
Synthesis of Protocols and Discrete Controllers

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy by

Idress Mohammed Husien

November 2017





Dedication

To My family

iii





Contents

notation v

Notations xiii

Preface xv

Abstract xvii

Acknowledgements xix

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Program Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 The Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Search Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Hybrid Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Computation Tree Logic (CTL) . . . . . . . . . . . . . . . . . . . . 17

v



3 Program Synthesis 21
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The Approach in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Model Checking as a Fitness Function . . . . . . . . . . . . . . . . . . . . 26
3.5 Programs as Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.2 Leader Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Synthesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.1 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.2 Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.3 Crossover Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.4 Initial Population Size Cost . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Discrete Controller Synthesis 45
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 General Search Techniques . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Symbolic Model Checking & Controller Synthesis . . . . . . . . . . . . . . 47
4.3.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Symbolic Transition Systems . . . . . . . . . . . . . . . . . . . . . 48

Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Model Checking STSs . . . . . . . . . . . . . . . . . . . . . . . . . 50

CTL w.r.t. STSs . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Symbolic Discrete Controller Synthesis . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Principles of Traditional DCS Algorithms . . . . . . . . . . . . . . 52
4.4.2 Symbolic DCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Controlled Execution of STSs . . . . . . . . . . . . . . . . . . . . . 53
4.4.4 Obtaining a Deterministic Controlled STS . . . . . . . . . . . . . . 53

4.5 Contribution w.r.t. Symbolic DCS . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 General Search Techniques . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Random Generation of Candidates . . . . . . . . . . . . . . . . . . 56

4.6 Principles of our DCS Algorithms . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Representing Deterministic Strategies . . . . . . . . . . . . . . . . 57
4.6.2 Performing Mutations and Crossovers . . . . . . . . . . . . . . . . 58
4.6.3 Model checking as a Fitness Function . . . . . . . . . . . . . . . . 60
4.6.4 Variants for Improved Search Techniques . . . . . . . . . . . . . . . 61

4.7 Experimental Feasibility Assessment . . . . . . . . . . . . . . . . . . . . . 62
4.7.1 Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Partial Objectives . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



4.8.1 Crossover Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.3 Initial Population vs Cost . . . . . . . . . . . . . . . . . . . . . . . 71
4.8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Complexity 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Program Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Discrete Controller Synthesis . . . . . . . . . . . . . . . . . . . . . 79

6 Implementation 83
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Overview of PranCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Representing Candidates . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.2 Structure of PranCS . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Selecting and Tuning Search Techniques . . . . . . . . . . . . . . . 87
6.3.4 Parameters for Simulated Annealing . . . . . . . . . . . . . . . . . 88
6.3.5 Parameters for Genetic Programming . . . . . . . . . . . . . . . . 89

6.4 Exploration of the Parameter Space . . . . . . . . . . . . . . . . . . . . . 89
6.4.1 Exploring Population Size & Crossover Ratio . . . . . . . . . . . . 89
6.4.2 Exploring Cooling Schedules . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 93
7.1 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Main Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Program synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.2 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

vii





Illustrations

List of Figures

1.1 Work Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Simulated Annealing Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Genetic Programming Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 GP Candidate Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Candidate tree (left) with one node mutations (right) . . . . . . . . . . . . . 16
2.5 Program tree (left) with sub-tree mutations (right) . . . . . . . . . . . . . . . 16
2.6 Crossover:two parents(above)and two offspring (below) . . . . . . . . . . . . 17
2.7 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Synthes Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Program tree (left) with one node mutations (right) . . . . . . . . . . . . . . 27
3.3 Program tree (left) with sub-tree mutations (right) . . . . . . . . . . . . . . . 27
3.4 Crossover:two parents(above)and two offspring (below) . . . . . . . . . . . . 28
3.5 Translation example – source(left) and target (right) . . . . . . . . . . . . . . 29
3.6 Synthesized Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Initial Population Size vs Cost for SW Synthesis . . . . . . . . . . . . . . . . 39
3.9 Average time required for synthesising a correct program . . . . . . . . . . . 41
3.10 Average running time of an individual execution . . . . . . . . . . . . . . . . 41
3.11 success rate of individual executions . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 STS STask (Example 4.1) as a guarded automaton. . . . . . . . . . . . . . . . 50
4.2 Candidate predicate (left) with one node mutation (right) . . . . . . . . . . . 59
4.3 Candidate predicate (left) with sub-tree mutation (right) . . . . . . . . . . . 59
4.4 Crossover: two parents (above) and two offspring (below) . . . . . . . . . . . 60
4.5 Overall time required for synthesising a correct candidate . . . . . . . . . . . 65
4.6 Average running time of an individual execution . . . . . . . . . . . . . . . . 65
4.7 Success rate of individual executions . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Temperature Range for Controller Synthesis . . . . . . . . . . . . . . . . . . 74
4.9 Initial Population Size vs Cost for Discrete Controller synthesis . . . . . . . . 75

6.1 PranCS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Graphical User Interface. PranCS allows the user to fine-tune each search

technique by means of dedicated parameters. . . . . . . . . . . . . . . . . . 88

ix





List of Tables

3.1 Comparison for search temperature for Leader Election . . . . . . . . . . . . 35
3.2 Comparison for search temperature for Mutual Exclusion . . . . . . . . . . . 36
3.3 Crossover ratio for GP (Program Synthesis) . . . . . . . . . . . . . . . . . . . 37
3.4 Crossover ratio for Hybrid (Program Synthesis) . . . . . . . . . . . . . . . . . 38
3.5 Population size vs cost for Program synthesis (2-shared bit mutual exclusion) 39
3.6 Population size vs cost for Program synthesis (2-shared bit mutual exclusion) 40
3.7 Search Techniques Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Search Techniques Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Crossover ratio for GP (Discrete Controller Synthesis) . . . . . . . . . . . . . 68
4.3 Crossover ratio for Hybrid (Discrete Controller Synthesis) . . . . . . . . . . . 69
4.4 Population size vs cost for GP (Discrete Controller synthesis 2-Tasks) . . . . 70
4.5 Population size vs cost for Hybrid (Discrete Controller synthesis 2-Tasks) . . 71
4.6 Comparison for search temperature for Discrete Controller synthesis . . . . . 72
4.7 Comparison for search temperature for Discrete Controller . . . . . . . . . . 73

6.1 Synthesis times with the best parameters observed for Simulated Annealing
applied to our DCS benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 On the left: Safety-first GP with crossover for DCS (2-Tasks only), with
Various Population Sizes (|P |). . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi





Notations

The following notations and abbreviations are found throughout this thesis:

SA Simulated Annealing
RSA Rigid Simulated Annealing
FSA Flexible Simulated Annealing
GP Genetic Programming
HGP Hybrid Genetic Programming
W/O Genetic Programming without crossover
DCS Discrete Controller Synthesis
W/C Genetic Programming with crossover
MC Model Checking
CTL Computational Tree Logic
LTL Linear Temporal Logic

xiii





Preface

I declare that this thesis is composed by myself and that the work contained herein is my
own, except where explicitly stated otherwise, and that this work was undertaken by me
during my period of study at the University of Liverpool, United Kingdom. This thesis
has not been submitted for any other degree or qualification except as specified here.

xv





Abstract

In this thesis, a number of search techniques are proposed as a solution for program
and discrete controller synthesis (DCS). Classic synthesis techniques facilitate exhaus-
tive search, while genetic programming has recently proven the potential of generic search
techniques. But is genetic programming the right search technique for the synthesis prob-
lem? In this thesis we challenge this belief and argue in favor of simulated annealing,
a different class of general search techniques. We show that, in hindsight, the success
of genetic programming has drawn from what is arguably a hybrid between simulated
annealing and genetic programming, and compare the fitness of classic genetic program-
ming, the hybrid form, and pure simulated annealing. Our experimental evaluation
suggests that pure simulated annealing offers better results for automated programming
than techniques based on genetic programming.

Discrete Controller Synthesis (DCS) and Program Synthesis have similar goals: they
are automated techniques to infer a control strategy and an implementation, respectively,
that is correct by construction. We also investigate the application of the search tech-
niques that we have been used for program synthesis for the computation of deterministic
strategies solving symbolic Discrete Controller Synthesis (DCS) problems, where a model
of the system under control is given along with desired objective behaviours. We experi-
mentally confirm that relative performance results are similar to program synthesis, and
give a complexity analysis of our simulated annealing algorithm for symbolic DCS. From
the performance results we obtain, we draw the conclusion that simulated annealing,
when combined with efficient model-checking techniques, is worth further investigating
to solve symbolic DCS problems.

A tool is designed to explore the parameter space of different synthesis techniques.
Besides using it to synthesise a discrete control strategies for reactive systems (controller
synthesis) and for protocol adapters for the coordination of different threads (software
synthesis), we can also use it to study the influence of turning various screws in the syn-
thesis process. For simulated annealing, PranCS allows the user to define the behaviour
of the cooling schedule. For genetic programming, the user can select the population
size.
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Chapter 1

Introduction

1.1 Overview

The development of correct code can be quite challenging, especially for concurrent
systems. Classical software engineering methods, where the validation is based on testing,
do not seem to provide the right way to approach this type of involved problems, as bugs
easily elude predefined tests. Guaranteeing correctness for such programs is also not
trivial. Manual proof methods for verifying the correctness of the code against a given
formal specification were suggested in the late 60s.

The next step for achieving more reliable software has been to offer an automatic
verification procedure through model checking [CGP99, BCM+90, AHM+98]. The holy
grail of such techniques would be automatic synthesis: the automated construction of
programs that are correct by construction.

Such synthesis techniques have long been held to be impossible due to complexity
(which ranges between EXPTIME for CTL synthesis [CE82] and undecidable [PR90,
FS05, SF06] for distributed systems. This line of thought has come under attack on
many fronts.

On the theoretical side, bounded [FS13] and succinct [FPS15] synthesis techniques
have leveled the playing field between verification and synthesis by shifting the focus
from the input complexity to the cost measured in the minimal explicit and symbolic
solution, respectively. One could argue that this is the theoretical foundation of successful
approaches, including implementations of bounded synthesis [FJR09, Ehl11] and methods
based on genetic algorithms [Joh07, KP08, KP09a].

In this work we suggest to use simulated annealing for program synthesis and compare
it to similar approaches based on genetic algorithms. We use formal verification technique
(model checking) as a way for assessing fitness in an inductive automatic programming
system.

We have implemented a synthesising tool, which uses (multiple calls to) the model
checker NuSMV to determine the fitness for a candidate program. The candidate pro-
grams exist in two forms. The main form is a simple imperative language. This form
is subject to mutation, but it is translated to a secondary form, the modeling language

1
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of NuSMV, for evaluating the fitness. We have implemented different selection and
update mechanism to compare the performance of simulated annealing with genetic pro-
gramming. Genetic programming represented in this work with and without applying
crossover. A hybrid genetic programming method also applied in this work beside sim-
ulated annealing.

The remainder of this introductory chapter is organised as follows. Section 1.2
presents the motivation for the work presented in this thesis. Section 1.3 describes the
main research question and the associated research issues to be addressed by the thesis.
The adopted research methodology is presented in Section 1.4. Section 1.5 describes the
contributions of the work presented. The organisation of the remainder of this thesis is
presented in Section 1.6. Section 1.7 lists the publications resulting from the research
presented in this thesis. Finally this chapter is concluded in Section 1.8 with a brief
summary.

1.2 Motivation

The main aim of the work presented in this thesis is to investigate and evaluate effective
algorithms that will be used for code generation especially for concurrent programming
and for discrete controller synthesis. The motivation for this work is that the synthesis
of programs and discrete controllers is desirable because it provides the following :

1. It can be used for generating correct code, which can be quite challenging especially
for concurrent systems, that cannot be obtained efficiently by classical software
engineering methods.

2. It allows to correct the errors in faulty code by verifying a desired specifications
using model checking, which takes a model and properties as input and check if
the model satisfies the objectives or not, and lets the implementation evolve into
correct code.

3. It can also be used for the computation of deterministic strategies solving symbolic
Discrete Controller Synthesis (DCS) problems, where a model of the system to
control is given along with desired objective behaviours.

The challenge in automatic programming is synthesizing programs automatically from
their set of requirements. Search techniques in which the fitness of each program is usually
calculated by running the program on some test cases, and evaluating its performance.
Orthogonally, model checking can be used to analyze a given program, verifying that it
satisfies its specification, or providing a counterexample of that fact.

Discrete Controller Synthesis (DCS) and Program Synthesis have similar goals in
that they are constructive methods for behaviour control. Discrete controller synthesis
typically operates on the model of a plant, and seeks the automated construction of
a strategy so that the plant controlled accordingly satisfies a specific set of specifica-
tions. Likewise, program synthesis operates by using some predefined rules, such as the
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grammar and semantics of the target programming language, and seeks the automated
construction of a program whose execution satisfies a specific set of specifications.

As noted above the search techniques can be used together the model checking as
a way to synthesis both programs and discrete controllers. The motivation of the work
described in this thesis can thus broadly be identified as the desire to develop a synthesis
technique that has low cost and can be used for both programs and discrete controllers.

1.3 Research Question

From the research motivation presented in Section 1.2, the key objective of the work
presented in this thesis is to research and investigate effective and efficient technique
for program and controller synthesis. This objective can be formulated as a research
question as follows:

What are the most appropriate search technique that can be used with model checking
(as a fitness function) for program so as control synthesis

In order to answer this research question the resolution of a number of sub-question
is required. These questions can be summarized as follows:

• General Search Technique: What is the best search technique that can be used
for program synthesis? Is genetic programming, simulated annealing, or a hybrid
of them better? Can we implement them in another way as hybrid methods?

• Search Techniques Parameters: What are the efficient parameters that can
be used for genetic programming and simulated annealing? Is the application of
crossover effective? How does initial population size affect the cost beside the
success rate? How does the initial temperature and cooling schedule affect the
results of simulated annealing? Are there ’best’ parameters for our techniques?

• Controller Synthesis: Can we use the same techniques in controller synthesis?
Are the results similar to those of program synthesis? What about the parameters
do they have the same effect?

• Synthesis Tool: What is the scope of a synthesis tool based on generic search
technique?

1.4 Research Methodology

As described in the previous sections, the adopted research methodology of the work
described in this thesis is to investigate and evaluate a series of techniques used for
program and controller synthesis. For this purpose, simulated annealing is used for
program synthesis and compared it to similar approaches based on genetic programming.

We use a formal verification technique, model checking, as a way of assessing its fitness
in an inductive automatic programming system. We have implemented a synthesis tool,



Chapter 1. Introduction 4

which uses multiple calls to the model checker NuSMV [CCG+02] to determine the fitness
for a candidate. The candidates exist in two forms.

1. The main form is a simple imperative language. This form is subject to mutation,
in which the program represented as a binary tree. The leaf nodes in the program
tree is the variables or constant. The program tree translated to

2. a secondary form, the modeling language of NuSMV, for evaluating its fitness.

Figure 1.1: Work Flow Chart

While there has been further research on how to measure partial satisfaction [HO13],
we have adopted an approach that retains with the previous attempts:

1. The best choice for us is to keep to the choices made for promoting genetic pro-
gramming [KP08, KP09a, KP09b], as this is the only choice that is completely free
of suspicion of being selected for being more suitable for simulated annealing than
for genetic programming.

2. A second motivation for this selection is that it results in very simple specifications
and, therefore, in fast evaluations of the fitness.

Noting that synthesis entails on average hundreds of thousands to millions of calls to
a model checker, only simple evaluations can be considered. We have implemented six
different combinations of selection and update mechanism to test our hypothesis:

1. Simulated annealing with two different fitness measure.

2. Genetic programming both without crossover (as discussed in [KP08, KP09a, KP09b])
and with crossover.
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3. Hybrid genetic programming both without crossover (as discussed in [KP08, KP09a,
KP09b]) and with crossover.

At the beginning all the parameters initialized, then the initial population generated
by the generation part of the our software, initially the candidates represented as a binary
trees. The candidates trees used as input for the translator, which convert them into a
NuSMV models to evaluate those candidates. The model checker use as fitness function
for the search techniques.

1.5 Research Contribution

1.5.1 Program Synthesis

In this part of our work we implement the following approaches:

1. We use simulated annealing for program synthesis and compare it to similar ap-
proaches based on genetic programming.

2. We use a formal verification technique, model checking, as a way of assessing its
fitness in an inductive automatic programming system. For this purpose we give a
score for a candidate depending on the satisfied specifications.

3. We have implemented a synthesis tool, which uses multiple calls to the model
checker NuSMV [CCG+02] to determine the fitness for a candidate program. The
tool enables the user to input the requirements (as temporal logic specifications)of
the programs (protocols) that (s)he wants to generate, and the input variables for
the algorithms.

4. We have implemented six different combinations of selection and update mecha-
nism to test our hypothesis: besides simulated annealing, we have used genetic
programming both without crossover (as discussed in [KP08, KP09a, KP09b]) and
with crossover and hybrid genetic programming both without crossover (as dis-
cussed in [KP08, KP09a, KP09b]) and with crossover. Simulated annealing also
implemented in two forms depending on the sharing of specifications. If the safety
specification considered first then we refer to simulated annealing as flexible oth-
erwise it will be knowns as rigid simulated annealing.

The tests we have run confirmed that simulated annealing performs significantly
better than genetic programming. As a side result, we found that the assumption of Katz
and Peled [KP08, KP09a, KP09b] that crossover does not accelerate genetic programming
did not prove to be entirely correct, but the advantages we observed were minor.

1.5.2 Controller synthesis

1. We first define a symbolic model and an associated class of DCS problems, for
which deterministic strategies are sought.



Chapter 1. Introduction 6

2. Next, we adapt the aforementioned search techniques to obtain algorithmic solu-
tions that avoid computing the unsafe portion of the state-space.

3. Then, we confirm the hypotheses that (i) general search techniques are as applicable
to solve our DCS problem as they are for synthesising programs; and

(ii) one obtains similar relative performance results for our DCS problem. Exper-
imental results [HS16] for program synthesis, essentially that simulated annealing
performs better than genetic programming.

4. To assess these hypotheses, we adapt the six different combinations of candidate
selection and update mechanisms of our previous work [HS16], and execute them
on a scalable example DCS problem.

5. We perform an experimental feasibility assessment.

From the performance results we obtain, we draw the conclusion that, even though
for technical reasons our current experimental results do not compare favourably with
existing symbolic DCS tools, simulated annealing, when combined with efficient model-
checking techniques, is worth further investigating to solve symbolic DCS problems.

1.6 The Organization of Thesis

The rest of the thesis delves in detail into the work behind each of the contributions, and
is organized as follows:

• In Chapter 2 We present a literature review of related research and some back-
ground material to the work on the search techniques explained in this thesis.

• Chapter 3 presents the adaptation of the general search techniques to solve the
program synthesis problem and an extension of the quest for the best general search
technique by studying the effect of the parameter settings for the individual search
techniques: the influence of the selected temperature for simulated annealing and
the crossover ratio for genetic programming.

• Chapter 4 summarizes how to use the general searching techniques for the com-
putation of deterministic strategies solving symbolic Discrete Controller Synthesis
(DCS) problems, where a model of the system to control is given along with desired
objective behaviours.

• Chapter 5 present the analysis of complexity of the approaches applied in this
work, the complexity analysis considered for both program and discrete controller
synthesis aspects.

• Chapter 6 provides the description of our PranCS tool, which implements the
simulated annealing based approach proposed in [HS16, HBS17] as well as similar
genetic programming based approaches from [KP08] and [KP09a].
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PranCS is based on quantitative measures for partial compliance with a specifica-
tion, which serve as a measure for the fitness (or: quality) of a candidate solution.

• Chapter 7 begins by presenting some conclusions, then lists the main findings of
the work presented in this thesis.

Note: Some concepts appear several times to make the technical chapters indepen-
dently accessible.

1.7 Publication

Four papers, two published, one of them selected as the best paper among 25 papers on
SEFM16, and two under review, have arisen out the work presented in this thesis, and
these are listed and described in this section:

1. Journal Papers:

• Idress Husien and Sven Schewe Program Generation Using Simulated Anneal-
ing and Model Checking. submitted to the Journal of Logical and Algebraic
Methods in Programming (JLAMP).

This article summarises the application of the synthesis tool on code genera-
tion. We extend the quest for the best general search technique by studying
the effect of the parameter settings for the individual search techniques: the
influence of the selected temperature for simulated annealing and the crossover
ratio for genetic programming.

We found that the advantage in the individual execution time between the
classic and the hybrid version of genetic programming is in the range that
is to be expected, as the number of calls to the model checker is reduced.
It is interesting to note that simulated annealing, where the shift from rigid
to flexible evaluation might be expected to have a similar effect, does not
benefit to the same extent. It is also interesting to note that the execution
time suggests that determining the fitness of programs produced by simulated
annealing is slightly more expensive.

This journal article comprising an extended, updated and revised version of a
paper [HS16] that appeared in the 14th International Conference on Software
Engineering and Formal Methods (SEFM 2016) (see below). The work of this
article included in Chapters 2, 3, and 5.

2. Conference Papers:

• Idress Husien and Sven Schewe Program Generation Using Simulated Anneal-
ing and Model Checking, Software Engineering and Formal Methods - 14th
International Conference, (SEFM 2016) (155-171), Springer 2016.
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In this paper we challenge the belief that simulated annealing is the right
search technique that can be used with model checking for synthesis and ar-
gue in favour of simulated annealing comparing with genetic programming,
a different class of general search techniques. We show that, in hindsight,
the success of genetic programming has drawn from what is arguably a hy-
brid between simulated annealing and genetic programming, and compare the
fitness of classic genetic programming, the hybrid form, and pure simulated
annealing.

Our experimental evaluation suggests that pure simulated annealing offers
better results for automated programming than techniques based on genetic
programming. In our view, the performance is naturally sensitive to the qual-
ity of the integration, the suitability of the model checker used, and hidden
details, like how the seed is chosen or details of how the fitness is computed.
The integrated comparison makes sure that all methods are on equal footage
in these regards. The work of this paper included in Chapters 2, 3, and 5.

• Idress Husien, Nicolas Berthier and Sven Schewe. A Hot Method for Synthe-
sising Cool Controllers, In Proceedings of the 24th ACM SIGSOFT Interna-
tional SPIN Symposium on Model Checking of Software, SPIN 2017, pages
122-131, New York, NY, USA, 2017. ACM.

In this paper, we investigate the application of our searching techniques for
the computation of deterministic strategies solving symbolic Discrete Con-
troller Synthesis (DCS) problems, where a model of the system to control is
given along with desired objective behaviours. We experimentally confirm
that relative performance results are similar to program synthesis. our ex-
perimental results do not compare favourably with existing symbolic DCS
tools. Yet, our implementations are proofs of concept, and one can think of
numerous practical improvements that constitute inescapable ways to pursue
investigating efcient symbolic DCS algorithms using simulated annealing. For
instance, canonically representing symbolic candidate strategies using BDDs
instead of syntactic trees would allow building a cache of ftness results, and
thereby avoid re-evaluating the ftness of equivalent candidate strategies.

At last, note that our search based algorithms do not require the computation
of the unsafe region to produce deterministic strategies. The work of this
paper is included in Chapters 2 and 4 and 6.

• Idress Husien, Nicolas Berthier and Sven Schewe. PranCS: protocol Con-
troller Synthesis Tool. In Proceeding of Symposium on Dependable Software
Engineering Theories, Tools and Applications SETTA 2017 Changsha, China,
Pages(337-347), Springer.

This paper summarises the synthesis tool. Our Proctocol and Controller
Synthesis (PranCS) tool is designed to explore the parameter space of different
synthesis techniques. Besides using it to synthesise a discrete control strategies
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for reactive systems (controller synthesis) and for protocol adapters for the
coordination of different threads, we can also use it to study the influence of
turning various screws in the synthesis process.

For simulated annealing, PranCS allows the user to define the behaviour of the
cooling schedule. the evaluation of PranCS indicates that simulated annealing
is faster than genetic programming, and that some temperature ranges are
more useful than others. The work of this paper is included in Chapter 5

1.8 Summery

In summary, this chapter has provided an overview, and some background, for the re-
search presented in the remainder of this thesis, including details concerning the mo-
tivations for the work and the research question and subsidiary questions. It has also
provided a brief description of the research methodology and the contributions of the
research. In the following chapter, a literature review, intended to provide more detail
regarding the background concerning the research described in the thesis, is presented.





Chapter 2

Background

2.1 Introduction

Generating new programs—or correcting existing ones—for a specific problem can be
a quite challenging, especially for concurrent systems. Classical software engineering
methods, where the validation is based on testing, do not seem to suffice for this problem,
as an error might depend on the order of context switches. In such cases, it might not
occur in test cases, and even if it is caught, it might not be reproducible.

To strengthen tests, manual proof methods for verifying the correctness of the code
against a given formal specification were suggested in the late 60s. The next step for
achieving more reliable software has been to offer an automatic verification procedure
through model checking [CGP99, BCM+90, AHM+98]. While this line of research has
improved the power to validate the correctness of software and is useful for debugging
existing code, it does not help to build correct code or protocols.

Synthesis—the automated construction of programs that are correct by construction—
however, has long been held to be impossible due to complexity (which ranges be-
tween EXPTIME for CTL synthesis [CE82] and undecidable for distributed systems
[PR90, KV01, FS05, SF06]).

This line of thought has been challenged both theoretically—through the introduction
of bounded [FS13] and succinct [FPS15] synthesis techniques—and through the develop-
ment of an increasing number of tools, including implementations of bounded synthesis
[FJR09, Ehl11] and methods based on genetic algorithms [Joh07, KP08, KP09a].

2.2 Search Techniques

We investigate two general search techniques, namely simulated annealing and genetic
programming, and derive a hybrid one. We present these techniques, and turn to their
application in combination with model-checking to find deterministic strategies in the
following section. Let us now elaborate on the each of the search techniques we shall
experiment with.

11
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2.2.1 Simulated Annealing

Simulated annealing [CJ01, HJJ03] is a general local search technique that is able to
escape from local optima, is easy to implement, and has good convergence properties.
When applied to an optimisation problem, the fitness function (objective) generates
values for the quality of the solution constructed in each iteration.

The fitness of this newly selected solution is then compared with the fitness of the
solution from the previous round. Improved solutions are always accepted, while some of
the other solutions are accepted in the hope of escaping local optima in search of global
optima.

The probability of accepting solutions with reduced fitness depends on a temperature
parameter, which is typically falling monotonically with each iteration of the algorithm.

Figure 2.1: Simulated Annealing Flow Chart

Simulated annealing starts with an initial candidate solution. In each iteration, a
neighboring solution is generated by mutating the previous solution. Let, for the ith

iteration, Fi−1 be the fitness of the ‘old’ solution and Fi the fitness of its mutation
constructed in the ith iteration. If the fitness is not decreased (Fi ≥ Fi−1), then the
mutated solution is kept. If the fitness is decreased (Fi < Fi−1), then the probability p
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that this mutated solution is kept is

p = e
Fi−Fi−1

Ti ,

where Ti is the temperature parameter for the ith step. The chance of changing to a
mutation with smaller fitness is therefore reduced with an increasing gap in the fitness,
but also with a falling temperature parameter. The temperature parameter is positive
and usually non-increasing (0 < Ti ≤ Ti−1). The development of the sequence Ti is
referred to as the cooling schedule and inspired by cooling in the physical world [HJJ03].

Algorithm 1: Simulated Annealing algorithm
Set the iteration value i := 0
Set the initial temperature T to very high value
loop cooling
loop Local search
Randomly derive initial solution x
repeat
i := i+ 1
derive a neighbour solution x′ of x
∆F := F (x′)− F (x)
if ∆F >= 0 then
x := x′

else
derive random number p ∈ [0, 1]

if p < e
∆F
T (i) then

x := x′

end if
end if
end loop Local search

until the goal is reached or i = imax

end loop Cooling

The effect of cooling on the simulation of annealing is that the probability of following
an unfavorable move is reduced. In practice, the temperature is often decreased in
stages. During each stage the temperature is kept constant until a balanced solution is
reached. The set of parameters that determines how the temperature is reduced (i.e.,
the initial temperature, the stopping criterion, the temperature decrements between
successive stages, and the number of transitions for each temperature value) is called
the cooling schedule. We have used a simple cooling schedule, where the temperature is
dropped by a constant in each iteration. The algorithm is described in Algorithm 1.

2.2.2 Genetic Programming

Genetic programming [Koz92] is a different general search technique that has been used
for program synthesis in a similar setting [Joh07, KP08, KP09a, KP09b]. In genetic
programming, a population of λ candidate programs is first generated randomly. In each
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step, µ candidates (with µ � λ) selected from the main popualtion according on their
fitness value.

Figure 2.2: Genetic Programming Flow Chart

Genetic programming used with computer programs, which is represented as trees.
Trees can be easly evaluated and represented, each node in the tree node has an operator
function and every terminal node has an operand, making mathematical expressions easy
to evolve and evaluate. Figure 2.3 shows an example of candidate tree.

We have implemented genetic programming as a comparison point, using the values
λ = 150 and µ = 5 from [KP08]. We also use the 2, 000 iterations suggested there as a
cut-off point, where the algorithm is re-started. In its pure form, it uses the sum of the
partial satisfaction values of all sub-specifications as a foundation of the fitness function.

We have additionally implemented a hybrid form that changes the selection technique
over time. This technique works in layers: it first establish the safety properties, and
then the liveness properties. Specifications with better values for the safety properties
are always given preference, while liveness properties are—for equal values for the safety
properties—used to determine the fitness. I.e., they are merely tie-breakers.

This approach has been used in [KP08, KP09a, KP09b]. We refer to it as a hybrid
approach as it introduces a property known from simulated annealing: in the beginning,
the algorithm is applying changes more flexibly, while it becomes more rigid later.
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Figure 2.3: GP Candidate Tree

We have implemented the genetic approaches with and without crossover, and used
both evaluation techniques for simulated annealing, where we refer to using the classic
fitness function as a rigid evaluation, and to the hybrid approach as flexible evaluation.

2.2.3 Initialization

The generation of the initial population has a significant effect on the GP performance.
Populations with poor diversity may have a negative effect on finding a correct solution.
On the otherhand, the initial population size can increase the cost of finding a correct
solution. Initial populations are typically randomly generated. Here, we will describe
grow method, which we have used in our work. In the grow method, nodes are taken
randomly from both function and terminal sets until the generator selects enough ter-
minals to end the tree or it reaches the maximal depth. The grow method is known to
produce trees of irregular shapes [Koz92]. Similar to the full tree generator, the problem
with the grow method is that the shape of the trees with the grow method is directly
influenced by the size of the function and the terminal sets.

2.3 Genetic Operators

2.3.1 Mutation

The main operators of genetic programming are mutation and crossover.
Mutation only work with one parent. A mutation point is selected randomlly, the

sub-tree rooted by the selected node replaced by another sub-tree of the same type. The
new sub-tree is generated randomly. Mutation can also be applied on one node randomly
selected from the leaf or inner nodes. See Figure 2.4 and Figure 2.5.

2.3.2 Crossover

The main aim of crossover Figure 2.6 is to combine the nodes of two parents by exchang-
ing some nodes from one parent tree with some from the other. The most commonly
used type of crossover is sub-tree crossover. In sub-tree crossover, the GP system selects
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Figure 2.4: Candidate tree (left) with one node mutations (right)
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Figure 2.5: Program tree (left) with sub-tree mutations (right)

two trees. The system randomly selects two crossover points in each parent and swaps
the sub-trees rooted there. Then, it generates a new offspring, which consists of parts of
the two selected parents [Koz92]. Therefore, the crossover points are selected randomly
and independently.

2.4 Hybrid Genetic Programming

A part from simulated annealing and pure genetic programming with and without
crossovers as presented above, we additionally investigate a hybrid form introducing
a property known from simulated annealing into the genetic programming algorithm:

by appropriately tuning the measures of fitness, changes are applied more flexibly in
the beginning, while evolution becomes more rigid over time. This hybrid approach has
already been used for program synthesis by [KP08, KP09a, KP09b] as well as [HS16].

In our case, it basically consists in changing the candidate selection technique over
time, by first establishing the safety properties only, and then the liveness properties.

Just as for the genetic programming technique, crossovers are optional for this hybrid
approach as well.
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Figure 2.6: Crossover:two parents(above)and two offspring (below)

2.5 Model checking

Model checking [CGP99, BCM+90] is a technique used to determine whether a program
satisfies a number of specifications. A model checker takes two inputs. The first of them,
the specification, is a description of the temporal behavior a correct system shall display,
given in a temporal logic. The second input, the model, is a description of the dynamics
of the system that the user wants to evaluate. This might be a computer program, a
communications protocol, a state machine, a circuit diagram, etc.

A model checker uses a symbolic representation of the model to decide efficiently if
the model satisfies the specification. Standard temporal logics used in model checking
are linear-time temporal logic (LTL) [Pnu77] and computation tree logic (CTL) [CE82,
Eme90].

2.5.1 Computation Tree Logic (CTL)

In this work we are focus on CTL (Computation Tree Logic) [CE82, Eme90]. This
consists a number of basic “atomic propositions” , that can be used with propositional
logic connectives and a set of temporal connectives which act on propositions.

These temporal connectives consist of two components: a description of the scope
over the future time paths (either A or E) and a description of when the proposition that
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Figure 2.7: Model Checking

is the argument of the temporal operator holds within that scope (one of G,F,X or U).
These have (in informal terms) the following meanings:

• A The proposition has to hold on All paths starting from the current point.

• E There Exists a path starting from current state on which the proposition will
hold.

• G The proposition holds all states (Globally) along the path.

• F The proposition has to hold somewhere (in the Future) along the path.

• X The neXt state the proposition will be satisfied.

• U The proposition holds Until a second proposition holds.

(U is the only binary operator, the others are unary)
Given a finite set Π of atomic propositions, the syntax of a CTL formula is defined

as follows:

φ ::= p | ¬φ | φ ∨ φ | Aψ | Eψ,

ψ ::= Xφ | φUφ | Gφ,

where p ∈ Π. For each CTL formula φ we denote the length of φ by |φ|.
Let T = (V,E) be an infinite directed tree, with all edges pointing away from the

root. (In model checking, this is the unraveling of the model.) Let l : V → 2Π be a
labeling function. The semantics of CTL is defined as follows. For each v ∈ V we have:
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• v |= p if, and only if, p ∈ l(v).

• v |= ¬φ if, and only if, v 6|= φ.

• v |= φ ∨ ψ if, and only if, v |= φ or v |= ψ.

• v |= Aψ if, and only if, for all paths π starting at v, we have π |= ψ.

• v |= Eψ if, and only if, there exists a path π starting at v with π |= ψ.

Let π = v1, v2, . . . be an infinite path in T . We have:

• π |= Xφ if, and only if, v2 |= φ.

• π |= φUφ′ if, and only if, there exists an i ∈ N such that vi |= φ′ and, for all j in
the range 1 ≤ j < i, we have vj |= φ.

• π |= Gφ if, and only if, vi |= φ for all i ∈ N.

Note that the φ and φ′ here are state formulas.
The pair (T, l), where T is a tree and l is a labeling function, is a model of φ if, and

only if, r |= φ, where r ∈ V is the root of the tree. If (T, l) is a model of φ, then we write
T, l |= φ.

For the candidate programs in our work, the tree is the tree of all runs / interleaving
of the programs under asynchronous composition, and the labels are the program states.





Chapter 3

Program Synthesis

This chapter is based on the results of [HS16]. We extend the quest for the best general
search technique by studying the effect of the parameter settings for the individual search
techniques: the influence of the selected temperature for simulated annealing and the
crossover ratio for genetic programming. Note that we have already describe the general
searching techniques and model checking on Chapter 1.

We start with our tool structure description in section 3.3,that simplify the main
parts of the synthesis tool. Then on section 3.4 we discuss how the model checking used
as a fitness for our searching methods. Section 3.5 shows how the programs represented
in two forms for mutation purpose and as a pseudo code. Section 3.6 describes the case
studies that we have solved using the synthesis tool. The investigation of the parameters
variety shown on Section 3.7.1. The rest of the chapter consist of the evaluation section
(3.8) and the discussion (section 3.9) of the tool results.

3.1 Abstract

Program synthesis can be viewed as an exploration of the search space of candidate pro-
grams in pursuit of an implementation that satisfies a given property. Classic synthesis
techniques facilitate exhaustive search, while genetic programming has recently proven
the potential of generic search techniques. But is genetic programming the right search
technique for the synthesis problem? In this chapter we challenge this belief and argue
in favour of simulated annealing, a different class of general search techniques. We show
that, in hindsight, the success of genetic programming has drawn from what is arguably a
hybrid between simulated annealing and genetic programming, and compare the fitness
of classic genetic programming, the hybrid form, and pure simulated annealing. Our
experimental evaluation suggests that pure simulated annealing offers better results for
automated programming than techniques based on genetic programming.

21
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3.2 Introduction

Model checking methods are used to verify the correctness of digital circuits and code
against their formal specification. In case of design or programming errors, they pro-
vide counterexample evidence of erroneous behavior. Model checking techniques suffer
from inherent high complexity. New model checking methods attempt to speed it up
and reduce the memory requirement. Recently, the more ambitious task of converting
the formal specification automatically into correct-by-design code has gained significant
progress. In this chapter, automata-based techniques for model checking and automatic
synthesis are described.

Concurrent systems are are very difficult to synthesize, where a specific task needs to
be decomposed into many components, where each having limited visibility and control
on the behaviour of the other components. This make the synthesis of concurrent systems
is, in general, undecidable, so the classical software engineering methods in which testing
is used for selection seems not suitable for this type of synthesis. The holy grail of such
techniques would be synthesis: the automated construction of programs that are correct
by construction. Such synthesis techniques have long been held to be impossible for
reactive systems due to the complexity of synthesis, which ranges from EXPTIME for
CTL synthesis [CE82, KV99] to undecidable for distributed systems [PR90, MT01, FS05,
SF06].

This line of thought has come under attack on many fronts. On the theoretical side,
bounded [FS13] and succinct [FPS15] synthesis techniques have levelled the playing field
between the verification and synthesis of reactive systems by shifting the focus from the
input complexity to the cost measured in the minimal explicit and symbolic solution,
respectively. One could argue that this is the theoretical underpinning of successful
approaches, including implementations of bounded synthesis [FJR09], and methods based
on genetic programming [Joh07, KP08, KP09a, KP09b], also in [Ehl11] Unbeast, a tool
for the synthesis of reactive systems from LTL specifications has presented

The success of genetic programming is also based on the observation that the neigh-
borhood of good solutions are often ‘not bad’, and would often still display many sought
after properties, such as satisfying a number of sub-specifications fully, and others par-
tially. Such properties are translated to a high fitness of the candidate solution. Vice
versa, the higher the fitness of a candidate, the more likely is it to find a full solution in
its proximity. This observation is also at the heart of traditional engineering techniques:
usually the elimination of a bug does not cause errors in other places. It is also the as-
sumption used when applying program repair [JGB05, vEJ13] techniques. The successive
development into correct programs is also distantly related to counter-example-guided
inductive synthesis [Sol13] for inductive programs, where a genetic approach has also
been discussed [DKL15].

Our work is at the same time inspired by the success of genetic programming and
driven by the doubt if genetic programming is the right generic search technique to use.
The success of genetic programming for synthesis is thoroughly documented by a series
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of papers by Katz and Peled [KP08, KP09a, KP09b]. The doubts, on the other hand,
are fueled by the general observation that genetic programming is often outperformed
by simulated annealing [Dav87, LMST96, MS96].

On a conceptual level, the difference between simulated annealing and genetic pro-
gramming techniques are rather minor. These difference are threefold. The first differ-
ence is in the number of candidates considered in each iteration. In genetic programming,
these are many. In the Katz and Peled papers [KP08, KP09a, KP09b], for example, these
are typically 150, 5 from the previous cycle and 145 mutated programmes—numbers we
have copied for our own experiments with genetic programming. In simulated annealing,
there is typically one new implementation in each iteration. The second difference is
that genetic approaches may use crossovers, a proper mix of two candidate solutions, in
addition to mutations, whereas simulated annealing only uses mutations1. The third dif-
ference is the way the selection takes place. The rules for selection is typically static for
genetic programming, while the entropy falls over time in simulated annealing. It is im-
portant to note that crossovers are not always used in genetic programming, and we are
not aware of any genetic programming approach that has tried to exploit crossovers for
synthesis. Personal communication with the authors of [KP08, KP09a, KP09b] showed
that they did not believe that crossover would be useful in the context of synthesis.

Simulated annealing has been reported [Dav87, LMST96, MS96] to outperform ge-
netic programming when crossovers do not provide an advantage or are not used. Broadly
speaking, this is because keeping only a single instance increases the update speed (where
the factor is roughly the number of instances), whereas many instances reduce the search
depth or increase the likelihood of success in a bounded search with a fixed number of
iterations. Overall, the speed-up of the update tends to outweigh the increase in depth,
or the reduction in the success rate, of a bounded search. This led us to the hypothesis
that the same holds when these techniques are used in synthesis.

Finally, the paper series on genetic programming by Katz and Peled [KP08, KP09a,
KP09b] has used a layered approach, where the evaluation of the search function differs
over time, starting with establishing the safety then liveness properties. The effect of
this difference is comparable to the effect of cooling when a stable level of quality is
reached. We took this as another hint that simulated annealing is the more appropriate
technique when implementing synthesis based on general search with model checking
as a fitness measure. In this work we suggest to use simulated annealing for program
synthesis and compare it to similar approaches based on genetic programming. We use
a formal verification technique, model checking, as a way of assessing its fitness in an
inductive automatic programming system.

We have implemented a synthesis tool, which uses multiple calls to the model checker
NuSMV [CCG+02] to determine the fitness for a candidate program. The candidate
programs exist in two forms. The main form is a simple imperative language. This form

1The changes are usually not referred to as mutations, but the rules of obtaining them are the same.
We use the term mutations for simulated annealing, too, in order to ease the comparison between

simulated annealing and genetic programming.
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is subject to mutation, but it is translated to a secondary form, the modeling language
of NuSMV, for evaluating its fitness. All choices of how exactly a program is represented
and how exactly the fitness is evaluated are disputable.

Generic search techniques are, however, usually rather robust against changes in
such details. While there has been further research on how to measure partial satisfaction
[HO13], we believe that the best choice for us is to keep to the choices made for promoting
genetic programming [KP08, KP09a, KP09b], as this is the only choice that is completely
free of suspicion of being selected for being more suitable for simulated annealing than
for genetic programming. A second motivation for this selection is that it results in very
simple specifications and, therefore, in fast evaluations of the fitness.

Noting that synthesis entails on average hundreds of thousands to millions of calls to
a model checker, only simple evaluations can be considered. We have implemented six
different combinations of selection and update mechanism to test our hypothesis: besides
simulated annealing, we have used genetic programming both without crossover (as dis-
cussed in [KP08, KP09a, KP09b]) and with crossover. The tests we have run confirmed
that simulated annealing performs significantly better than genetic programming. As a
side result, we found that the assumption of the authors of [KP08, KP09a, KP09b] that
crossover does not accelerate genetic programming did not prove to be entirely correct,
but the advantages we observed were minor.

3.3 The Approach in a Nutshell

Our tool consists of four main components: a modifier / seeder for programs (Program
Generation), a compiler into a model checker format (Program Translation), a quantita-
tive extension of a model checker, using NuSMV [CCG+02] as a back-end, and a selector
that determines which program to keep (Generic Search Technique).

The structure of our synthesis tool is shown in Figure 3.1. In a nutshell, our synthe-
siser (cf. Figure 3.1) Via a user-interface, the user can select the problem parameters:
(1) Search technique; (2) NuSMV specification (3) number, size, and type of variables;
and (4) complex or simple conditional statements (if and while statement).

The parameters are sent to the Program Generator, which generates new programs ac-
cording to the given parameters. Each program is first translated into NuSMV [CCG+02]
and then analysed by NuSMV. The model checking results form the basis of a fitness
function for the selected search technique. The specification is provided in form of a list
of sub-specifications, which is then automatically extended to additional weaker specifi-
cations that are used to obtain a quantitative measure for partial satisfaction.

Broadly speaking, the extension takes partial satisfaction of a specification into ac-
count by giving different weights to different weaker versions of sub-specifications (cf.
Section 3.4). The result can be manually modified, but the results reported in Section
3.8 refer to the automatically produced extension. The internal representation of a pro-
gram is a tree. The seeder / modifier produces an initial seed. (Alternatively, one could
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User Interface

Generator

Translator Fitness MeasureNuSMV

Search Technique

parameters properties

Candidate tree

Model Output

properties Fitness

Output

candidate update

Figure 3.1: Synthes Tool

start with an initial program provided by the user.) The modifier / seeder also produces
modifications of existing programs by changing sub-trees (cf. Section 3.5). The programs
are then translated to the input language of a model checker (NuSMV in our case), which
is then called several times to determine the level of satisfaction, which is the measure
of the fitness (cf. Section 3.3) of a program.

Broadly speaking, the number of candidate programs kept depends on the search tech-
nique used. We have implemented both genetic programming approaches and simulated
annealing in order to obtain a clean point of comparison. We use NuSMV [CCG+02] as a
model checker. The translator therefore translates the abstract programs into the model
language of NuSMV. The other parts of the tool are written in C++. Figure 3.1 gives an
overview on the main components of our tool. When comparing simulated annealing to
genetic programming, we merely replace the simulated annealing component by a similar
component for the respective genetic programming variant and optionally add crossover
to the available mutations.

The user provides specifications for the desired properties of a system in the form
of a list of CTL specifications for the system dynamics that the program has to satisfy.
The simulated annealing component then derives the intermediate specifications (full and
partial compliance) that are used to determine the fitness of a candidate (cf. Section 3.3).
If the candidate program satisfied all required properties, then the synthesiser returns it
as a correct program.

Otherwise, it will compare the fitness of the current candidate with the (stored)
fitness value of the program it is derived from by mutation. (This is the currently stored
candidate.) If the fitness is lower, then the tool will update the stored candidate with
the probability e∆F/T (i) defined by the loss ∆F = Fi − Fi−1 in fitness and the current
temperature T (i) taken from the cooling schedule.
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If the fitness is not lower, the tool will always replaces the stored candidate by the
mutated one. When the end of the cooling schedule is reached, the tool aborts. The
synthesis process is then re-started, either with a fresh cooling schedule (usually with a
higher starting temperature or slower cooling) or with the same cooling schedule. We
have implemented the latter.

3.4 Model Checking as a Fitness Function

We use model checking to determine the fitness of a candidate program in the same way
as it has been used for genetic programming [KP08, KP09a, KP09b]. Based on the model
checking results, we derive a quantitative measure for the fitness (as a level of partial
correctness) of a program. This can be the share of properties that are satisfied so far,
or mechanically produced simpler properties.

For example, if a property shall hold on all paths, it is better if it holds on some paths,
and yet better if it holds almost surely. Our implementation considers the specification
as a list of sub-specifications and assigns full marks for each sub-specification, which is
satisfied by the candidate program. For cases where the sub-specification is not satisfied,
we distinguish between different levels of partial satisfaction. We offer an automated
translation of properties with up to two universal quantifiers that occur positively. To
evaluate the candidates 100 points are assigned when the sub-specification is satisfied, 80

points if the specification is satisfied when replacing one universal path quantifier by an
existential path quantifier, and 10 points are assigned if the specification is satisfied after
replacing both universal path quantifiers by existential ones. Those evaluation numbers
are given to weight the candidates and distinguish among three levels of them according
to the satisfaction of the specifications. This means that it is possible to take another
values (eg. 20, 60, and 100) the most important thing is keep the difference among them
clear. (Existential quantifiers that occur negatively are treated accordingly.) Examples
of this automated translation are shown in Section 3.6.

The output of the model checker is used to evaluate the fitness of the current candi-
date. The main part of the fitness is the average of the values for all sub-specifications in
the rigid evaluation and the average of all liveness specifications in the flexible evaluation.
Following [KP08], we apply a penalty for long programs by deducing the number of inner
nodes of a program from this average when assigning the fitness of a candidate program.
The resulting fitness value will be used by simulated annealing to compare the current
candidate with the previous one when using rigid evaluation, and to make a decision
whether the changes will be preserved or discarded. When using flexible evaluation, this
only happens if the value for the safety specification is equal; falling resp. rising values
for safety specifications always result in discarding resp. selecting the update when using
flexible evaluation.
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Figure 3.2: Program tree (left) with one node mutations (right)
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Figure 3.3: Program tree (left) with sub-tree mutations (right)

3.5 Programs as Trees

The main form of the programs is a tree, in which each leaf node represents a parameter or
constant(eg. 0, 1, 2, me, other,myturn, and otherturn), while each parent node represents
an operation like assignments, comparisons, or algorithm instruction like if, while, empty
while, and, or. The candidate programs are built from the root down to the terminal
nodes (cf. [Koz92, KP08]). Figure 3.2 shows the tree representation of the program

while (turn==me)
other=0

and two mutations of that program the first by replacing one node and another one
by replacing sub-tree.

Mutations are changes in the program tree. Changes can be applied as follows:

1. Randomly select a node to be changed.

2. Apply one of the following changes:

(a) Replace a boolean comparator by a different boolean comparator. E.g., the
program from Figure 3.2 can result from the left program when ‘==’ is re-
placed by ‘ !=’.

(b) Replace a leaf by a different parameter or constant from a user defined set.
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Figure 3.4: Crossover:two parents(above)and two offspring (below)

(c) Replace a sub-tree (which is no leaf) by a different sub-tree of size 3 with the
same type. E.g., the program from Figure 3.3 can result from the left program
when by replacing the left sub-tree.

(d) Add a new internal node, using the node that was there as one sub-tree and
creating further offspring of minimal size (which is ≤ 3) to make the resulting
tree well typed.

Crossovers between two programs P1 and P2 randomly select nodes N1 of P1 and
N2 of P2, and swap the sub-trees rooted in N1 and N2. This way, they produce a proper
mix of the two programs, see Figure3.4.

Besides standard commands—‘while’, ‘if’, assignments, boolean connectives and comparators—
there are also variable names and constants. They have to be provided by the user. The
user also needs to specify, which variables are local and which are global. She can provide
an initial tree with nodes that the modifier is not allowed to alter. Examples of this are
provided in Section 3.6.

To evaluate the fitness of the produced program, it is first translated into the language
of the model checker NuSMV [CCG+02]. We have used the translation method suggested
by Clarke, Grumberg, and Peled [CGP99].
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process me
while (true) do
noncritical section
while (turn==me) do
skip

end while
critical section
turn=other

end while

‘me’ and ‘other’ are (differ-
ent) variable valuations, in
this example implemented as
boolean variables. In other
instances, they might be have
a different (finite) datatype.

MODULE p(turn)
VAR
pc: {11, 12, 14,15};
ASSIGN
init(pc) := 11;
next(pc) :=
case
(pc=11) : {11, 12};
(pc=12)&(turn=me) : 14;

(pc=14) : 15;
(pc=15) : 11;
TRUE: pc;
esac;
next(turn):=
case
(pc=15): other;
TRUE :turn;
esac;

Figure 3.5: Translation example – source(left) and target (right)

In this translation, the program is converted into very simple statements (similar to
assembly language). To simplify the translation, the program lines are first labeled, and
this label is then uses as a pointer that represents the program counter (PC). From this
intermediate language, the NuSMV model is then built by creating (case) and (next)
statements that use the PC. Figure 3 shows the translation of a mutual exclusion algo-
rithm. At first, each line in the source algorithm labelled, then a variable pc (which is
local for each MODULE) is added to represent the control state.

In the first step label each statement in the algorithm, the labels will used to build
the model.

First step label the statements

10 while (true)
11 noncritical section
12 while (turn==0)
13 skip
14 critical section
15 turn=1

The next step is adding a pointer variable pc, and define all the variables as global
variables.

Second add pc variable
VAR
turn:boolean;



Chapter 3. Program Synthesis 30

p0:process(turn,myturn);
p1:process(turn,myturn);
....
MODULE P(turn,myturn)
VAR
pc: {11, 12, 14,15};
10 while (true)
11 noncritical section
12 while (turn==0)
13 skip
14 critical section
15 turn=1

Finally build the case and next state expression according the values of pc variable.

Thired Initialize all the variables properly, and start building their next-state
expressions:
MODULE p(turn, myturn)
VAR
pc: {11, 12, 14,15};
ASSIGN
init(pc) := 11;
next(pc) :=
case
(pc=11) : {11, 12};
(pc=12)&(turn=myturn) : 14;
(pc=14) : 15;
(pc=15) : 11;
TRUE: pc;
esac;
next(turn):=
case
(pc=15): !myturn;
TRUE :turn;
esac;

And so on until build all the case statements by adding clauses according to the
algorithm fragments, til create the program.
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3.6 Case Studies

We have selected mutual exclusion [Dij65] and leader election [LP85, KP09b] as case
studies, because these are the examples, for which genetic programming has been suc-
cessfully attempted. In mutual exclusion, the programming language is set to use two
and three shared bits, and for leader election 3 and 4 nodes ring can be used.

3.6.1 Mutual Exclusion

In mutual exclusion, no two processes are allowed to be in the critical section at the same
time. In addition, there are liveness properties that essentially require non-starvation.

For the mutual exclusion example, we consider programs that progress through four
sections, a ‘non-critical section’, an ‘entry section’, a ‘critical section’, and an ‘exit sec-
tion’. The ‘non-critical section’ and ‘critical section’ parts are not targets of the synthesis
process. In this example, we start with a small program tree that includes the non-critical
section and the critical section as privileged commands that cannot be changed by the
modifier. Neither can any of their ancestors in the program tree. The entry and exit
sections, on the other hand, are standard parts of the tree that can be changed.

The modifier is also provided with the vocabulary it can use. Besides the standard
commands and the privileged commands for the critical and non-critical sections, these
are the variables ‘me’ and ‘other’ that identify the two processes involved and, depending
on the benchmark, two or three global / shared boolean variables see Figure 3.6.

The mutual exclusion example uses one safety specification: only one process can be
in the critical sections at a time. This is represented by the CTL formula

!EF (P0 in critical section & P1 in critical section ).

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied, and

80 points when !AF (P0 in critical section & P1 in critical section ) holds.

In addition, there is a non-starvation property that, whenever a process enters its
entry section, it will eventually enter the critical section. For one process (P1) this is

AG(P1 in entry section→ AFP1 in critical section).

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied,

80 points when EG(P1 in entry section→ AFP1 in critical section) holds,

80 points when AG(P1 in entry section→ EFP1 in critical section) holds, and

10 points when EG(P1 in entry section→ EFP1 in critical section) holds.
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while (true) do
noncritical;
turn[me] = 1;
while (turn[other]==1)
do
turn[me] = me;
while (turn[other]
!=0) do
turn[me] = 1;

end while
end while
critical
turn[me] = 0;

end while

while (true) do
noncritical;
turn[me] = 1;
while (turn[other]!=0)
do
while (turn[1]==me)
do
turn[me] = 0;

end while
end while
critical
turn[me] = 0;
turn[1] = me;

end while

Figure 3.6: Synthesized Programs

3.6.2 Leader Election

As a second case study, we consider synthesising a solution for the leader election problem
[LP85, KP09b]. For that purpose, we use clockwise unidirectional ring networks with
two different sizes, three or four nodes, respectively.

For leader election, we do not consider any privileged commands. Again, the modifier
needs to be provided with vocabulary. Besides the standard commands, this includes

• id: a specific integer value for each node in the ring, which have the values 1, . . . , i

for rings of size i.

• myval,other,leaderID: local variables; leaderID is initialized to 0.

• Send (myval): a command that refers to sending the value of ‘myval’ to the next
node in the ring. (It is placed in a variable the next process can read using the
following command.)

• Receive (other): a command that reads the last value sent by the previous node.

The specification for leader election requires the safety specification that there is
never more than one leader, and the liveness requirement that a leader will eventually
be elected. For both requirement, we assign

100 points when the sub-specification is satisfied on all paths, and

80 points when the sub-specification is satisfied on some path.
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3.7 Synthesis Approach

When using the tool, the user starts with determining the search technique s/he would
like to use from a list of three types of the techniques:

genetic programming, hybrid, and simulated annealing. Both the genetic program-
ming and the hybrid method can be used with or without crossover. Hybrid [KP09a] is
a method, where the fitness is viewed as a pair of ‘safety-fitness’ and ‘liveness-fitness’,
where the latter is only used if the safety fitness is equal. For simulated annealing there
are also two flavours to choose from: rigid (where the classic fitness function is used as
described above) and flexible, which uses the two-step fitness approach from ‘hybrid’.
The tool allows the user to input parameters that control the dynamics of the synthesis
process. These parameters depend on the selected search technique.

For genetic programming and the hybrid approach, the parameters include the pop-
ulation size, the number of selected candidates, and the number of iterations. For simu-
lated annealing, the user chooses the initial temperature and the cooling schedule. The
input specification should be a list of NuSMV specifications. The tool will produce
weaker specifications for the purpose of producing a fitness measure.

Finally, the user defines the signature of the program by selecting input variables
that are used to build the pseudo code of the program that the user want to synthesize.
The model checker NuSMV is used for the individual model checking tasks. When the
candidate program satisfies all required properties, the synthesiser returns it as a correct
program. Otherwise, it will compare the fitness of the current candidate/s with the
(stored) fitness value of the program/s it is derived from by mutation. (This is the
currently stored candidate or population.) The selection of the candidate / population
to be kept is determined by the selected generic search technique.

For simulated annealing, if the fitness is lower, then the tool will update the stored
candidate with the probability defined by the loss in fitness and the current temperature
taken from the cooling schedule. If the fitness is not lower, the tool will always replaces
the stored candidate by the mutated one. When the end of the cooling schedule is
reached, the tool aborts.

3.7.1 Parameters Setting

The tool allows the user to select the generic search technique and to influence the
parameter used for fine-tuning the respective technique. The parameters of the search
technique determine the likelihood of finding a correct program in each iteration as well as
the expected running time for each iteration. The selected parameters therefore heavily
influence the expected overall speed of the search.

The type of available parameters differs between genetic programming and simulated
annealing. Figure 3.7 shows the graphical user interface of the tool, which the user can
use to set the parameters or use the default setting.
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First, the search technique is selected. The tool then provides the input variables
to input their values, like population size and the number of the selected candidates
for genetic programming and the hybrid technique, or the initial temperature and the
cooling schedule for simulated annealing.

The user can also select the ratio of crossover vs mutation in genetic techniques. As
a default setting, this ratio is 20% and the initial population size is 150 and 5 selected
candidates.

Figure 3.7: Graphical User Interface

The user should input her list of specifications and define the search space by selecting
the input language (variables and their range). When the tool has found a correct
program, it is provided to the user.

3.7.2 Temperature Range

Besides serving as a synthesis tool, the main intention of the tool is to allow for a com-
parison of different generic search techniques. In [HS16], we have used our technique to
generate correct solutions for mutual exclusion and leader election and found that simu-
lated annealing is much (1.5 to 2 orders of magnitude) faster than genetic programming.

In order to test if the hypothesis from [Con90] that simulated annealing does most
of its work during the middle stages—while being in a good temperature range—holds
for our application, we have developed the tool to allow for ‘cooling schedules’ that do
not cool at all, but use a constant temperature. In order to be comparable to the default
strategy, we use up to 25, 001 iterations in each attempt.



Chapter 3. Program Synthesis 35

We have run 100 attempts to create a correct program using different constant tem-
peratures, with the success rates, average running times per iteration, and inferred ex-
pected overall running times2 shown in Tables 3.1 and 3.2.

const temp t suc. % expec. time

3 nodes
0.7 316 00 ∞
400 285 00 ∞
4000 196 11 1,781.81
7000 97 14 692.85
10000 73 21 347.61
13000 78 22 354.54
16000 83 20 415.00
20000 87 19 457.89
25000 94 17 494.73
30000 108 15 720.00
40000 117 15 780.00
50000 129 13 992.30
100000 193 12 1,608.33

4 nodes
0.7 521 00 ∞
400 493 00 ∞
4000 368 10 3,680.00
7000 314 13 2,415.38
10000 138 18 766.66
13000 146 19 768.42
16000 150 17 882.35
20000 153 15 1,020.00
25000 167 13 1,284.61
30000 184 11 1,672.72
40000 193 11 1,754.54
50000 201 10 2,010.00
100000 287 9 3,188.88

Table 3.1: Comparison for search temperature for Leader Election

The findings support the hypothesis that some temperatures are much better suited
than others: low temperatures provide a very small chance of succeeding, and the chances
also go down at the high temperature end. While the values for low temperatures are
broadly what we had expected, the high end performed better than we had thought.

This might be because some small guidance is maintained even for infinite tempera-
ture, as a change that is decreasing the fitness is taken with an (almost) 50% chance in
this case, while increases are always selected. The figures, however, are much worse than
the figures for the good temperature range of 10, 000 to 16, 000.

The best results have been obtained at a temperature of 10, 000, with an expected
time of 68 and 71 seconds for two and three shared bits, respectively. Notably, these
results are better than the running time for the cooling schedule that uses a linear decline

2In all tables, execution times are in seconds; t is the mean execution time of single executions
(succeeding or failing), and columns “expec. time” extrapolate t based on the success rate obtained in
100 single executions (“suc. %”) The best values for each comparison printed in bold.
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const temp t suc. % expec. time

2 shared bits
0.7 147 00 ∞
400 143 00 ∞
4000 129 3 4300
7000 77 12 641.6
10000 15 22 68.18
13000 16 23 69.56
16000 17 21 80.95
20000 21 20 105
25000 23 19 121.05
30000 28 18 155.55
40000 31 16 193.75
50000 37 15 246.66
100000 52 11 472.72

3 shared bits
0.7 155 00 ∞
400 148 00 ∞
4000 121 4 3025
7000 81 11 252
10000 17 24 70.83
13000 18 24 75
16000 19 22 86.36
20000 23 22 104.54
25000 25 21 191.04
30000 30 19 157.89
40000 34 17 200
50000 41 16 256.25
100000 58 13 446.15

Table 3.2: Comparison for search temperature for Mutual Exclusion

in the temperature. Starting at 20, 000 and terminating at 0, it has the same average
temperature.

In the light of the results from the second experiment, it seems likely that the last
third of the improvement cycles in this cooling schedule had little avail.

3.7.3 Crossover Ratio

Similarly, we have studied the effect of changing the share between crossover and muta-
tion in genetic programming.We considered a range from a 0% to 60% share of crossovers.
Country to our expectation, we did not observe any relevant effect of in- or decreasing
the share of cross over for either classic or hybrid genetic programming. Interestingly,
the running time per instance increased with the share of crossovers, which might point
to a production of more complex programs. See Tables 3.3 and 3.4.

3.7.4 Initial Population Size Cost

The population size affect the algorithm in two sides, firstly large size could provide a
better diversity than the small one, but besides that it could make the algorithm make
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ratio % t suc. % expec. time

2 shared bits
0 583 7 8,328.57
20 589 9 6,544.44
40 602 9 6,688.88
60 614 8 7,657.00
80 613 8 7,662.50
100 652 2 32,600.00

3 shared bits
0 615 7 8,785.71
20 620 9 6,888.88
40 637 9 7,077.77
60 658 8 8,225.00
80 669 4 16,725.00
100 682 2 34,100.00

3 nodes
0 1120 3 37,333.33
20 1123 6 18,716.66
40 1137 5 22,740.00
60 1149 5 22,980.00
80 1154 3 38,466.66
100 1167 2 58,350.00

4 nodes
0 1,311 3 43,700.00
20 1,314 5 26,280.00
40 1,325 4 33,125.00
60 1,336 3 44,533.33
80 1,345 3 44,833.33
100 1,353 2 67,650.00

Table 3.3: Crossover ratio for GP (Program Synthesis)

more computation to find a good solution. In order to investigate how the population
size effect on our synthesis approach and check the cost of the large size, we initiate the
population size to different sizes see Tables 3.5 and 3.6.

We found that the the cost of the initial population size increase the cost of finding
a good solution dramatically as shown on Figure 3.8.

3.8 Evaluation

We have implemented the simulated annealing and genetic programming algorithms as
described, using NuSMV [CCG+02] as a solver when deriving the fitness of candidate
programs. For simulated annealing, we have set the initial temperature to 20, 000. The
cooling schedule decreases the temperature by 0.8 in each iteration.

The schedule ends after 25, 000 iterations, when the temperature hits 0. In a failed
execution, this leads to determining the fitness of 25, 001 candidate programs.

As described in Section 3.2, we have taken the values suggested in [KP08] for genetic
programming: λ = 150 candidate programs are considered in each step, µ = 5 are kept,
and we abort after 2, 000 iterations. In a failed execution, this leads to determining the
fitness of 290, 150 candidate programs.
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ratio % t suc. % expec. time

2 shared bits
0 113 31 364.51
20 115 33 348.48
40 123 33 372.72
60 134 33 406.06
80 142 21 676.19
100 151 5 3,020.00

3 shared bits
0 171 17 1,005.88
20 175 19 921.05
40 187 19 984.21
60 196 19 1,031.57
80 207 11 1,881.81
100 223 3 7,433.33

3 nodes
0 418 15 2,786.66
20 421 16 2,631.25
40 427 16 2,668.75
60 453 13 3,484.61
80 469 9 5,211.11
100 487 4 12,175.00

4 nodes
0 536 11 4,872.72
20 541 14 3,864.28
40 557 13 4,284.61
60 569 13 4,376.92
80 581 9 6,455.55
100 593 3 17,966.66

Table 3.4: Crossover ratio for Hybrid (Program Synthesis)

For the mutual exclusion benchmark, we distinguish between programs that use two
and three shared bits, respectively. For the leader election benchmark we use ring net-
works with three and four nodes, respectively. The results are shown in Figures 3.9 to
3.11 and summarised in Table 3.7.

The experiments have been conducted using a machine with an Intel core i7 3.40
GHz CPU and 16GB RAM. Figure 3.9 shows the average time needed for synthesising
a correct program. The two factors that determine the average running time are the
success rate and the running time for a full execution, successful or not. These values
are shown in Figure 3.11.

An individual execution of simulated annealing ends when a correct program is found
or when the stopping temperature is reached after 25, 000 iterations. Similarly, the
genetic programming approaches stop when they have found a solution or when the
number or iterations has reached its maximum of 2, 000 iterations.

Note that, while simulated annealing incurs more iterations before reaching its termi-
nation criterion, it needs to perform only a fraction of the model checking tasks in each
iteration. While the number of iterations is slightly more than an order of magnitude
higher, the number of programs, for which the fitness needs to be calculated, is slightly
more than an order of magnitude lower (25, 001 vs. 290, 150).
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GP w/o crossover
population size slctd cand. t suc. % expec. time

150
5 583 7 8328.57
7 583 7 8328.57
9 584 7 8342.85

250
5 1024 12 8533.33
7 1024 12 8533.33
9 1024 12 8533.33

350
5 1435 15 9566.66
7 1435 15 9566.66
9 1435 15 9566.66

GP with crossover
population size slctd cand. t suc. % expec. time

150
5 589 9 6544.44
7 589 9 6544.44
9 588 9 6533.33

250
5 1057 15 7046.66
7 1057 15 7046.66
9 1057 15 7046.66

350
5 1451 18 8061.11
7 1451 18 8061.11
9 1451 19 7636.84

Table 3.5: Population size vs cost for Program synthesis (2-shared bit mutual exclu-
sion)

Figure 3.8: Initial Population Size vs Cost for SW Synthesis
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Hybrid w/o crossover
population size slctd cand. t suc. % expec. time

150
5 113 31 364.51
7 113 31 364.51
9 113 31 364.51

250
5 230 46 500.00
7 230 46 500.00
9 231 46 502.17

350
5 325 63 515.87
7 325 63 515.87
9 325 64 507.81
Hybrid with crossover

population size slctd cand. t suc. % expec. time

150
5 115 33 348.48
7 115 33 348.48
9 114 33 345.45

250
5 245 49 500.00
7 245 49 500.00
9 245 49 500.00

350
5 367 67 547.76
7 366 67 546.26
9 367 67 547.76

Table 3.6: Population size vs cost for Program synthesis (2-shared bit mutual exclu-
sion)

The success rates of around 20% may sound very low, but when we compare it with
the genetic programming synthesis work [KP08, KP09a] we can find that this is the
appropriate range for such techniques. Note that it is very simple to drive the success
rate up: one can decrease the cooling speed for simulated annealing and increase the
number of iterations for genetic programming, respectively.

However, this also increases the running time for individual full executions. A very
high success rate is therefore not the goal when devising these algorithms, but a low
expected overall running time. A 20% success rate is in a good region for achieving this
goal.

Table 3.7 shows the average running time for single executions in seconds, the success
rate in %, and the resulting overall running time.

Both simulated annealing and the hybrid approach significantly outperform the pure
genetic programming approach. The low success rate for pure genetic programming
suggests that the number of iterations might be too small. However, as the individual
execution time is already ways above the average time simulated annealing needs for
constructing a correct program, we did not increase the number of iterations.

The advantage in the individual execution time between the classic and the hybrid
version of genetic programming is in the range that is to be expected, as the number of
calls to the model checker is reduced.
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Figure 3.9: Average time required for synthesising a correct program
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Figure 3.10: Average running time of an individual execution
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Figure 3.11: success rate of individual executions

It is interesting to note that simulated annealing, where the shift from rigid to flexible
evaluation might be expected to have a similar effect, does not benefit to the same extent.
It is also interesting to note that the execution time suggests that determining the fitness
of programs produced by simulated annealing is slightly more expensive.

This was to be expected, as the average program length grows over time. The penalty
for longer programs reduces this effect, but cannot entirely remove it. (This potential
disadvantage is the reason why an occasional re-start provides better results than pro-
longing the search.)

The advantage in running of simulated annealing compared to the hybrid approach
reach from factor 4 to factor 10, and the comparison to pure genetic programming reach
from factor 35 to factor 76. It is interesting to note that both the pure and the hybrid
approach to genetic programming benefit from crossovers, but while the benefit for the
pure approach is significant, almost halving the average time for synthesising a program
in one case, the benefit for the superior hybrid approach is small.

3.9 Discussion

We have implemented an automated programming technique based on simulated anneal-
ing and genetic programming, both in the pure form of [Joh07] and the arguably hybrid
form of [KP08, KP09a]. The implementations from these papers were unavailable for
comparison, but this is, in our view, a plus:
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Table 3.7: Search Techniques Comparison

Search Technique t suc. % expec. time

2 shared bits
SA rigid 20 19 105.26

SA flexible 18 21 85.71
Hybrid w/o crossover 113 31 364.51
Hybrid with crossover 115 33 348.48
GP w/o crossover 583 7 8,328.57
GP with crossover 589 9 6,544.44

3 shared bits
SA rigid 23 23 100

SA flexible 20 22 90.9
Hybrid w/o crossover 171 17 1,005.88
Hybrid with crossover 175 19 921.05
GP w/o crossover 615 7 8,785.71
GP with crossover 620 9 6,888.88

3 nodes
SA rigid 84 19 442.1

SA flexible 81 20 405
Hybrid w/o crossover 418 15 2,786.66
Hybrid with crossover 421 16 2,631.25
GP w/o crossover 1120 3 37,333.33
GP with crossover 1123 6 18,716.66

4 nodes
SA rigid 145 17 852.94

SA flexible 138 18 766.66
Hybrid w/o crossover 536 11 4,872.72
Hybrid with crossover 541 14 3,864.28
GP w/o crossover 1311 3 43,700.00
GP with crossover 1314 5 26,280.00

The performance is naturally sensitive to the quality of the integration, the suitability
of the model checker used, and hidden details, like how the seed is chosen or details of
how the fitness is computed. The integrated comparison makes sure that all methods
are on equal footage in these regards.

The results are very clear and in line with the expectation we had drawn from the
literature [Dav87, LMST96, MS96]. When crossovers are not used, the main difference
between the established genetic programming techniques and simulated annealing is the
search strategy of using many and using a single instance, respectively. The data gathered
confirms that an increase of the number of iterations can easily overcompensate the
broader group of candidates kept in genetic programming.
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In our experiments, we have used an increase that fell short of creating the same ex-
pected running time for a single full execution (with or without success), and yet outper-
formed even the hybrid approach w.r.t. the success rate on three of our four benchmarks.

We have also added variations of genetic programming that include crossover to
validate the assumption that crossovers do not lead to an annihilation of the advantage,
but it proved that the hybrid approach, and thus the stronger competitor, does not
benefit much from using crossover.

The double advantage of shorter running time and higher success rate led to an
improvement of 1.5 to 2 orders of magnitude compared to pure genetic programming
(with and without crossover), and between half an order and one order of magnitude
when compared to the hybrid approach (with or without crossover).

The results from in this chapter indicate that simulated annealing is the better general
search technique to use. It will be interesting to see if that these factors are essentially
constant, or if they depend heavily on the circumstances.

Together with the later extensions, the evaluation with the tool indicates that there
are good temperature ranges. To developing the tool further will be an integration of
these results into the cooling schedule. One way to do this could, for example, be to chose
a temperature, where many improvements have clustered in the observed runs, or just to
progress more slowly through areas where this has been the case during the observed runs
in the past. Another possibility to use the observation that some temperatures provide
better results than others could be to re-heat a bit after observing an improved fitness,
or to staying in the temperature where this improvement was realised for a while.



Chapter 4

Discrete Controller Synthesis

This chapter is mainly based on the results from [HBS17]. In this chapter we formally
define the symbolic model and DCS problems, and detail the particular kind of solutions
we seek in Section 4.3.

We then turn to a description of the general search techniques that we investigate
in Section 4.5.1, and further detail how we adapted them for solving our symbolic DCS
problems in Section 4.6.

We detail our experiments of our simulated annealing algorithm in Sections 4.7. We
eventually summarise and discuss our results in Section 4.8.4.

4.1 Abstract

Several general search techniques such as genetic programming and simulated annealing
have recently been investigated for synthesising programs from specifications of desired
objective behaviours.

In this context, these techniques explore the space of all candidate programs by
performing local changes to candidates selected by means of a measure of their fitness
wrt the desired objectives. Previous performance results advocated the use of simulated
annealing over genetic programming for such problems.

In this chapter, we investigate the application of these techniques for the compu-
tation of deterministic strategies solving symbolic Discrete Controller Synthesis (DCS)
problems, where a model of the system to control is given along with desired objective
behaviours. We experimentally confirm that relative performance results are similar to
program synthesis.

4.2 Introduction

Discrete Controller Synthesis (DCS) and Program Synthesis not only share a common
noun, but also similar goals in that they are constructive methods for behaviours control.

45
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The former typically operates on the model of a plant, and seeks the automated
construction of a strategy so that the plant controlled accordingly fulfils a set of given
objectives [RW89, AMP95].

Likewise, program synthesis operates by using some predefined rules, such as the
grammar and semantics of the target programming language, and seeks the automated
construction of a program whose execution fulfils given objectives.

Apart from their numerous applications to manufacturing systems [RW89, ZD12,
KH91], DCS algorithms have also successfully been used to enforce deadlock avoidance
in multi-threaded programs [WLK+09], enforce fault-tolerance [GR09], or for global re-
source management in embedded systems [ACMR03, BMM13]. A closely related algo-
rithm was also applied by [RCK+09] for device driver synthesis.

Foundations of DCS and program synthesis are similar to principles of actually stem
from the same theoretical foundations. They can be seen as complementary to model
checking [CGP99, BCM+90], that determines whether a system satisfies a number of
specifications.

In that respect, traditional DCS algorithms are highly inspired by model checking
techniques.

Given a model of the plant, they first exhaustively compute an unsafe portion of
the state-space to avoid for the desired objectives to be satisfied, and a strategy is
then derived that avoids entering the unsafe region. A controller is built that alters
the behaviour of the plant according to this strategy so that it is guaranteed to always
behave as required.

Just as for model checking, symbolic approaches for solving DCS problems have been
successfully investigated [AMP95, CKN98, MBLL00, BM14].

4.2.1 General Search Techniques

[CJ01, HJJ03, Joh07, KP08, KP09a, KP09b], as well as [HS16] in previous work, explored
the use of general search techniques for program synthesis.

Instead of performing an exhaustive search, these techniques proceed by exploring
the search space in pursuit of a program satisfying the objectives.

Among these techniques are genetic programming [Koz92] and simulated anneal-
ing [CJ01, HJJ03].

When applied to program synthesis, both search techniques work by successively
mutating candidate programs that are deemed “good” by using some measure of their
fitness wrt the desired objectives (eg using a model checker to measure the share of
objectives satisfied by the candidate program, as done by [KP08, KP09a, KP09b] and
[HS16]).

The genetic programming algorithm maintains a population of candidate solutions
over a high number of iterations, generating new ones by mutating or mixing candidates
randomly selected based on their fitness.
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Simulated annealing on the other hand, produces one new candidate program per it-
eration, and does so by mutation only; the probability of survival of a candidate program
depends on both its fitness and a temperature parameter that monotonically decreases
from “hot” values favouring audacious mutations, to “cool” values preventing them. ac-
cording to a “cooling schedule” inspired by cooling in the physical world.

By investigating and comparing these search techniques for program synthesis using
their proof of concept implementation, [HS16] found that simulated annealing performs
significantly better than genetic programming for synthesising programs.

4.2.2 Contributions

We first define a symbolic model and an associated class of DCS problems, for which
deterministic strategies are sought. Next, we adapt the aforementioned search techniques
to obtain algorithmic solutions that avoid computing the unsafe portion of the state-
space.

Then, we confirm the hypotheses that:
(i) general search techniques are as applicable to solve our DCS problem as they

are for synthesising programs; and (ii) one obtains similar relative performance results
for our DCS problemexperimental results [HS16] for program synthesis, essentially that
simulated annealing performs better than genetic programming.

To assess these hypotheses, we adapt the six different combinations of candidate
selection and update mechanisms of our previous work [HS16], and execute them on a
scalable example DCS problem.

Perform an experimental feasibility assessment.
From the performance results we obtain, we draw the conclusion that, even though

for technical reasons our current experimental results do not compare favourably with
existing symbolic DCS tools, simulated annealing, when combined with efficient model
checking techniques, is worth further investigation to solve symbolic DCS problems.

4.3 Symbolic Model Checking & Controller Synthesis

4.3.1 Predicates

We denote by V = 〈v1, . . . , vn〉 a vector of Boolean variables (i.e., taking their values in
the domain B = {tt,ff}; DV = Bn is the domain of V .

V ∪W is the concatenation of two vectors of variables, defined iff they contain distinct
sets of variables (V ∩W = ∅).

A valuation v ∈ DV for each variable in V can be seen as the mapping v : V → DV .
We denote valuations accordingly: v = {v1 7→ ff...vn 7→ tt}.

Further, given an additional vector of variables W such that V ∩ W = ∅, and
corresponding valuations v ∈ DV and w ∈ DW , the union of v and w is (v, w) ∈ DV ∪W .
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PV denotes the set of all propositional predicates to as characteristic functions) over
variables in V , consisting of all formulae ϕ that can be generated according to the
following grammar:

ϕ ::= ff | tt | vi | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where vi ∈ V .
Let P ∈ PV be such a predicate, and v ∈ DV a valuation for variables in V .
V : V → DV )
Let v ∈ DV be a valuation for each variable in V , and P ∈ PV a predicate on V , we

denote by P (v) the
traditional evaluation of P after substituting every variable from V with its corre-

sponding value in v. For each V ∈ DV ,
One has:

• v 6|= ff and v |= tt;

• v |= vi iff v(vi), for vi ∈ V ;

• v |= ¬ϕ iff v 6|= ϕ;

• v |= ϕ ∨ ψ iff v |= ϕ or v |= ψ;

• v |= ϕ ∧ ψ iff v |= ϕ and v |= ψ.

(ϕ⇒ ϕ′ denotes the logical implication, equivalent to ¬ϕ ∨ ϕ′.)
Lastly, P (V)

def
= tt if V |= P , ff otherwise.

4.3.2 Symbolic Transition Systems

A Symbolic Transition System (STS) comprises a finite set of (internal and input) vari-
ables, and evolves at discrete points in time.

An update function indicates the new values for each internal variable according to
the current values of the internal and input variables. Each transition is guarded on the
system variables, and has an update function indicating the variable changes when a
transition is fired.

Definition 4.1 (Symbolic Transition System). A symbolic transition system is a tuple
S = 〈X, I, T,A, x0〉 where:

• X = 〈x1, . . . , xn〉 is a vector of state variables encoding the memory necessary for
describing the system’s behaviour;

• I = 〈i1, . . . , im〉 is a vector of input variables;

• T = 〈T1 : PX∪I , . . . , Tn : PX∪I〉 is the update function of S, and encodes the evo-
lution of all state variables based on n predicates involving variables in X ∪ I;
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• A ∈ PX∪I is a predicate encoding an assertion on the possible values of the inputs
depending on the current state;

• x0 ∈ DX is the initial valuation for the state variables.

• X0 ∈ PX is a predicate encoding the set of initial states.

We give an illustrative STS in Example 4.1 below.

Remark 4.2 (Parallel Composition). Consider given the set of STSs S1, . . . , SN , each
involving distinct sets of variables.

The system obtained by concatenating all their state vectors altogether, as well as
all their input vectors and update functions, combined with the conjunction of their
respective assertions Ai, and initial states x0

i , is an STS behaving as their synchronous
product S1‖ . . . ‖SN : i.e.,∥∥

i∈{1,...,N}Si
def
=
〈⋃

Xi,
⋃
Ii,
⋃
Ti,
∧
Ai, (x

0
1, . . . , x

0
N )
〉
.

Semantics To each STS, one can make correspond a Finite State Machine (FSM):

Definition 4.3 (Finite State Machine corresponding to an STS). Given an STS S =

〈X, I, T,A, x0〉, we make correspond an FSM [S] = 〈X , I, T ,A, x0〉 where:

• X = DX is the state space of [S];

• I = DI is the input alphabet of [S];

• T : X × I → X = λ(x, ι). (Tj(x, ι))j∈{1,...,n} ;

• A ⊆ X × I = {(x, ι) ∈ X × I | (x, ι) |= A} ;

• x0 is the initial state of [S].

The behaviour of an FSM [S] is as follows:
Assuming that [S] is in a state x ∈ X . Then, upon the reception of an input ι ∈ I

such that (x, ι) ∈ A (i.e., ι is an admissible valuation for all variables of I in state x),
[S] evolves to the state x′ = T (x, ι).

Let (x0, ι0) · (x1, ι1) · (x2, ι2) · · · be an infinite sequence of states and inputs of [S]

starting from a given state x0 ∈ X , that can be constructed according to the preceding
rule (∀j ∈ N, xj+1 = T (xj , ιj) and (xj , ιj) ∈ A). Suff [S]

(
x0
)
denotes the set of all

such sequences, and XSuff [S]
(
x0
)
is the sequences of states that are obtained from

Suff [S]
(
x0
)
by removing the input component of each tuple of the sequences.

Further, Suff [S] (x) is the set of all suffixes of execution traces reaching a state x ∈ X ;
i.e., x · y0 · y1 · · · ∈ Suff [S] (x) iff ∃x0 · x1 · x · y0 · y1 · · · ∈ XTrace[S]. every sequence
π = x0 ·x1 · · · ∈ XTrace[S] such that ∃i ∈ N, (x = xi) and x0 · · ·xi ·xi+1 · · · ∈)∧(x = xi).

All execution traces of [S] start in the initial state x0, and XTrace[S]
def
= XSuff [S]

(
x0
)

denotes all such sequences of states.
Further, the set of all execution paths of [S] is the set of all suffixes of any execution

trace of [S]: XPath[S]
def
= {πs | ∃πp, πp · πs ∈ XTrace[S]}.
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¬s

Figure 4.1: STS STask (Example 4.1) as a guarded automaton.

Example 4.1 (Task STS). Let us now give a small illustrative example STS modelling
a two-state task. We build upon this example throughout this chapter.

We model the behaviour of the system under consideration, called “Task”, using the
STS, where X = 〈ξ〉, I = 〈r, s, c〉, T = 〈(¬ξ∧r∧c)∨(ξ∧¬s)〉, A = tt, and x0 = {ξ 7→ ff}.
The example represents a monitor in which r means run, s means stop, and c means
control. An automaton representation of Task is given in Figure 4.1, where the Idle
(resp. Active) location represents states where ξ = ff (resp. ξ = tt).

With successive inputs ι0 = {r 7→ tt, s 7→ ff, c 7→ ff}, and ι1 = {r 7→ tt, s 7→ ff, c 7→ tt},
one obtains a prefix of execution traces {ξ 7→ ff} · {ξ 7→ ff} · {ξ 7→ tt} · · · belonging to
XTrace[STask].

4.3.3 Model Checking STSs

Model checking [CGP99, BCM+90] is a technique used to determine whether a system
satisfies a number of specifications. A model-checker takes two inputs.

The first one of them, the specification, is a description of the temporal behaviour a
correct system shall display, given in a temporal logic.

The second input, the model, is a description of the dynamics of the system that
the user wants to assess, be it a computer program, a communications protocol, a state
machine, a circuit diagram, etc.

Model-checkers usually use symbolic representations of the model to decide efficiently
if it satisfies the specification.

Typical symbolic representations for predicates involve Binary Decision Diagrams
(BDDs) [Bry86], because they yield good time and memory performance in practice.

BDDs also enjoy an often useful canonicity property, as all functionally equivalent
predicates lead to a unique diagram.

Standard temporal logics used for model checking are Linear-time Temporal Logic
(LTL) [Pnu77] and Computation Tree Logic (CTL) [CGP99].

As we focus on the latter, we now define CTL in terms of STSs.

CTL w.r.t. STSs Consider given an STS S = 〈X, I, T,A, x0〉, and its corresponding
FSM [S] with X = DX . The syntax of a CTL formula φ relating to S is defined as

φ ::= ϕ | ¬φ | φ ∨ φ | Aψ | Eψ

ψ ::= Xφ | φUφ | Gφ
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where ϕ ∈ PX .
For each CTL formula φ, we denote the length of φ by |φ|.
For each x ∈ X , we have (state formulae):

• x |= ϕ, for ϕ ∈ PX (cf. Section 4.3.1);

• x |= ¬φ iff x 6|= φ;

• x |= φ ∨ φ′ iff x |= φ or x |= φ′;

• x |= Aψ iff ∀π ∈ XSuff [S] (x) , π |= ψ;

• x |= Eψ iff ∃π ∈ XSuff [S] (x) , π |= ψ.

Let π = x0 · x1 · x2 · · · ∈ XPath[S] be an (infinite) execution path of S. We have
(trace formulae):

• π |= Xφ iff x1 |= φ;

• π |= φUφ′ iff ∃i ∈ N, xi |= φ′ and ∀j < i, xj |= φ;

• π |= Gφ iff ∀i ∈ N, xi |= φ.

Note that φ and φ′ here are state formulae. (The shortcut Fφ denotes the “finally”
construct, equivalent to ttUφ.)

[S] is a model of φ iff x0 |= φ; if [S] is a model of φ, then we write [S] |= φ.

4.4 Symbolic Discrete Controller Synthesis

The theoretical framework for Discrete Controller Synthesis (DCS) algorithms was first
introduced in [RW89] in a language-theoretic setting. The general goal of DCS algorithms
is, given a system to be controlled S and a control objective φ, to obtain a controller that
alters the behaviour of S so that it fulfils φ.

In terms of the STSs as defined above, DCS algorithms involve partitioning the
input space (i.e., the vector of input variables I) into non-controllable U and controllable
inputs C. In practice, the former set typically corresponds to measures performed on
the controlled system (aka plant), whereas the latter provides means for the controller
to influence the behaviours of the model (and thereby on the controlled system itself).

A control objective can typically be expressed in the form of a CTL formula. A
desired invariant for S, for instance, can be expressed as a CTL property of the form
AGϕ, for some ϕ ∈ PX .
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4.4.1 Principles of Traditional DCS Algorithms

The traditional approach for solving DCS problems is inspired by classical model checking
algorithms: as follows:

(i) a portion of the state-space Fφ ⊆ X that must be avoided for the desired con-
trol objective φ to hold whatever the valuations of the non-controllable inputs is first
computed; then,

(ii) a strategy σφ ⊆ X × I is derived that avoids entering Fφ;
(iii) the resulting controller operates according to σφ.
The synthesis fails if initial states belong to the forbidden area, i.e., Fφ ∩ X0 6= ∅.
The synthesis fails if, starting from the initial state, there does not exist a strategy

that avoids Fφ; in other words, it fails if the initial state belongs to the forbidden area
of the state-space, i.e., x0 ∈ Fφ.

4.4.2 Symbolic DCS

Symbolic DCS algorithms targeting various models were investigated, by [AMP95, CKN98]
for instance.

Regarding models close to STSs, symbolic DCS algorithms and tools were devel-
oped by [MS00, MBLL00], and later extended by [BM14] to deal with logico-numerical
(infinite-state) systems, involving variables defined on numerical domains.

These algorithms operate on STSs (possibly extended with variables defined on nu-
merical domains), with predicates represented using BDDs. They model checking ap-
proaches: they are based on a fixpoint computation of a symbolic representation of Fφ,
the portions of the state-space Fφ ⊆ X that must be avoided for the desired control
objective to hold, and the strategy σφ takes the form of a predicate Kφ restricting the
admissible values of the controllable input variables w.r.t. the values of the state and
non-controllable input ones; i.e., Kφ ∈ PX∪I .

Then, given valuations for all state and non-controllable input variables, values for
all controllable inputs are chosen so that Kφ is satisfied.

The STS resulting from these algorithms is then One requirement regarding STSs is
that K must be at least as restrictive as A, i.e., ∀(x, i) ∈ DX×DI , (x, i) |= K ⇒ (x, i) |=
A.

Example 4.2 (Controlling STask). Building up on the STS STask introduced in Exam-
ple 4.1, we consider that the input variable c is actually a controllable input variable: it is
a lever given to the controller to be synthesised, to prevent the modelled task from entering
the Active state if this behaviour may lead to a violation of desired control objectives.

The resulting STS we use for DCS is then S′Task = 〈X,U]C, T,A, x0〉, with U = 〈r, s〉
and C = 〈c〉.

Consider for instance the control objective expressed as the CTL formula φ = AG((¬s)∨
X¬ξ) expressing that S′Task should not enter the Active state while non-controllable input
s holds.
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This objective can be manually attained by following the strategy represented by the
predicate Kφ = (¬ξ ∧ s ∧ r ⇒ ¬c).

Given now first non-controllable inputs u0 = {r 7→ tt, s 7→ tt}, according to the strat-
egy Kφ we must choose c0 = {c 7→ ff} as values for the controllable inputs (as c0 is the
only valuation for C s.t (x0, u0, c0) |= Kφ, and c0′ = {c 7→ tt} would lead to a violation
of φ). The controlled system S′Task can then evolve into state x1 = {ξ 7→ ff} (staying in
Idle).

With further inputs u1 = {r 7→ tt, s 7→ ff}, we can either choose c1 = {c 7→ ff} or
c1′ = {c 7→ tt}, that both fulfil the strategy Kφ and respectively lead to state x2 = {ξ 7→ ff}
and x2′ = {ξ 7→ tt}.

4.4.3 Controlled Execution of STSs

As exemplified above, σφ might be non-deterministic, and its symbolic representation
Kφ describes a relation: σφ is a subset of X × I.

Given a state x ∈ X and a valuation for all non-controllable inputs u ∈ DU , the set
of all valuations {c ∈ DC | (x, u, c) |= Kφ} might not be a singleton.

Therefore, traditional DCS algorithms require further processing steps to eventually
produce a deterministic, executable controlled system.

Two approaches exist to this end:
(i) using an on-line solver to randomly pick values c ∈ DC for the variables in C,

given values for non-controllable inputs u ∈ DU and state x ∈ X , s.t (x, u, c) |= Kφ

holds (as we did manually in Example 4.2); or (ii) translating the predicate Kφ into
a function assigning values for each controllable variable based on values for state and
non-controllable input variables.

In the remainder of this chapter, to obtain deterministic, easily implementable con-
trolled STSs, we seek algorithms that give results similar to those obtained after applying
the translation of on solving symbolic DCS problems combined with the translation of
option (ii).

4.4.4 Obtaining a Deterministic Controlled STS

Option (ii) above amounts to refining the non-deterministic strategy σφ into a determin-
istic strategy σ′φ.

Note that this translation may have an impact on the kind of control objectives that
can effectively be enforced using the traditional DCS algorithms (that operate by com-
puting Fφ), as this determinisation procedure implicitly entails “removing” transitions
from σφ. Notably, the resulting predicates highly depend on both the order of variable
eliminations, and their default values.

A triangulation technique similar to the one described by [HRL08] may be used to
translate Kφ into a set of assignments.
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This translation operates by using successive variable substitutions and partial eval-
uations of Kφ. It requires ordering (prioritising) the controllable input variables, and as-
signing “default” values for them, or introducing additional non-controllable input “phan-
tom” variables (i.e. preferable constant inputs).

Essentially, the symbolic representation for σ′φ obtained by triangulation for an STS
S = 〈X,U ] C, T,A, x0〉, with C = 〈c1, . . . , ck〉, is a vector Γφ of k predicates giving
values for each controllable variable of the system based on state and non-controllable
inputs only, i.e.,

Γφ = 〈γ1 : PX∪U , . . . , γk : PX∪U 〉. (4.1)

Every occurrence of a controllable variable in the update function T can then be
substituted with its corresponding assignments in Γφ, thereby providing a Deterministic
Controlled STS (DCSTS), denoted S/Γφ , satisfying the desired objective (i.e., [S/Γφ ] |= φ).

Example 4.3 (Deterministic Controller for S′Task). Consider again the controller ob-
tained in Example 4.2. A triangulation of Kφ with default value tt for c gives Γc?tt

φ =

〈(ξ ∨ ¬r ∨ ¬s)〉. The alternative choice for the default value for c leads to Γc?ff
φ = 〈(ff)〉,

always assigning the value ff to c (and incidentally prevents S′Task from ever reaching the
Active state).

The resulting DCSTS in the first case is S′Task/Γc?tt
φ

= 〈X,U, T [C/Γc?tt
φ ], A, x0〉 where

T [C/Γc?tt
φ ] = 〈(¬ξ ∧ r ∧ (ξ ∨ ¬r ∨ ¬s)) ∨ (ξ ∧ ¬s)〉

= 〈(¬ξ ∧ r ∧ ¬s) ∨ (ξ ∧ ¬s)〉.

Note that the triangulation has an impact on the kind of control objectives that can
effectively be enforced using traditional DCS algorithms (that operate by computing Fφ),
as this determinisation procedure implicitly entails “removing” transitions from σφ.

This translation is also computationally expensive when performed on BDDs, and
may incur a non-negligible increase in the number of nodes involved to represent the
resulting functions. The controller in this work is memory free.

4.5 Contribution w.r.t. Symbolic DCS

Our contribution is an original algorithm for the construction of correct DCSTSs solving
symbolic DCS problems when multiple control objectives are desired: given an STS S
and a set ω of desired control objectives specified using CTL formulae over variables of
S, its goal is to construct a deterministic strategy σ′ω so that S controlled according to
σ′ω fulfils every objective belonging to ω.

Accordingly, the resulting deterministic strategy shall take the form of a vector of
predicates over state and non-controllable input variables of S (as in Equation (4.1)),
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and the goal of our algorithm is to find a “good” solution Γω so that ∀φ ∈ ω, [S/Γω ] |= φ.
To this end, we rely on:

(i) general search techniques to amongst explore the set of all potential deterministic
strategies; (ii) well-established model checking techniques for assessing the fitness of such
potential solutions.

4.5.1 General Search Techniques

The contribution we investigate two general search techniques, namely simulated anneal-
ing and genetic programming, and derive a hybrid one. We present these techniques,
and turn to their application in combination with model checking to find deterministic
strategies in the following Section.

In the search of deterministic controllers solving symbolic DCS problems for the
construction of correct DCSTSs solving symbolic DCS problems. Let us now elaborate
on the each of them search techniques we shall experiment with.

Simulated annealing [CJ01, HJJ03, HS16] is a general local search technique that is
able to escape from local optima.

Algorithm 2: Simulated Annealing for Discrete Controller Synthesis
i := 0
randomly generate a first candidate c
repeat
i := i+ 1
derive a new candidate c′ of c
∆F := F (c′)− F (c)
if ∆F >= 0 then
c := c′

else
derive random number p ∈ [0, 1]

if p < e
∆F
θi then

c := c′

end if
end if

until the goal is reached or i = imax

The algorithm, described in Algorithm 2, is easy to implement and has good conver-
gence properties.

When applied to an optimisation problem, the fitness function (objective) generates
values for the quality of the solution constructed in each iteration.

The fitness of this newly selected solution is then compared with the fitness of the
solution from the previous round.

Improved solutions are always accepted, while some of the other solutions are ac-
cepted in the hope of escaping local optima in search of global optima.

The probability of accepting solutions with reduced fitness depends on a temperature
parameter, which is typically falling monotonically with each iteration of the algorithm.
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Simulated annealing starts with an initial, randomly generated, candidate solution.
In each iteration, a neighbouring candidate x′ is generated by mutating the previous
candidate x.

Let, for the ith iteration, F (x) be the fitness of the “old” solution and F (x′) the fitness
of its mutation newly constructed.

If the fitness is not decreased (F (x′) > F (x)), then the mutated solution x′ is kept.
If the fitness is decreased (F (x′) < F (x)), then the probability p that this mutated

solution is kept is

p = e
F (x′)−F (x)

θi

where θi is the temperature parameter for the ith step. The chance of changing to a
mutation with smaller fitness is therefore reduced with an increasing gap in the fitness,
but also with a falling temperature parameter.

The temperature parameter is positive and usually non-increasing (0 < θi 6 θi−1).
The development of the sequence θi is referred to as the cooling schedule and inspired

by cooling in the physical world [HJJ03].
The effect of cooling on the simulation of annealing is that the probability of following

an unfavorable move is reduced. In practice, the temperature is often decreased in stages.
The cooling schedule is given as a set of parameters that determines how the tem-

perature is reduced in each iteration (i.e., the initial temperature, the stopping criterion,
the temperature decrements between successive stages, and the number of transitions for
each temperature value).

For our investigations, we have used a simple cooling schedule, where the temperature
is dropped by a constant in each iteration.

4.5.2 Random Generation of Candidates

Genetic programming has already been used for program synthesis in [Joh07, KP08,
KP09a, KP09b], and [HS16]. In genetic programming, a population of λ candidate
solutions (in our case, deterministic strategies) is first randomly generated.

Then at each iteration, a small share of the population consisting of µ candidates,
with µ � λ, is selected based on its fitness; usually, a random function that makes it
more likely for fitter candidate solutions to be selected for spawning the next generation
is applied.

The selected candidates are then mated using some crossover operation to make up
a population of λ, and mutations are applied to a high share of the resulting candidates
(e.g., on all duplicates). Mutations of selected candidates are used to obtain λ candidates
at the end of each iteration. Crossovers are optional.

To randomly initialise the population of strategies, we need to generate vectors of
as many trees as controllable variables in C. We use the “grow” method suggested by
[Koz92] in order to build each tree; the method starts from the root, and potential
children nodes are generated until the maximum depth of the tree is reached.
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Algorithm 3: growmaxdepth (depth)

if depth < maxdepth then
node ← random ({∨,∧,¬, tt,ff} ∪X ∪ U)
for each children child required for node do

node.child ← growmaxdepth (depth + 1)
end for

else
node ← random ({tt,ff} ∪X ∪ U)

end if
return node

growmaxdepth (depth) is shown as a recursive function in Algorithm 3, generating trees
of maximum depth maxdepth. It takes the depth of the current node to be generated as
argumentpredicate represented by the tree can be expressed. Initially depth=0.

If depth is less than the maximum tree depth, a node is chosen randomly from the
set of terminals and binary operators. Then, depending on whether the node to generate
is a terminal (leaf) or internal node, as many recursive calls as needed are performed to
create the required number of children for the node.

If depth equals the maximum tree depth, then a node is chosen from the set of
terminals.

k) calls to grow1X∪U shall then be used to generate one candidate deterministic
strategy Γ.

Apart from simulated annealing and pure genetic programming with and without
crossovers as presented above, we additionally investigate a hybrid form introducing a
property known from simulated annealing into the genetic programming algorithm: by
appropriately tuning the measures of fitness, changes are applied more flexibly in the
beginning, while evolution becomes more rigid over time.

This hybrid approach has already been used for program synthesis in [KP08, KP09a?
] as well as [HS16].

In our case, it basically consists in changing the candidate selection technique over
time, by first establishing the safety properties only, and then the liveness properties.

Just as for the genetic programming technique, crossovers are optional for this hybrid
approach as well.

4.6 Principles of our DCS Algorithms

In this Section, we assume given an STS S = 〈X,U,C, T,A, x0〉 to be controlled, with
C = 〈c1, . . . , ck〉, and a set of desired objective CTL formulae ω = {φ1, . . . , φw}.

4.6.1 Representing Deterministic Strategies

Recall that the candidate deterministic strategies are vectors of predicates involving
state and non-controllable variables (cf. Section 4.5), and such candidates are subject to
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mutations (and possibly crossovers) for genetic programming and simulated annealing
algorithms to be applicable. Therefore, one needs to find a suitable representation for
such vectors of predicates.

Usual symbolic representations for predicates involve Binary Decision Diagrams (BDDs) [Bry86],
for they yield good time and memory performance in practice. BDDs also enjoy an often
useful canonicity property, as every functionally equivalent predicates lead to a unique
BDD.

Usual symbolic representations for predicates involve BDDs (cf. Section 4.3.3). Yet,
implementing efficient random generation, mutations, and crossovers on such diagrams
appears to be challenging, and more importantly, unnecessary w.r.t. the purpose of this
chapter whose goal is only to perform a our goal of performing a preliminary feasibility
assessment for the use of general search techniques to solve symbolic DCS problems. The
canonicity of candidates is not required by the algorithms we investigate either.

Therefore, we have opted for the simpler solution of using trees built according to
the grammar of predicates introduced in Section 4.3.1:

• each leaf is labelled with either a variable belonging to X ∪ U , or a constant in
{tt,ff};

• each node with one children is labelled with ¬;

• each node with two children is labelled with a binary operator ∨ or ∧.

In the end, we represent candidate deterministic strategies as fixed-sized vectors
Γ = 〈γi〉i∈{1,...,k} of k trees γi as defined above, one per controllable variable in C.

Predicate consist of two parts, first a predicate P describes a relation or property,
and variables (x, y) can take arbitrary values from some domain,P still have two truth
values for statements (TandF ), When we assign values to x and y, then P has a truth
value. This can be easily reprehend as a binary tree, in which mutations can be applied
in a simple way the using BDDs.

4.6.2 Performing Mutations and Crossovers

Mutations are changes applied on each candidate deterministic strategy Γ. Recall that
the latter are represented as vectors of predicates involving state and non-controllable
variables (cf. Section 4.5). Such changes can be applied using a random walk on one
tree of Γ as follows:

1. Randomly select a predicate γ to be changed in Γ;

2. Perform a random walk on γ from its root, randomly choosing to stop or visit one of
its children nodes (picked with uniform probability);

3. Perform a random walk on γ from its root, randomly choosing to stop or visit one of
its children nodes (picked with probabilities weighted by the number descendants);
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Figure 4.2: Candidate predicate (left) with one node mutation (right)
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Figure 4.3: Candidate predicate (left) with sub-tree mutation (right)

4. Apply the one change applicable from the following:

• When on a node n labelled with a binary operator ∨ or ∧, replace it with a
different binary operator or insert a negation node ¬ with child n;

• When on a node labelled with a unary operator ¬, remove it;

• When on a leaf l, insert a negation node ¬ with child l, or replace l with a
randomly generated sub-tree built by using growmaxdepth (1); the latter case is
illustrated in Figure 4.3 and Figure 4.2.

The principle for performing the crossover between two candidates Γ1 = 〈γ1,i〉i∈{1,...,k}
and Γ2 = 〈γ2,i〉i∈{1,...,k} consists in selecting and index j ∈ {1, . . . , k} (i.e., a controllable
variable), and swapping two randomly selected sub-trees t1 from γ1,j and t2 from γ2,j .

As each predicate involved is defined on the same set of variables (X∪U), a proper mix
of the two candidates is always produced. We show in Figure 4.4 an example crossover
between two trees.
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Figure 4.4: Crossover: two parents (above) and two offspring (below)

4.6.3 Model checking as a Fitness Function

We use model checking to determine the fitness of a candidate deterministic strategy in
a way similar to that of [KP08, KP09a, KP09b] and [HS16] for program synthesis using
genetic programming.

The model checking results are used to derive a quantitative measure for the fitness
(as a level of partial correctness) of a deterministic strategy Γ w.r.t. the objectives ω.

To design a fitness measure for candidates, we make the hypothesis that the share of
objectives that are satisfied so far by a candidate is a good indication of its pertinence.

We additionally observe that candidate solutions that satisfy weaker objectives—that
can be mechanically derived from those belonging to ω—may be good candidates worth
selecting for the generation of further potential solutions.For example, if a property shall
hold on all paths (i.e., CTL formula of the form Aψ) , it is better if it holds on some
paths, and yet better if it holds almost surely.

Taking these observations into account, we first automatically translate the objectives
with up to two universal path quantifiers occurring positively into weaker objectives:

• A first set of weaker objectives ω′ is obtained by selecting every objective from ω

featuring universal path quantifiers (i.e., Aψ), and replacing
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• Repeating this process once again on eligible objectives of ω′ gives ω′′.

(We shall give example partial objectives as built by the above procedure in Sec-
tion 4.7.1 below.)

Then, given a candidate deterministic strategy Γ and a set of objectives ω, a model
checking algorithm is used to check whether [S/Γ] |= φ, for each objective φ in ω∪ω′∪ω′′

The fitness of Γ is computed based on the number of objectives of each set ω, ω′ and
ω′′ that it satisfies: m points are assigned per objective of ω that is satisfied, m′ points
(with m′ < m) per objective of ω′, and m′′ points (with m′′ < m′) per objective of ω′′.

We offer an automated translation of properties with up to two universal quantifiers
that occur positively. 100 points are assigned when the sub-specification is satisfied, 80

points if the specification is satisfied when replacing one universal path quantifier by an
existential path quantifier, and 10 points are assigned if the specification is satisfied after
replacing both universal path quantifiers by existential ones. (Existential quantifiers that
occur negatively are treated accordingly.) Examples of this automated translation are
shown in Chapter 3. Eventually, the main part of the fitness is the average of the values
for all considered objectives ω in the rigid evaluation, and the average of all liveness
objectives ωl in the flexible evaluation.

Following the works of [KP08] and [HS16], we also apply a penalty for “large” strate-
gies by deducing the number of inner nodes of all trees from this average when assigning
the fitness of a candidate strategy.

Let us denote Fω (Γ) the fitness value obtained as described above for the candidate
Γ and objectives ω.

4.6.4 Variants for Improved Search Techniques

To derive improved variants of the general search algorithms of Section 4.5.1, we note
that a subset ωs of given target objectives ω are safety ones, while the others ωl (= ω\ωs)
are considered liveness objectives1.

At each iteration of the simulated annealing algorithm, the first decision to select a
new candidate Γ′ over an old one Γ (condition ∆F < 0 in Algorithm 2) is taken according
to one of two distinct policies, giving two versions of the simulated annealing algorithm:

rigid Γ′ is selected at this stage whenever Fω (Γ′) > Fω (Γ);

flexible Γ′ is selected at this stage whenever Fω (Γ′) > Fω (Γ) or Fωs (Γ′) > Fωs (Γ); Γ′

is always discarded when Fωs (Γ′) < Fωs (Γ).

The resulting fitness value will be used by simulated annealing to compare the current
candidate with the previous one when using rigid evaluation, and to make a decision
whether the changes will be preserved or discarded.

1One can use a simple syntactical criterion for deciding that an objective surely belongs to ωs; e.g.,
some safety CTL formulae can be rewritten as AGϕ with ϕ ∈ PX .
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When using flexible evaluation, this only happens if the value for the safety spec-
ification is equal; falling (resp. rising) values for safety specifications always result in
discarding (resp. selecting) the update when using flexible evaluation.

Our implementation of the hybrid algorithm presented in Chapter 2 basically consists
in tuning the evaluation of fitness to first favour safety objectives: in this algorithm,
the fitness Fω (Γ) of a candidate Γ is actually made of the pair (Fωs (Γ) , Fωl (Γ)), and
comparisons of such fitness measures are performed according to their lexical ordering.

This way, candidates with better values for the safety objectives ωs are always given
preference, while the fitness computed using liveness objectives ωl only are merely tie-
breakers for equal values of Fωs (Γ).

selection technique over time. It first evaluates the fitness of each candidate Γ using
safety objectives only (Fωs (Γ)). Then, over a second phase, it continues by taking all
objectives ω into account to measure the fitness (Fω (Γ)).

properties, and then the liveness properties. Specifications with better values for the
safety properties are always given preference, while liveness properties are—for equal
values for the safety properties—used to determine the fitness. i.e., they are merely
tie-breakers.

This approach has been used in [HS16] as well as [KP08, KP09a, KP09b]. We refer
to it as a hybrid approach as it introduces a property known from simulated annealing:
in the beginning, the algorithm is applying changes more flexibly, while it becomes more
rigid later.

crossover, and used both evaluation techniques for simulated annealing, where we
refer to using the classic fitness function as a rigid evaluation, and to the hybrid approach
as flexible evaluation.

In the end, we investigate and compare six algorithms involving various search tech-
niques:

1. pure genetic programming without crossovers (GP); and
2. with crossovers (GP w. CO);
3. rigid simulated annealing (SA rigid);
4. flexible simulated annealing (SA flexible);
5. hybrid search without crossovers (Hybrid); and
6. with crossovers (Hybrid w. CO).

4.7 Experimental Feasibility Assessment

4.7.1 Problem Instances

In order to get a preliminary feasibility assessment of our approach, we have generated
several problem instances based on the parallel composition of STSs as per Remark 4.2.
Synthesis objectives were then derived as CTL formulae in a scalable manner.

Regarding the STSs, each problem N–Tasks was built using composition of N in-
stances of the STS S′Task described in Example 4.2 (modulo renaming of variables to
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ensure disjointness); i.e., the STSs involved were built as

SN–Tasks =
∥∥
i∈{1,...,N}〈Xi, Ui ] Ci, Ti, Ai, x0

i 〉,

where Xi = 〈ξi〉, U = 〈ri, si〉, Ci = 〈ci〉, Ti = 〈(¬ξi ∧ ri ∧ ci) ∨ (ξi ∧ si)〉, Ai = tt, and
x0
i = {ξi 7→ ff}.
Objective CTL formulae for each problem N–Tasks consist of both safety ωs,N and

liveness ωl,N objectives.
Regarding safety, mutual exclusion properties suit our need for scalable, CTL formu-

lae that are relatively complex to represent: i.e., no two tasks should be in their Active
state (with ξi = tt) at the same time.

For each problem instance N–Tasks, one obtains:

ωs,N =

AG
 ∧
i∈{1,...,N−1}

 ∧
j∈{i+1,...,N}

¬ (ξi ∧ ξj)

 ,

with notable special case ωs,1 = ∅. As a concrete illustration, one obtains ωs,2 =

{AG(¬(ξ1 ∧ ξ2))}.
Regarding liveness objectives ωl,N , we want to ensure that every task in its Idle state

should eventually reach its Active state. Formally, one obtains:

ωl,N =
⋃

i∈{1,...,N}

{AG (¬ξi ⇒ AFξi)}.

AG(¬ξ1 ⇒ AFξ1)

AG(¬ξ2 ⇒ AFξ2)

Those two are the liveness properties (any task on idle state will definitely be on the
active state in the future)

In the end, solving each problem N–Tasks consists in finding a deterministic strategy
ΓωN so that ∀φ ∈ ωN , [SN–Tasks/ΓωN ] |= φ, with ωN = ωs,N ∪ ωl,N .

Partial Objectives The partial objectives automatically generated from the ωs,N ’s
and ωl,N ’s above, according to the procedure explained in Section 4.6.3, are:

ω′s,N =

EG
 ∧
i∈{1,...,N−1}

 ∧
j∈{i+1,...,N}

¬ (ξi ∧ ξj)

 ,

and ω′′s,N = ∅.
Informally, partial objectives in ω′s,N state that there exists execution paths where

the mutual exclusion property is met.
On the other hand, the ωl,N ’s lead to:
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ω′l,N =
⋃

i∈{1,...,N}

{AG (¬ξi ⇒ EFξi) , EG (¬ξi ⇒ AFξi)},

and
ω′′l,N =

⋃
i∈{1,...,N}

{EG (¬ξi ⇒ EFξi)}.

4.7.2 Experimental Setup

We have implemented the simulated annealing, and genetic programming, and hybrid
algorithms as described, using NuSMV [CCG+02] as a solver to derive the fitness of
candidate deterministic strategies.

For simulated annealing, we have set the initial temperature to 20,000. The cooling
schedule decreases the temperature by 0.8 in each iteration. Thus, the schedule ends
after 25,000 iterations, when the temperature hits 0. In a failed execution, this leads to
determining the fitness of 25,001 candidates.

We have taken the values suggested in [KP08] and [HS16] for genetic programming:
λ = 150 candidates are considered in each step, µ = 5 are kept, and we abort after
2,000 iterations. In a failed execution, this leads to determining the fitness of 290,150
candidates.

Points assigned for fitness measures are arbitrarily set to m = 100 for target objec-
tives, and m′ = 80 and m′′ = 10 for partial objectives Those evaluation numbers are
given to weight the candidates and distinguish among three levels of them according to
the satisfaction of the specifications. This means that it is possible to take another values
(eg. 20, 60, and 100) the most important thing is keep the difference among them clear
(cf. Section 4.6.3).

The experiments have been conducted using a machine with an Intel core i7 3.40
GHz CPU and 16GB RAM.

4.7.3 Experimental Results

2The results are shown in Figures 4.5 and 4.7 and summarised in Table 4.1. Figure 4.5
shows the average time needed for synthesising a correct candidates.

The two factors that determine the average running time are the success rate and
the running time for a full execution, successful or not.

These values are shown in Figure 4.7. Table 4.1 shows the average running time for
single executions in seconds, the success rate in %, and the resulting overall running
time.

2In all tables, execution times are in seconds; t is the mean execution time of single executions
(succeeding or failing), and columns “expec. time” extrapolate t based on the success rate obtained in
100 single executions (“suc. %”).
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Figure 4.5: Overall time required for synthesising a correct candidate
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Figure 4.6: Average running time of an individual execution
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Figure 4.7: Success rate of individual executions

The best values (shortest expected running time or highest success rate) for each
comparison printed in bold. Both simulated annealing and the hybrid approach signif-
icantly outperform the pure genetic programming approach. The low success rate for
pure genetic programming suggests that the number of iterations might be too small.

However, as the individual execution time is already ways above the average time
simulated annealing needs for constructing a correct candidate, we did not increase the
number of iterations.

The advantage in the individual execution time between the classic and the hybrid
version of genetic programming is in the range that is to be expected, as the number of
calls to the model-checker is reduced. It is interesting to note that simulated annealing,
where the shift from rigid to flexible evaluation might be expected to have a similar
effect, does not benefit to the same extent.

It is also interesting to note that the execution time suggests that determining the
fitness of candidates produced by simulated annealing is slightly more expensive. This
was to be expected, as the average candidate size grows over time.

The penalty for longer candidates reduces this effect, but cannot entirely remove it.
(This potential disadvantage is the reason why an occasional re-start provides better
results than prolonging the search.)

As was the case in our previous work [HS16], it is interesting to note that both the
pure and the hybrid approach to genetic programming benefit from crossovers.
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Table 4.1: Search Techniques Comparison

Search Tech. t suc. % expec. time

1–Task

SA rigid 18 13 138.46
SA flexible 17 16 106.25
Hybrid 91 17 535.29
Hybrid w. CO 94 20 470.00
GP 378 3 12,600.00
GP w. CO 385 5 7,700.00

2–Tasks

SA rigid 24 10 240.00
SA flexible 22 13 169.23
Hybrid 132 13 1,015.38
Hybrid w. CO 138 15 920.00
GP 463 3 15,433.33
GP w. CO 484 4 12,100.00

3–Tasks

SA rigid 31 9 344.44
SA flexible 28 10 280.00
Hybrid 197 9 2,188.88
Hybrid w. CO 201 11 1,827.27
GP 572 2 28,600.00
GP w. CO 589 4 14,725.00

4–Tasks

SA rigid 45 9 500.00
SA flexible 43 9 477.77
Hybrid 289 10 2,890.00
Hybrid w. CO 296 12 2,466.66
GP 641 2 32,050.00
GP w. CO 664 4 16,600.00

5–Tasks

SA rigid 72 8 900.00
SA flexible 68 9 755.55
Hybrid 436 8 5,450.00
Hybrid w. CO 445 11 4,045.45
GP 764 2 38,200.00
GP w. CO 787 3 26,233.33

6–Tasks

SA rigid 115 7 1,642.85
SA flexible 104 7 1,485.71
Hybrid 650 8 8,125.00
Hybrid w. CO 673 10 6,730.00
GP 935 2 46,750.00
GP w. CO 972 3 32,400.00

Lastly, observe that in absolute terms, the expected execution times that we obtain
for all our general search-based algorithms are several orders of magnitude higher than
that obtained on similar examples when using a traditional symbolic DCS tool such as
ReaX [BM14] (that is also able to enforce some restricted class of liveness objectives,
when the controller is not triangulated). We discuss this aspect and its implications
further in Section 4.8.4.

4.8 Parameters Setting

4.8.1 Crossover Ratio

We have studied the effect of changing the share between crossover and mutation in ge-
netic programming.We considered a range from a 0% to 60% share of crossovers. Country
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to our expectation, we did not observe any relevant effect of in- or decreasing the share
of cross over for either classic or hybrid genetic programming. Interestingly, the run-
ning time per instance increased with the share of crossovers, which might point to a
production of more complex programs. See Tables 4.2 and 4.3.

ratio % t suc. % expec. time

1 Task
0 378 4 9450
20 385 5 7700
40 403 5 8060
60 418 4 10450
80 425 3 14166.67
100 438 1 43800

2 Tasks
0 475 3 15833.33
20 484 4 12100
40 491 4 12275
60 501 3 16700
80 509 2 25450
100 521 1 52100

3 Tasks
0 571 3 19033.33
20 589 4 14725
40 597 3 19900
60 606 3 20200
80 613 1 61300
100 627 1 62700

4 Tasks
0 658 3 21933.33
20 664 4 16600
40 679 4 16975
60 687 3 22900
80 693 2 34650
100 711 1 71100

5 Tasks
0 776 1 77600
20 787 3 26233.33
40 792 3 26400
60 799 2 39950
80 804 2 40200
100 815 1 81500

6 Tasks
0 961 2 48050
20 972 3 32400
40 981 2 49050
60 989 2 49450
80 997 2 49850
100 1011 1 101100

Table 4.2: Crossover ratio for GP (Discrete Controller Synthesis)
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ratio % t suc. % expec. time

1 Task
0 89 17 523.52
20 94 20 470
40 101 19 531.57
60 109 19 573.68
80 116 12 966.66
100 124 5 2480

2 Tasks
0 127 13 976.92
20 138 15 920
40 146 15 973.33
60 158 13 1215.38
80 169 11 1536.36
100 181 4 4525

3 Tasks
0 189 9 2100
20 201 11 1827.27
40 209 11 1900
60 217 8 2712.5
80 225 7 3214.28
100 239 3 7966.66

4 Tasks
0 288 9 3200
20 296 12 2466.66
40 303 11 2754.54
60 313 10 3130
80 321 8 4012.5
100 333 4 8325

5 Tasks
0 438 7 6257.14
20 445 11 4045.45
40 451 8 5637.5
60 459 7 6557.14
80 467 5 9340
100 479 2 23950

6 Tasks
0 659 6 10983.33
20 673 10 6730
40 679 10 6790
60 695 7 9928.57
80 703 4 17575
100 718 2 35900

Table 4.3: Crossover ratio for Hybrid (Discrete Controller Synthesis)

4.8.2 Temperature

Besides serving as a synthesis tool, the tool provides the user with the ability to com-
pare the different generic search techniques. In [HS16] and [HBS17], we have used our
technique to generate correct solutions for mutual exclusion, leader election and dis-
crete controllers, the results show that simulated annealing is much (1.5 to 2 orders of
magnitude) faster than genetic programming.
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GP w/o crossover
population size slctd cand. t suc. % expec. time

150
5 463 3 15433.33
7 463 3 15433.33
9 464 3 15466.67

250
5 943 5 18860.00
7 943 5 18860.00
9 943 5 18860.00

350
5 1517 9 16855.56
7 1517 9 16855.56
9 1518 9 16866.67

GP with crossover
population size slctd cand. t suc. % expec. time

150
5 484 4 12100.00
7 485 4 12125.00
9 485 4 12125.00

250
5 969 7 13842.86
7 969 7 13842.86
9 969 7 13842.86

350
5 1557 10 15570.00
7 1557 10 15570.00
9 1557 10 15570.00

Table 4.4: Population size vs cost for GP (Discrete Controller synthesis 2-Tasks)

In order to test if the hypothesis from [Con90] that simulated annealing does most
of its work during the middle stages—while being in a good temperature range—holds
for our application, we have developed the tool to allow for ‘cooling schedules’ that do
not cool at all, but use a constant temperature. In order to be comparable to the default
strategy, we use up to 25, 001 iterations in each attempt.

We have run 100 attempts to create a correct candidates using different constant
temperatures, with the success rates, average running times per iteration, and inferred
expected overall running times shown in Table 4.7 and 4.6.

The findings support the hypothesis that some temperatures are much better suited
than others: low temperatures provide a very small chance of succeeding, and the chances
also go down at the high temperature end.

While the values for low temperatures are broadly what we had expected, the high
end performed better than we had thought.

This might be because some small guidance is maintained even for infinite tempera-
ture, as a change that is decreasing the fitness is taken with an (almost) 50% chance in
this case, while increases are always selected.

The figures, however, are much worse than the figures for the good temperature range
of 10, 000 to 16, 000.

The best results have been obtained at a temperature of 10, 000, with an expected
time of 68 and 71 seconds for two and three shared bits, respectively.
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Hybrid w/o crossover
population size slctd cand. t suc. % expec. time

150
5 132 13 1015.38
7 132 13 1015.38
9 131 13 1007.69

250
5 241 18 1338.88
7 241 18 1338.88
9 242 18 1344.44

350
5 403 24 1679.16
7 403 24 1679.16
9 403 24 1679.16

Hybrid with crossover
population size slctd cand. t suc. % expec. time

150
5 138 15 920.00
7 139 15 926.66
9 139 14 992.85

250
5 218 19 1147.36
7 218 19 1147.36
9 218 19 1147.36

350
5 340 24 1416.66
7 340 24 1416.66
9 340 24 1416.66

Table 4.5: Population size vs cost for Hybrid (Discrete Controller synthesis 2-Tasks)

Notably, these results are better than the running time for the cooling schedule that
uses a linear decline in the temperature. Starting at 20, 000 and terminating at 0, it has
the same average temperature.

In the light of the results from the second experiment, it seems likely that the last
third of the improvement cycles in this schooling schedule had little avail.

4.8.3 Initial Population vs Cost

One of the important parameters of genetic programming is the initial population size
using our synthesis tool. In order to investigate how the population size effect on our
synthesis approach and check the cost of the large size, we initiate the population size
to different sizes see Tables 4.4 and 4.5. We found that increasing the size of the initial
population increase the cost of finding a good solution dramatically as shown on Figure
4.8.

Broadly speaking, increasing the population size reduces the number of iterations
and increase the success rate, but it also increase the computation time each iteration
required. We have compared the effect of varying the population size.

4.8.4 Discussion

Inspired by our previous investigations for program synthesis using general search tech-
niques [HS16], and in an effort to inquire further applications of such techniques, we have
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const temp t suc. % expec. time

1-Task
0.7 163 0 ∞
400 93 0 ∞
4000 54 7 771.42
7000 39 12 325
10000 18 19 94.73
13000 22 20 110
16000 29 19 152.63
20000 37 17 217.64
25000 43 15 286.66
30000 49 15 326.66
40000 53 13 407.69
50000 59 12 491.66
100000 72 11 654.54

2-Task
0.7 177 0 ∞
400 99 0 ∞
4000 58 6 966.66
7000 47 9 522.22
10000 29 14 207.14
13000 33 15 220
16000 39 13 300
20000 47 11 427.27
25000 56 10 560
30000 67 10 670
40000 75 9 833.33
50000 82 7 1171.42
100000 94 7 1342.85

3-Task
0.7 192 0 ∞
400 163 0 ∞
4000 88 6 1466.66
7000 45 9 500
10000 26 11 236.36
13000 31 11 281.81
16000 37 10 370
20000 42 10 420
25000 47 9 522.22
30000 56 8 700.00
40000 63 9 700.00
50000 79 7 1128.57
100000 98 7 1400.00

Table 4.6: Comparison for search temperature for Discrete Controller synthesis

defined a class of DCS problems where deterministic strategies are sought.
We adapted our algorithms to seek solutions for these problems, and conducted an

experimental evaluation using a scalable instance of a DCS problem.
Results proved to be consistent with our assumption that the relative performance

of the algorithms would match our previous results for program synthesis.
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const temp t suc. % expec. time

4-Task
0.7 332 0 ∞
400 167 0 ∞
4000 98 3 3266.66
7000 65 6 1083.33
10000 39 9 433.33
13000 43 11 390.90
16000 58 9 644.44
20000 67 9 744.44
25000 81 7 1157.14
30000 89 6 1483.33
40000 95 6 1583.33
50000 103 5 2060
100000 118 4 2950

5-Task
0.7 298 0 ∞
400 153 0 ∞
4000 98 4 2450
7000 79 6 1316.66
10000 61 9 677.77
13000 67 10 670
16000 73 8 912.5
20000 81 6 1350
25000 89 6 1483.33
30000 102 4 2550
40000 116 3 3866.66
50000 128 4 3200
100000 178 3 5933.33

6-Task
0.7 613 0 ∞
400 598 0 ∞
4000 278 3 9266.66
7000 125 5 2500
10000 99 8 1237.5
13000 115 9 1277.77
16000 127 9 1411.11
20000 134 7 1914.28
25000 152 6 2533.33
30000 159 6 2650
40000 168 6 2800
50000 192 5 3840
100000 253 6325

Table 4.7: Comparison for search temperature for Discrete Controller

As noted in Section 4.7, our experimental results do not compare favourably with
existing symbolic DCS tools.

Yet, our implementations are proofs of concept, and one can think of numerous
practical improvements that constitute inescapable ways to pursue investigating efficient
symbolic DCS algorithms using simulated annealing
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Figure 4.8: Temperature Range for Controller Synthesis

For instance, canonically representing symbolic candidate strategies using BDDs in-
stead of syntactic trees would allow building a cache of fitness results, and thereby avoid
re-evaluating the fitness of equivalent candidate strategies.

Similarly, implementing the algorithms in a symbolic model-checker could permit to
avoid the very costly—and often performance bottleneck in case of model-checkers using
BDDs—reconstruction of symbolic representations at every iteration of the algorithms.

At last, note that our search based algorithms do not require the computation of
the unsafe region to produce deterministic strategies. Hence, considering the current
advances in model checking technologies, our algorithms might constitute ways to solve
DCS problems on some classes of infinite-state systems for which the unsafe region cannot
be computed.
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Figure 4.9: Initial Population Size vs Cost for Discrete Controller synthesis





Chapter 5

Complexity

5.1 Introduction

Discrete Controller Synthesis (DCS) and Program Synthesis have a similar theoretical
background: they are produce a control strategy and an implementation automatically,
and also correct by construction.

The main differences between these two classes of problems, that DCS typically
operates on the model of a plant. It seeks the automated construction of a strategy to
control the plant, such that its runs satisfy a set of given objectives [RW89, AMP95].

Similarly, program synthesis seeks to infer an implementation, often of a reactive
system, such that the runs of this system satisfy a given specification. While the main
argument supporting this technique is practical, it is interesting to consider the com-
plexity of this approach, too. For the estimation of the complexity, we look at recurrent
application of simulated annealing, as, from the figures from the previous Section, this
seems to be the most promising approach.

Also, applying the procedure repeatedly is fairly normal, as not 100% of the attempts
lead to a deterministic strategy that satisfies all required objectives.

For our complexity consideration, we consider cooling schedules that change slowly.
The reason for this is that the search space for a given cooling schedule is finite,

as only a finite set of deterministic strategies can be constructed with a fixed cooling
schedule.

We naturally can only refer to probabilistic complexity here:
it is always possible to only consider two neighbouring candidate strategies during all

runs (this is the case when candidate two is always selected as a mutation of candidate
one and, vice versa, candidate one is always chosen as a mutation of candidate two),
even when re-starting infinitely often.

This chapter provides a summary of the complexity analysis of the approach used in
this thesis. The rest of this section is organised as follows:

5.2.1 presents the complexity analysis of the program synthesis approach. Section
5.2.2 provides a summary he complexity analysis of the discrete controller synthesis
approach.
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5.2 Complexity Analysis

5.2.1 Program Synthesis

Theorem 5.1. Let s be the length of the specification and m the minimal size of the
correct program. We show that there is a recurrent cooling schedule such that, with very
high probability,

• the space required is the space required for model checking programs of length O(m)

against specifications of length s and

• the time requirement is mO(m) times the time required for model checking programs
of length O(m) against specifications of length s.

With very high probability means that, for all p < 1, one gets a result with probability
greater than p in the mentioned time and space class. Note that this refers to the same
cooling schedule.

As a preparation for the proof of Theorem 5.2, we estimate the chance of producing
a correct program in exactly m steps by a particular derivation of the program tree. The
chance is the product of the m transitions being made.

An individual transition can be described as the product of the chance that it is
selected by the mutation algorithm and the chance that the algorithm continues with
the mutated form.

The chance of selecting a particular position for the mutation is Ω1
i in the ith step,

and the chance of attempting a particular mutation when this position is selected is a
constant. (For the argument, it suffices that it is at least 1

O(poly(m)) .)
If the chance is bounded from below by a constant – or even by a polynomial
1

O(poly(m)) , then the chance is bounded from below by 1
O(m)! .

For a given number n of steps (e.g., n = m if we have an oracle that tells us the size
of the program we are looking for), it is easy to construct a cooling schedule with this
property: any cooling schedule that keeps the temperature sufficiently high for at least
n steps.

To avoid an unduly high time or space consumption of one iteration, the cooling
after this should proceed quickly, such that the overall number of mutation attempts
considered, nattempts, is in O(n).

As we would normally not know a suitable n ≥ m, we suggest to adjust the cooling
schedule over time by increasing it slowly: in the ith iteration, we could use, for some
constant c ∈ N, the cooling scheme for ni = c + max{k ∈ N | k! ≤ i}. Let us choose
c = 0 for the proof.

of Theorem 5.1. For ni < m, we estimate the chance of creating a correct program with
0. Note that nm! ≥ m. The time and space consumption of each of these steps can be
estimated by the cost of model checking a program of size mattempts ∈ O(m) against a
specification of size s. There are less than m! of these attempts.
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For ni ≥ m, the chance of creating a correct program is at least 1
O(m)! . To create

a program with an arbitrary (but fixed) chance of at least p ∈ [0, 1[ therefore requires
O(m)! such steps.

The time and space consumption of each these steps can be estimated by the cost of
model checking a program of size O(m) against a specification of size s.

Note that this technique does not qualify as a decision procedure, as it cannot provide
a negative answer. (What it can be used to provide is an answer that, for a given m ∈ N
and p ∈ [0, 1[ there is no program of size at most m with a chance of at least p.)

Note further that the proof does not refer to a particular specification language. For
space requirements, the complexity is, for relevant languages like LTL or CTL, as good
as one can hope.

With regard to time complexity, the complexity of synthesis is exponential for CTL
and doubly exponential for LTL. If the expected time complexity of this algorithm is
higher depends on the question of whether or not PSPACE equals EXPTIME [FPS15].

5.2.2 Discrete Controller Synthesis

For the estimation of the complexity, we look at recurrent application of simulated anneal-
ing, as, from the figures from the previous Section, this seems to be the most promising
approach.

Also, applying the procedure repeatedly is fairly normal, as not 100% of the attempts
lead to a deterministic strategy that satisfies all required objectives.

For our complexity consideration, we consider cooling schedules that change slowly.
The reason for this is that the search space for a given cooling schedule is finite,

as only a finite set of deterministic strategies can be constructed with a fixed cooling
schedule.

We naturally can only refer to probabilistic complexity here:
it is always possible to only consider two neighbouring candidate strategies during all

runs (this is the case when candidate two is always selected as a mutation of candidate
one and, vice versa, candidate one is always chosen as a mutation of candidate two),
even when re-starting infinitely often.

Theorem 5.2. Let s be the length of the specification (some of the lengths of the target
objectives in ω) and m the minimal size of the correct deterministic strategy. We show
that there is a recurrent cooling schedule such that, with very high probability,

• the space required is the space required for model-checking STSs of length O(m)

against specifications of length s and

• the time requirement is mO(m) times the time required for model-checking STSs of
length O(m) against specifications of length s.
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With very high probability means that, for all p < 1, one gets a result with probability
greater than p in the mentioned time and space class. Note that this refers to the same
cooling schedule.

As a preparation for the proof of Theorem 5.2, we estimate the chance of producing
a correct strategy in exactly m steps by a particular derivation of the corresponding
predicate trees. The chance is the product of the m transitions being made.

An individual transition can be described as the product of the chance that it is
selected by the mutation algorithm and the chance that the algorithm continues with
the mutated form.

The chance of selecting a particular position for the mutation is Ω
(

1
i

)
in the ith step—

this lower bound stems from taking the weight of subtrees into account in the random
walk, which can be used to select all nodes with equal probability—and the chance of
attempting a particular mutation when this position is selected is a constant.

(For the argument, it suffices that it is at least 1
O(poly(m)) .) If the chance is bounded

from below by a constant – or even by a polynomial 1
O(poly(m)) , then the chance is bounded

from below by 1
O(m)! .

For a given number n of steps (e.g., n = m if we have an oracle that tells us the size
of the predicate trees we are looking for), it is easy to construct a cooling schedule with
this property: any cooling schedule that keeps the temperature sufficiently high for at
least n steps.

To avoid an unduly high time or space consumption of one iteration, the cooling
after this should proceed quickly, such that the overall number of mutation attempts
considered, nattempts, is in O(n).

As we would normally not know a suitable n ≥ m, we suggest to adjust the cooling
schedule over time by increasing it slowly: in the ith iteration, we could use, for some
constant c ∈ N, the cooling scheme for ni = c + max{k ∈ N | k! ≤ i}. Let us choose
c = 0 for the proof.

Proof of Theorem 5.2. For ni < m, we estimate the chance of creating a correct strategy
with 0. Note that nm! ≥ m.

The time and space consumption of each of these steps can be estimated by the cost
of model-checking a strategy represented by predicate trees of size mattempts ∈ O(m)

against a specification of size s.
There are less than m! of these attempts.
For ni ≥ m, the chance of creating a correct strategy is at least 1

O(m)! .
To create a strategy with an arbitrary (but fixed) chance of at least p ∈ [0, 1] therefore

requires O(m)! such steps. The time and space consumption of each of these steps can
be estimated by the cost of model-checking a strategy represented by predicate trees of
size O(m) against a specification of size s.
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Note that this technique does not qualify as a decision procedure, as it cannot provide
a negative answer. (What it can be used to provide is an answer that, for a given m ∈ N
and p ∈ [0, 1[ there is no strategy of size at most m with a chance of at least p.)

Note further that the proof does not refer to a particular specification language.
For space requirements, the complexity is, for relevant languages like LTL or CTL,

as good as one can hope.
With regard to time complexity, the complexity of synthesis is exponential for CTL

and doubly exponential for LTL.
If the expected time complexity of this algorithm is higher depends on the question

of whether or not PSPACE equals EXPTIME [FPS15].





Chapter 6

Implementation

6.1 Abstract

PranCS [HSB17] is a tool for protocol and control synthesis. It is based on exploiting
general search techniques, simulated annealing and genetic programming, that use model
checking for the fitness function. Based on this fitness, simulated annealing and genetic
programming is used as a general search technique for homing in on an implementation.
We use NuSMV as a back-end for the individual model checking tasks and a simple
candidate mutator to drive the search.

Our Proctocol and Control Synthesis (PranCS) tool is designed to exploring the
parameter space of different synthesis techniques. Besides using it to synthesise a discrete
control strategy for systems on chips and for protocol adapters for the coordination of
different threads, it also allows for researching the influence turning various screws in the
synthesis process.

For simulated annealing, it PranCS allows the user to define the behaviour of the
cooling schedule, and the population size for genetic programming can be selected by the
user. Additionally, PranCS offers different automated techniques for the inference of to
quantify partial compliance with a specification and to infer the fitness of a candidate
implementation based on this partial compliance.

PranCS also allows for choosing small random seeds as well as user defined seeds to
allow the user to define a starting point for the search, e.g. for candidate repair.

In this Chapter we summarize the synthesis tool structure, use and the capabilities
that enables the user to select the parameters and set the tools initial values. An in-
troduction for the chapter will be on Section 6.2, an overview of the tool Section 6.3,
exploring of the parameter space on Section 6.4, and conclusion on Section 6.5.

6.2 Introduction

Discrete Controller Synthesis (DCS) and Program Synthesis have similar goals: they are
automated techniques to infer a control strategy and an implementation, respectively,
that is correct by construction.
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There are mild differences between these two classes of problems. DCS typically
operates on the model of a plant. It seeks the automated construction of a strategy to
control the plant, such that its runs satisfy a set of given objectives [RW89, AMP95].

Similarly, program synthesis seeks to infer an implementation, often of a reactive sys-
tem, such that the runs of this system satisfy a given specification. Program synthesis is
particularly attractive for the construction of protocols that govern the intricate interplay
between different threads; we use mutual exclusion and leader election as examples.

DCS algorithms have been used to avoid deadlock in multi-threaded programs [WLK+09],
for resource management correction in embedded systems [ACMR03, BMM13], and to
enforce fault-tolerance [GR09]. A closely related algorithm was also applied for device
driver synthesis [RCK+09].

DCS and program synthesis depend on a concept similar to principles of model-
checking [CGP99, BCM+90]. Model-checking refers to automated techniques that de-
termines whether or not a system satisfies a number of properties. Traditional DCS
algorithms are inspired by this approach. Given a model of the plant, they first exhaus-
tively compute an unsafe portion of the state-space to avoid for the desired objectives to
be satisfied, and then derive a strategy that avoids entering the unsafe region.

Finally, a controller is built that restricts the behaviour of the plant according to
this strategy, so that it is guaranteed to always comply with its specification. Just as for
model-checking, symbolic approaches for solving DCS problems have been successfully
investigated [AMP95, CKN98, MBLL00, BM14].

Techniques based on genetic programming [CJ01, HJJ03, Joh07, KP08, KP09a, HS16,
HBS17], as well as on simulated annealing [HS16, HBS17], have been tried for program
synthesis. Instead of performing an exhaustive search, these techniques proceed by us-
ing a measure of the fitness—reflecting the question ‘How close am I to satisfying the
specification? ’—to find a short path towards a solution.

Among the generic search techniques that look promising for this approach, we focus
on genetic programming [Koz92] and simulated annealing [CJ01, HJJ03]. When applied
to program synthesis, both search techniques work by successively mutating candidate
programs that are deemed ‘good’ by using some measure of their fitness.

We obtain their fitness for meeting the desired objectives by using a model-checker to
measure the share of objectives that are satisfied by the candidate program, cf. [KP08,
KP09a, HS16, HBS17].

Simulated annealing keeps one candidate solution. In a sequence of iterations, it
mutates the current candidate and compares the fitness of the old and new candidate. If
the fitness increases, the new candidate is always maintained. If it decreases, a random
process decides if the new candidate replaces the old one in the next iteration.

The chances of the new candidate to replace the old one then decrease with the gap
in the fitness and increase with the temperature. Thus, a lower temperature makes the
system ‘stiffer’. Genetic programming maintains a population of candidate programs over
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Figure 6.1: PranCS Structure

a number of iterations, generating new ones by mutating or mixing candidates randomly
selected based on their fitness.

We describe the tool PranCS, which implements the simulated annealing based ap-
proach proposed in [HS16, HBS17] as well as approaches based on similar genetic pro-
gramming from [KP08] and [KP09a]. PranCS uses quantitative measures for partial
compliance with a specification, which serve as a measure for the fitness (or: quality) of
a candidate solution.

Furthering on the comparison of simulated annealing with genetic programming [HS16,
HBS17], we extend the quest for the best general search technique by: (i) looking for
good cooling schedules for simulated annealing; and (ii) investigating the impact of the
population size for genetic programming.

6.3 Overview of PranCS

PranCS implements several generic search algorithms that can be used for solving DCS
problems as well as for synthesising programs.

6.3.1 Representing Candidates

The representation of candidates depends on the kind of problems to solve. Candidate
programs are represented as abstract syntax trees according to the grammar of the sought
implementation. They feature conditional and iteration statements, assignments to one
variable taken among a given set, and expressions involving such variables. Candidates
for DCS only involve a series of assignments to a given subset of Boolean variables
involved in the system (called “controllables”).
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6.3.2 Structure of PranCS

The structure of PranCS is shown in Figure 6.1. Via the user interface, the user can
select a search technique, and enter the problem to solve along with values for relevant
parameters of the selected algorithm. For program synthesis, the user enters the number,
size, and type of variables that candidate implementations may use, and whether thay
may involve complex conditional statements (“if” and “while” statements). DCS problems
are manually entered as a series of assignments to state variables involving expressions
expressed on state and input variables; the user also lists the subset of input variables
that are “controllable”. In both cases, the user also provides the specification as a list of
objectives.

1. Generator

The Generator uses the parameters provided to either generate new candidates or
to update them when required during the search.

The parameters are sent to the Generator, which generates new candidate according
to the given parameters, using a ’grow’ method [Koz92], in which the candidate
tree is built starting from the root.

It takes the depth of the current node to be generated as argument. If the depth
is less than the maximum tree depth, a node is chosen randomly from the set of
terminals and binary operators. If the depth equals the maximum tree depth, then
a node is chosen from the set of terminals (leafs).

The candidates take the form of a vector of predicates over state and non-controllable
input variables of symbolic transition system, and the goal to find a good candidate
that satisfied the specifications.

2. Translator & NuSMV

We use NuSMV [CCG+02] as a model-checker. Every candidate is translated into
the modelling language of NuSMV using a method suggested in [CJ01]. (We give
some details about this translation in Chapter 1.

In this translation, the candidate is converted into very simple statements (similar
to assembly language). To simplify the translation, the lines of the algorithm are
first labelled, and this label is then used as a pointer that represents the program
counter (PC). From this intermediate language, the NuSMV model is then built
by creating (case) and (next) statements that use the PC.

The resulting model is then model-checked against the desired properties. The
result forms the basis of a fitness function for the selected search technique.

3. Fitness Measure
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The model checking results form the basis of a fitness function for the selected
search technique. To design a fitness measure for candidates, we make the hypoth-
esis that the share of objectives that are satisfied so far by a candidate is a good
indication of its suitability w.r.t. the desired specification.

We additionally observe that weaker properties that can be mechanically derived
are useful to identify good candidates worth selecting for the generation of further
potential solutions. For example, if a property shall hold on all paths, it is better
if it holds on some path, and even better if it holds almost surely.

4. Search Technique

Based on the model checking results, we derive a quantitative measure for the fitness
(as a level of partial correctness) of a candidate. The fitness measure obtained for
a candidate is used as a fitness function for the selected search technique. If a
candidate is evaluated as correct, we return (and display) it to the user.

Otherwise, depending on the search technique selected and the old and new fitness
measure/s, the current candidate or population is updated, and one or more candi-
dates are sent for change to the Generator. The process is re-started if no solution
has been found in a predefined number of steps (genetic programming) or when
the cooling schedule expires (simulated annealing).

6.3.3 Selecting and Tuning Search Techniques

In terms of search techniques, PranCS implements the following methods: genetic pro-
gramming, and simulated annealing. [KP09a] extends genetic programming by consider-
ing the fitness as a pair of ‘safety-fitness’ and ‘liveness-fitness’, where the latter is only
used for equal values of ‘safety-fitness’. Building upon this idea, we define two flavours
for both simulated annealing and genetic programming: rigid (where the classic fitness
function is used) and safety-first, which uses the two-step fitness approach as above.

Further, genetic programming can be used with or without crossovers between can-
didates [HS16, HBS17].

Depending on the selected search technique, the tool allows the user to input param-
eters that control the dynamics of the synthesis process.

These parameters determine the likelihood of finding a correct program in each iter-
ation and the expected running time for each iteration, and thus heavily influence the
overall search speed. For the genetic programming approach, the parameters include the
population size, the number of selected candidates, the number of iterations, and the
crossover ratio. For simulated annealing, the user chooses the initial temperature and
the cooling schedule.

Figure 6.2 shows the graphical user interface of PranCS.
The input specification should be a list of NuSMV specifications. The tool will

produce weaker specifications for the purpose of producing a fitness measure.



Chapter 6. Implementation 88

Figure 6.2: Graphical User Interface. PranCS allows the user to fine-tune each search
technique by means of dedicated parameters.

Finally, the user defines the signature of the candidate by selecting input variables
that are used to build the candidate that the user want to synthesise.

The model checker NuSMV is used for the individual model checking tasks. If the
candidate satisfied all required properties, then the synthesiser returns it as a correct
candidate. Otherwise, it will compare the fitness of the current candidate/s with the
(stored) fitness value of the candidate/s it is derived from by mutation.

(This is the currently stored candidate or population.) The selection of the candidate
/ population to be kept is determined by the selected generic search technique. For
simulated annealing, if the fitness is lower, then the tool will update the stored candidate
with the probability defined by the loss in fitness and the current temperature taken from
the cooling schedule.

If the fitness is not lower, the tool will always replaces the stored candidate by the
mutated one. When the end of the cooling schedule is reached, the tool aborts.

6.3.4 Parameters for Simulated Annealing

In simulated annealing (SA), the intuition is that, at the beginning of the search phase,
the temperature is high, and it cools down as time goes by. The higher the temperature,
the higher is the likelihood that a new candidate solution with inferior fitness replaces
the previous solution.

While this allows for escaping local minima, it can also happen that the candidates
develop into an undesirable direction. For this reason, simulated annealing does not
continue for ever, but is re-started at the end of the cooling schedule.
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Consequently, there is a sweet-spot in just how long a cooling schedule should be and
when it becomes preferable to re-start, but this sweet-spot is difficult to find. We report
our experiments with PranCS for tuning the cooling schedule in Section 6.4.

6.3.5 Parameters for Genetic Programming

For genetic programming (GP), the parameters are the initial population size, the crossover
vs mutation ratio, and the fitness measure used to select the individuals. The population
size affects the algorithm in two ways: larger populations could provide better diversity.
However, it also increases the number of iterations required to find a good solution. We
investigate how the population size and crossover ratio affect the performance of these
algorithms.

6.4 Exploration of the Parameter Space

In [HS16], we have used our techniques to generate correct solutions for mutual exclu-
sion and leader election problems; we have then exercised the same techniques to solve
scalable DCS problems [HBS17]. In both cases, and with parameter values borrowed
from [KP09a, KP08], we could already accelerate synthesis significantly using simulated
annealing compared to genetic programming (by 1.5 to 2 orders of magnitude).

In this work, our aim is to further explore the performance impact of the parameters
for each search technique. We thus reuse the same scalable benchmarks as in [HS16,
HBS17]1: program synthesis problems consist of mutual exclusion (“2/3 shared bits”)
and leader election (“3/4 nodes”); DCS problems compute controllers enforcing mutual
exclusions and progress between 1 to 6 tasks modelled as automata (“1/6-Tasks”).

6.4.1 Exploring Population Size & Crossover Ratio

We have carried out several experiments in order to investigate how the population size
and crossover ratio effect our synthesis approach when using genetic programming, with
varying population sizes; details of our results are presented in Chapter 3 and Chapter 4.
Although results indicate that some crossover ratio that is good in general may exist, the
negative impact of small population sizes on success rates can in practice be mitigated
by the faster execution times.

We found that the initial population size dramatically increases the overall expected
time for finding a good solution.

Continuing on our investigations of the parameters, the "best" initial population size
and crossover ratio are fixed and a new measure for the fitness applied.

1In all tables, execution times are in seconds; t is the mean execution time of single executions
(succeeding or failing), and columns “expec. time” extrapolate t based on the success rate obtained in
100 single executions (“suc. %”).
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Search Tech. t suc. % expec. time
1-Task Rigid SA 20 13 153

Safety-first SA 19 16 118

2-Tasks Rigid SA 25 10 250
Safety-first SA 24 13 184

3-Tasks Rigid SA 33 9 366
Safety-first SA 29 10 290

4-Tasks Rigid SA 47 9 522
Safety-first SA 43 9 477

5-Tasks Rigid SA 76 8 950
Safety-first SA 70 9 777

6-Tasks Rigid SA 119 7 1,700
Safety-first SA 106 7 1,514

Table 6.1: Synthesis times with the best parameters observed for Simulated Annealing
applied to our DCS benchmarks

|P | slctd cand. t suc. % expec. time

150
5 138 15 920
7 139 15 926
9 139 14 992

250
5 218 19 1147
7 218 19 1147
9 218 19 1147

350
5 340 24 1416
7 340 24 1416
9 340 24 1416

Table 6.2: On the left: Safety-first GP with crossover for DCS (2-Tasks only), with
Various Population Sizes (|P |).

6.4.2 Exploring Cooling Schedules

We have studied good temperature ranges by keeping the temperature constant during
a “cooling” schedule with 25,000 steps. We give the results of these experiments in
Chapter 3 and Chapter 4. A robust temperature sweet-spot clearly exists for our scalable
benchmarks, suggesting that the quest for robust and generic good cooling schedules is
worth pursuing.

Adaptive cooling schedule enables the decrease of the temperature to be low when
reach a good temperature otherwise it decremented normally. We have set the initial
temperature to 20, 000. The cooling schedule decreases the temperature by 0.8 in each
iteration in the normal movement and decrease it by 0.2 in the good temperature,

6.5 Conclusion

The results from [HS16, HBS17] already turn in favour of simulated annealing over the
other general search technique we have studied.

These results shown on Table 6.2 (given in % and seconds, respectively, with the
best values in bold) indicate that using simulated annealing with an adaptive cooling
schedule slightly increase the single execution time and also overall time. We use a
scalable example of DCS problem from [HBS17] each problem N-Tasks was built using
N instances.
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Together with our extensive exploration of the parameter space, the evaluation of
PranCS indicates that simulated annealing is faster that genetic programming (we re-
port some synthesis times with the best parameters observed for simulated annealing in
Table 6.2), and that some temperature ranges are more useful than others.

In order to integrate this result into the cooling schedule we plan to use an adaptive
cooling schedule, in which the decrements of the temperature depends on the improve-
ment of the fitness.





Chapter 7

Conclusion

This chapter provides a summary of the research work described in this thesis, the main
findings together with the contributions. The rest of this section is organised as follows:
Section 7.1 provides a summary of the work presented while Section 7.2 presents the
main findings in the context of the research question and research motivations identified
in Chapter 1.

7.1 Summery

We have implemented an automated programming technique based on simulated an-
nealing and genetic programming, both in the pure form of and the arguably hybrid
form.

The results are very clear and in line with the expectation we had drawn from the
literature [Dav87, LMST96, MS96]. When crossovers are not used, the main difference
between the established genetic programming techniques and simulated annealing is the
search strategy of using many and using a single instance, respectively. The data gathered
confirms that an increase of the number of iterations can easily overcompensate the
broader group of candidates kept in genetic programming. In our experiments, we have
used an increase that fell short of creating the same expected running time for a single
full execution (with or without success), and yet outperformed even the hybrid approach
w.r.t. the success rate on three of our four benchmarks. We have also added variations of
genetic programming that include crossover to validate the assumption that crossovers do
not lead to an annihilation of the advantage, but it proved that the hybrid approach, and
thus the stronger competitor, does not benefit much from using crossover. The double
advantage of shorter running time and higher success rate led to an improvement of
1.5 to 2 orders of magnitude compared to pure genetic programming (with and without
crossover), and between half an order and one order of magnitude when compared to the
hybrid approach (with or without crossover).

The results from [HS16] indicate that simulated annealing is the better general search
technique to use. It will be interesting to see if these factors are essentially constant, or
if they depend heavily on the circumstances. Together with the later extensions, the tool
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evaluation indicates that there are good temperature ranges. Inspired by our previous
investigations for program synthesis using general search techniques [HS16], and in an
effort to inquire further applications of such techniques, we have defined a class of DCS
problems where deterministic strategies are sought. We adapted our algorithms to seek
solutions for these problems, and conducted an experimental evaluation using a scalable
instance of a DCS problem. Results proved to be consistent with our assumption that
the relative performance of the algorithms would match our previous results for program
synthesis.

7.2 Main Findings and Contributions

This section presents the main findings from the research work presented in this thesis.
In order to answer the research question from Section 1.3, the resolution of a number of
subsidiary research questions was required. The work described in the thesis addresses
each of these research questions as follows:

• General Search Technique: What is the best search technique that can be used
for program synthesis? Is genetic programming, simulated annealing, or a hybrid
of them better? can we implement them in another way as hybrid methods?

We use a formal verification technique, model checking, as a way of assessing its
fitness in an inductive automatic programming system. We have implemented a
synthesis tool, which uses multiple calls to the model checker NuSMV to determine
the fitness for a candidate program. The candidate programs exist in two forms.
The main form is a simple imperative language. This form is subject to mutation,
but it is translated to a secondary form, the modeling language of NuSMV, for
evaluating its fitness. All choices of how exactly a program is represented and
how exactly the fitness is evaluated are disputable. Generic search techniques are,
however, usually rather robust against changes in such details. While there has
been further research on how to measure partial satisfaction, we believe that the
best choice for us is to keep to the choices made for promoting genetic program-
ming, as this is the only choice that is completely free of suspicion of being selected
for being more suitable for simulated annealing than for genetic programming. A
second motivation for this selection is that it results in very simple specifications
and, therefore, in a fast evaluation of the fitness. Noting that synthesis entails on
average hundreds of thousands to millions of calls to a model checker, only simple
evaluations can be considered. We have implemented six different combinations of
selection and update mechanism to test our hypothesis: besides simulated anneal-
ing, we have used genetic programming both without crossover and with crossover.
The tests we have run confirmed that simulated annealing performs significantly
better than genetic programming. As a side result, we found that the assumption
of the authors of [KP08, KP09a, KP09b] that crossover does not accelerate genetic
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programming did not prove to be entirely correct, but the advantages we observed
were minor.

• Search Techniques Parameters: What are the efficient parameters that can
be used for genetic programming and simulated annealing? Is the application of
crossover effective? How does initial population size affect the cost beside the
success rate? How does the initial temperature and cooling schedule affect the
results of simulated annealing? Are there ’best’ parameters for our techniques?

Besides serving as a synthesis tool, the main intention of PranCS is to allow for
a comparison of different generic search techniques. In [HS16], we have used our
technique to generate correct solutions for mutual exclusion and leader election
and found that simulated annealing is much (1.5 to 2 orders of magnitude) faster
than genetic programming.

• Controller Synthesis: Can we use the same techniques in controller synthesis?
Are the results similar to those of program synthesis? What about the parameters
do they have the same effect?

We have defined a class of DCS problems where deterministic strategies are sought.
We adapted our algorithms to seek solutions for these problems, and conducted
an experimental evaluation using a scalable instance of a DCS problem. Results
proved to be consistent with our assumption that the relative performance of the
algorithms would match our previous results for program synthesis. Yet, our imple-
mentations are proofs of concept, and one can think of numerous practical improve-
ments that constitute inescapable ways to pursue investigating efficient symbolic
DCS algorithms using simulated annealingFor instance, canonically representing
symbolic candidate strategies using BDDs instead of syntactic trees would allow
for building a cache of fitness results, and thereby avoid re-evaluating the fitness
of equivalent candidate strategies.

Similarly, implementing the algorithms in a symbolic model-checker could permit to
avoid the very costly—and often performance bottleneck in case of model-checkers
using BDDs—reconstruction of symbolic representations at every iteration of the
algorithms. Finally, note that our search based algorithms do not require the
computation of the unsafe region to produce deterministic strategies. Hence, con-
sidering the current advances in model-checking technologies, our algorithms might
constitute ways to solve DCS problems on some classes of infinite-state systems for
which the unsafe region cannot be computed.

• Synthesis Tool: What is the scope of a synthesis tool based on generic search
technique?

We have developed PranCS, which is a tool for protocol and controller synthesis.
It exploits general search techniques such as simulated annealing and genetic pro-
gramming for homing in on an implementation, and use model checking for the
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fitness function. We use NuSMV as a back-end for the individual model check-
ing tasks and a simple candidate mutator to drive the search. Our Proctocol and
Controller Synthesis (PranCS) tool is designed to explore the parameter space
of different synthesis techniques. Besides using it to synthesise a discrete control
strategy for reactive systems (controller synthesis) and for protocol adapters for the
coordination of different threads (protocol synthesis), we can also use it to study
the influence of turning various screws in the synthesis process. For simulated an-
nealing, PranCS allows the user to define the behaviour of the cooling schedule.
For genetic programming, the user can select the population size. Additionally,
PranCS offers different automated techniques to quantify partial compliance with
a specification and to infer the fitness of a candidate implementation based on this
partial compliance. PranCS also allows for choosing small random seeds as well as
user defined seeds to allow the user to define a starting point for the search, e.g.
for candidate repair.

The main contributions of the research presented in this thesis were presented in
Chapter 1. These are restated here, for completeness, as follows:

7.2.1 Program synthesis

In this part of our work we suggest to:

1. Use simulated annealing for program synthesis and compare it to similar approaches
based on genetic programming.

2. Use a formal verification technique, model checking, as a way of assessing its fitness
in an inductive automatic programming system.

3. We have implemented a synthesis tool, which uses multiple calls to the model
checker NuSMV [CCG+02] to determine the fitness of a candidate program.

4. We have implemented six different combinations of selection and update mecha-
nism to test our hypothesis: besides simulated annealing, we have used genetic
programming both without crossover (as discussed in [KP08, KP09a, KP09b]) and
with crossover and Hybrid genetic programming both without crossover (as dis-
cussed in [KP08, KP09a, KP09b]) and with crossover.

The tests we have run confirmed that simulated annealing performs significantly bet-
ter than genetic programming. As a side result, we found that the assumption of the
authors of [KP08, KP09a, KP09b] that crossover does not accelerate genetic program-
ming did not prove to be entirely correct, but the advantages we observed were minor.

7.2.2 Controller synthesis

1. We first define a symbolic model and an associated class of DCS problems, for
which deterministic strategies are sought.
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2. Next, we adapt the aforementioned search techniques to obtain algorithmic solu-
tions that avoid computing the unsafe portion of the state-space.

3. Then, we confirm the hypotheses that: (i) general search techniques are as appli-
cable to solve our DCS problem as they are for synthesising programs; and (ii) one
obtains similar relative performance results for our DCS problem. experimental re-
sults [HS16] for program synthesis , essentially that simulated annealing performs
better than genetic programming.

4. To assess these hypotheses, we adapt the six different combinations of candidate
selection and update mechanisms of our previous work [HS16], and execute them
on a scalable example DCS problem.

5. perform an experimental feasibility assessment.

From the performance results we obtain, we draw the conclusion that , even though
for technical reasons our current experimental results do not compare favourably with
existing symbolic DCS tools, simulated annealing, when combined with efficient model-
checking techniques, is worth further investigating to solve symbolic DCS problems.

As noted in Section 4.7, our experimental results do not compare favourably with
existing symbolic DCS tools.
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