.The
models have both been calibrated using 90% of the
data set and validated using the remaining 10%.
Examples of results are proposed in Figures 3-4
where mean square errors between experimental and
simulated FRFs in X direction are considered. The
targets, in the X-axis, are MSE obtained using the FE
model and the outputs, in the Y-axis, represent the
output of the meta-model. The sub-plots in the top of
the figures display results for the model calibration,
while in the bottom are displayed results for the
validation set. Experimental cracks is considered in
position 6 of length 8.07 mm.

In the first case 700 single crack lengths with
known position (crack in position 6 in Fig. 1) have
been considered. Figures 3a-3b present linear regres-
sion results for the first analysed case. Similarly, Fig-

ures 4a-4b shows linear regression plots and compar-
isons for the second analysed case. In the second case,
2800 single cracks of random length with not-known
position are the input for the surrogate model.
The R2 values for the validation data show that PHS
is the best candidate surrogate model for both the
considered detection cases. Hence, PHS appear to
be more suitable than ANN to mimic the MSE
behaviour. This can be explained if considered the
“step” behaviour of the outputs along the crack
length. In order to reproduce this non-linear be-
haviour, an ANN need to be built with several nodes
and several hidden layers; on the other hand, a PHS
works well in capturing it because it is obliged to pass
through the support points and better predict non-
linearly in-between the supports.

4.1.1 Single crack, known position
Bayesian updating procedure has been used first to
detect of single crack length which has a known
position (position 6 in Fig. 1). The procedure starts



by first selecting prior distribution for the crack
length P (θ|I) ∼ U [0,10] and sample number equal
to 1500. Number of samples has been selected based
on previous works, however future optimization of
the initial setting might be considered to reduce the
computational time. Three different synthetic exper-
imental FRFs have been selected, corresponding to
cracks of “short” length (2.4 mm) “medium” length
(4.53 mm) and “long” length (8.07 mm). Updating
procedure has been repeated to include the empirical
likelihoods defined in Section 3.3. Results have been
qualitatively ranked based on the accuracy of the
posterior distributions; suitability of the likelihoods
is discussed.

Figure 5: Posterior distibution of “short” crack length
in position 6, different likelihoods expressions.

In Figure 5 shows posterior distributions for
different likelihoods and for a crack lengths to be
detected equal to 2.4 mm. The posterior distributions
result peaked around the true crack length. The crack
length is detected with high precision in this case;
mean values for the distribution are almost equal
to the true crack lengths 2.4 mm plotted in dotted
line. Among the three analysed likelihoods, the one
computed using Equation 5 result in a lower variance
compared to the others, as can be qualitatively
observed in the top sub-plot of Figure 5. Similar
behaviour is observable for the other selected crack
lengths.

Nevertheless, considered the final aim of the up-
dating, the differences are of minor relevance. More
specifically, in this stage of comparison which is in-
tended to be mainly qualitative, detecting a crack with
uncertainty ±0.06 mm or ±0.04 mm has been con-
sidered a minor difference. The crack length is de-
tected with high precision in case of single crack
with known position, and all the likelihood expres-
sions seems well-suited to be used within the detec-
tion framework.

4.1.2 Single crack, unknown position
The procedure presented in 4.1.1 has been extended
for detect both the length and position of a crack.
The procedure, has been tested considering like-
lihoods described in Section 3.3, and assuming
uniform prior distributions for cracks in position 3
to 6 (P (θ|I) ∼ U [0,10]) and in position 1 and 2
(P (θ|I) ∼ U [0,5]). The synthetic experimental FRF
is the one of a crack in position six of length 8.07
mm.
Figures 6, 7 and 8 display the posterior distributions
obtained by using likelihoods computed as in equa-
tions 5, 6 and 7 respectively. Results indicate correct
detection of the crack within the true length range
and the true position.

Computing likelihood considering main resonance
frequency, as in Figure 6 crack is detected within the
length interval [7-10 mm]. Similar results, displayed
in Figures 7 and 8, are obtained by using different
likelihood expressions. The results show higher un-
certainty if compared to the results in Section 4.1.1.
The posterior distributions for cracks in positions
from 1 to 5 result similar to the assumed prior
uniform distributions. This mean that none of the
simulated cracks length in positions form 1 to 5
can be fairly associated to the experimental evi-
dence provided. However, results obtained by using
Equation 6 wrongly detect a crack in position 4 of
approximate length of 5 mm. Explanation might
be found considering the FRF behaviour in the low
frequencies range. The updating procedure may have
revealed similarity between experimental data of
“long” crack in position 6 and simulated FRF for
cracks of mean length in position 4.

5 NOISE ANALYSIS AND UPDATING

In order to increase adherence to reality, noises have
been added to the synthetic experimental FRF (simu-
lated). Signal-to-noise ratio (SNR) can be defined as
the ratio between the power of the signal and power of
the noise affecting the signal; input SNRs lower than
20 dB are typically encountered at the resonance fre-
quency of lightly damped vibrating mechanical struc-
tures.
The noise function has been added to the FRF as ex-
plained in equations 9-10.

˙FRFx = FRFx +Nx (9)

˙FRFy = FRFy +Ny (10)

Where Nx and Ny are noises in the X and Y
axis directions respectively. General case of corre-
lated noises in the X and Y directions has been con-
sidered, consistently with the fact that noises in differ-
ent directions are often generated by common sources



Figure 6: Likelihood computed with MSEpks.

Figure 7: Likelihood computed with MSElow

Figure 8: Likelihood computed with MSEall

(e.g. noise on the signal input, external environment,
etc.). The goodness of the detection has been tested
if three predefined level of SNR are added to the ref-
erence FRFs. The SNR have been set equal to 100
dB (almost negligible noise), 30 dB and 10 dB (fairly
noisy). An indicative plot of FRF in x direction adding
different noise levels is shown in figures 9-10.

Figure 9: ˙FRFx with added noise equal to 30 dB
SNR.

Figure 10: ˙FRFx with added noise equal to 10 dB
SNR.

5.1 Results of Updating including noises

Figure 11 displays Kernel-Density fitted posterior
distributions. The results have been obtained using
three synthetic experimental crack lengths in position
6 (short,medium and long lengths) and by adding
noise as previously indicated in section 6. The
posterior distributions obtained for the other possible
crack locations (one to five) result approximatively
uniform, therefore not displayed for synthesis rea-
sons.

As expected, the accuracy in the detection deterio-
rates if SNR decrease (noise intensity increase). It can
be observed that for SNE equal to 100 dB, posterior
distribution is peaked around the true crack length,
while increasing the noises to ratio to 30 dB lower
and upper bounds of the pdf result less narrow. Fi-
nally, adding a fairly intense noise, SNR is set equal
to 10dB, makes the updating procedure fail in identi-
fying the crack (uniform distribution as posteriors).

6 ALEATORY UNCERTAINTY ON THE
YOUNG’S MODULUS

In order to better understand the role played by
aleatory uncertainty in the updating procedure intrin-
sic randomness has been considered in one of the sus-
pension arm parameters. The Youngs modulus E has
been considered as the aleatory parameter, assumed
normally distributed around a known mean value (ini-
tial set of the model) with a standard deviation equal



Figure 11: Posterior distribution results three noise level and three crack lengths in position 6.

to 3% of the mean value. Number 500 parallelized
Monte Carlo (MC) runs, coupled with the FE solver
have been performed and as many FRFs in directions
X and Y stored. The suspension arm has been consid-
ered as a perfectly homogeneous with respect to E,
hence each element of the FE model share the same
sampled E within the single MC run. The FRF results
for sampled normal random E modulus are shown in
figure 12.

Figure 12: Variablity of the frequency respnce fucn-
tion with E.

As can be noticed, there is an high variability in
the FRFs profile due to uncertainty in the E modulus,
even if some regularity are observable i.e. FRF shapes
seems to be very similar. It is worth highlight that the
spectrum of uncertainty associated to the aleatory un-
certainty in the E modulus is fairly large and together
to epistemic uncertainty due to lack of knowledge
about the true crack parameters makes the updating
procedure more challenging. Nevertheless, particular
pattern in the FRF peaks and improved comparison
estimator between FRFs may be used to tune the up-

dating and improve the robustness of the detection ,
which can be seen as future research direction.

7 REMARKS AND CONCLUSIONS

A Bayesian model updating procedure for cracks de-
tection has been presented and it has been applied
to detect cracks in a suspension arm. Reference dy-
namic data from vibration analysis was used as tar-
get for the updating. The effects of different like-
lihood expressions and different experimental data
on the crack detection strategy have been analysed.
The procedure has been tested first to detect a sin-
gle crack with unknown length but known position,
the result comparison did not suggest major differ-
ences between the likelihood formulas. Nevertheless,
the second case point out the limitations of some of
them. It is possibly due to similarity in the FRF for
different cracks or shortcoming in the computational
accuracy. In both the analysed cases, the crack was
detect correctly around the true length and position.
Aleatory uncertainty have been added to the FRF un-
der the form of noises of different intensity, Further-
more, randomness in one of the suspension arm pa-
rameter has been accounted. Preliminary results show,
as expected, reduced precision of the detection if high
noises are accounted for. Moreover, uncertainty in the
Young’s modulus shows relatively high variability of
the FRF results, which can be seen as a further is-
sue for an effective model updating. Future develop-
ment and additional research will be taken by using
real experimental data to further validate and expand
the proposed approach, advanced noise filtering tech-
niques to reduce rumours and more efficient indicator
for the FRF comparison are going to be considered.
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