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Abstract. The dynamic behavior of a car can be modeled as a hybrid system involving continuous state
changes and discrete state transitions. We show that the control of safe (collision free) lane change maneuvers
in multi-lane traffic on highways can be described by finite state machines extended with continuous variables
coming from the environment. We use standard theory for controller synthesis to derive the dynamic behavior
of a lane-change controller. Thereby, we contrast the setting of interleaving semantics and synchronous
concurrent semantics. We also consider the possibility of exchanging knowledge between neighboring cars in
order to come up with the right decisions. Finally, we address compositional verification using an assumption-
guarantee paradigm.
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1. Introduction

We consider the safety (collision freedom) of traffic on multi-lane highways. A means to avoid collisions in
car maneuvers are advanced driver assistance systems (ADAS) onboard the cars. These systems require that
each car is equipped with suitable controllers that interact with other cars by sensors and communication.
The development of such a controller is difficult because the interaction of cars on a highway constitutes
a distributed hybrid system, combining continuous car dynamics with discrete decisions of the controllers.
Therefore every step in the process of developing and checking such a system that can be systematically
performed or automated is of great help.

Most approaches investigate safety of traffic maneuvers as a hybrid verification problem with full details
of the continuous dynamic of the cars. Examples for this come from the California PATH Project (Partners
for Advanced Transit and Highways) [LGS98]| for maneuvers on freeways. More recently, Loos et al. presented
work for freeways using QdL and the theorem prover KeYmaera [LPNT1], also considering the full continuous
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dynamic of all cars. Similarly, motion planning algorithms for cooperative collision avoidance often take the
continuous car dynamics into account. A comparison of such algorithms is given in [FB11], where the authors
present simulations of a small number of cars in different traffic scenarios.

In [HLORTI], we realized that safety (collision freedom) on roads is primarily a spatial property. This
led us to develop a new approach to car safety that decomposes spatial from dynamic reasoning. To this
end, we introduced a dedicated Multi-Lane Spatial Logic (MLSL), which abstracts from the continuous car
dynamics [HLORI1]. MLSL formulas express spatial properties of single traffic snapshots in a concise way.
We proved safety of lane-change maneuvers on motorways when all cars are equipped with a suitable lane-
change controller that uses MLSL formulas in its invariants and guards. However, the controllers themselves
were introduced in an ad-hoc manner.

In [ORWI5] we linked an abstract, discrete spatial model using MLSL to a concrete, continuous dynamic
model using differential equations for traffic maneuvers of multiple vehicles on motorways. For the spatial
model the safety (collision freedom) of lane-change maneuvers was already established in [HLORI1I]. By
formally linking the discrete and continuous model via suitable linking predicates, the safety carries over to
the dynamic model.

Let us give an idea of the linking by an example. In the discrete spatial model we require for a distance
controller of a car ego that it keeps the reserved space of ego disjoint from the reserved space of all cars on
the same lane driving ahead of ego over all times. This invariant property can be expressed by an MLSL
formula called —ccf, standing for “no forward collision”. The safety proof in [HLORII] solely depends on the
disjointness of reserved (and so-called claimed) spaces. However, we do not specify how large these spaces
are.

These details are kept for the continuous dynamic model. Only at this level, differential equations mod-
elling the movements of the car ego enter the picture. A quantity derived from this model is the safety
distance sd of ego, which covers the braking distance at the current velocity of the ego. Also, we stipulate a
sensor measuring the front distance fd of ego to the car ahead.

The linking predicate relates the purely spatial property to a property about distances in the dynamic
model: —ccf <= sd < fd. The reverse implication expresses refinement of the left-hand side by the right-
hand side. This allows us to transfer the safety proof from the spatial model to the dynamic model, and thus
justifies the decomposition of spatial from dynamic reasoning in our approach.

In this paper, we employ methods from discrete-event systems to synthesize the controllers, thus offering
a systematic approach to construct such controllers. The achievement is that we connect methods from
discrete-event systems with the application area of traffic maneuvers of multiple cars on highways. We also
use methods from protocol derivation to obtain the specification of message exchanges in the case that certain
cars need to communicate for their control decisions.

We describe the setting of multi-lane traffic as in [HLORII] (however, without using MLSL), the control
architecture, and the control components inside a single car with their interactions. As a formal representation
of hybrid systems we consider a variant of Hybrid Input-Output Automata (HIOA), where assumptions on
inputs are allowed [LSVW99]. However, we focus on the discrete actions needed for lane control, thereby
assuming that the car maneuvers of speed control and steering are dealt with separately.

Our main contributions are as follows:

e We show that from a description of the set of all possible discrete behaviors during a lane change we can
synthesize constraints that yield a safe lane change controller. This is achieved by applying a standard
method for controller synthesis in discrete event systems [CW10].

e We investigate the impact of different semantic models of parallel composition: interleaving vs. syn-
chronous parallelism. In the latter model more intricate safety risks of a lane change are revealed. We
show that the method for controller synthesis can cope with both models.

e We investigate different sensor models that represent different knowledge a car may have about its
neighboring cars during a lane change. In [HLORII], the case that a car can sense only the lengths of other
cars but not their braking distances was solved by stipulating a helper car and suitable communications
with it. Here we show that these communications can be synthesized by applying methods for protocol
synthesis [MvB83].

e We outline compositional verification using assumption-guarantee-style reasoning. This is presented for
the velocity controller, the steering controller, and the lane controller.

This paper extends the conference paper [vBHLOT5] by several new (sub)sections:
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Fig. 1. A multi-lane highway with several cars. The large rectangle shows the view of car A, i.e., the part of
the environment visible to A.

e Within Section we discuss potential interferences with cars on the target lane during a lane change
maneuver, and present a solution.

e Section contains a short description of the case when the gap on the target lane is not sufficiently
large for an intended lane change.

e In Section[4 we discuss how our synthesized controller fits into a framework of compositional verification
using an assumption-guarantee-style reasoning. To that end, we identify the necessary assumptions and
guarantees and how the synthesized controller satisfies its contract.

This paper is structured as follows. In Section 2] we present the details of our car traffic modelling. In Section
we develop in several steps our approach to controller synthesis for multi-lane highway traffic. In Section [4]
we outline compositional verification. Conclusions are presented in Section

2. Car traffic modeling
2.1. The multi-lane highway

The development of a controller is based on models of the system to be controlled. In the case of car traffic, the
system consists of the traffic infrastructure, such as roads, traffic lights, etc., and cars that drive within this
infrastructure. The traffic infrastructure and the cars can be modelled as consisting of multiple components.

In this paper, we consider the infrastructure of multi-lane highways as shown in Fig. [I| In this case, the
infrastructure consists of a fixed number of lanes, numbered 0 through L. This infrastructure is passive. It
only serves as a coordinate system in which the cars evolve. Each car has a position along the road (from
left to right in the figure) and the current lanes used, normally a single lane, but during a lane change a car
uses two adjacent lanes.

Each car possesses a set of sensors, which defines the part of the highway it may perceive, called its view.
In Fig. [1} a possible view of the car A is indicated by the rectangle surrounding A. The main motivation
behind the concept of views is that safety of each car only depends on its local environment. The physical
constraints on such a finite set of space ensure that only finitely many cars can be responsible for unsafe
situations during each maneuver. Finally, we assume that all cars adhere to the same protocol with respect
to lane-change maneuvers.

2.2. A component-based hybrid modeling framework

A car can also be modelled as consisting of several components. In this paper, we consider the components
shown in Fig. [2} velocity control, steering, and lane control. These components have a dynamic behavior.
In order to describe such behavior, one first has to define their communication with their environment.
The interfaces over which the components communicate are indicated in Fig. [2| by arrows. We distinguish
between two types of interfaces: (a) shared (real-valued) interface variables (solid arrows), and (b) interaction
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interfaces (dashed arrows). The static interconnection structure between components and interface variables
is such that each interface variable has exactly one component (possibly the environment) that determines
the value of the variable — it represents the output of that component — while several components may
read the value of the variable — it is the input for those components. The actions occurring over interaction
interfaces are related to discrete transitions (see below). An action is initiated by the component for which
the interface is output. Examples of interface variables in Fig. [2| are fd (front distance to car ahead), target
velocity and acceleration; examples of actions are r(m) and wd-c(m).

The dynamic behavior of a component can be described by a Hybrid Input-Output Automaton (HIOA)
as defined in [LSV03]. The state of such an automaton is defined by a set of variables (internal variables
and external (interface) variables, which are either input or output for a given component) and there are
two types of state changes: (1) discrete transitions, associated with an action, are instantaneous transitions
from some internal state to another internal state, which may also have an effect on the values of output
variables, and (2) continuous state changes (called trajectories in [LSV03] and sometimes flows in this paper)
that determine the values of output variables as a function of the input variables and the evolving time. The
possible trajectories depend on the internal state of the component, sometimes called mode, and on the value
of input variables. The actions of discrete transitions are classified into internal, input and output actions, as
for Input-Output Automata (I0OA) [LT89]. In contrast to [LSV03], we assume in this paper that the enabling
of a discrete transition (with internal or output action) may depend on the values of input variables, as in
an earlier definition of HIOA [LSVW99].

A component communicates with the components in its environment in two ways, corresponding to the
two types of state changes. First, when a trajectory is performed by the automaton, the trajectory determines
how the internal and output variables evolve over time as a function of the values of the input variables. The
value of an input variable is determined by that component for which the variable is output. Second, when
a discrete transition performs an output action, those other components for which this action is an input
action will perform at the same time a discrete transition associated with this action, thus leading to a joint
discrete transition of several components.

We assume that the HIOA model of a component has a single internal discrete variable that defines the
current mode of the component. For each possible mode, the trajectories are defined in terms of so-called flow
equations which define the continuous evolution of the real-valued variables, and each mode is associated
with an invariant that must remain true while the component is in that mode (see for example [DHOO6]).
Some time before the flow reaches the border of the state space where this predicate is true, a discrete
transition must take place which leads the component into another mode for which the associated predicate
is true.

2.3. Modeling the dynamic behavior of a car

Informally, the dynamic behavior of the car components shown in Fig. 2] can be described as follows. The
“velocity control” component receives as input the target velocity set by the driver, the measured current
velocity of the car, and the front distance, fd, to be maintained, as determined by the lane control component.
The defined trajectories determine the value of the acceleration (output variable) as a function of the input
variables and time. As dependent output variables, the component also produces the value of the safety
distance, sd, which depends on the speed of the car. This distance is calculated such that the car could stop
before that distance in case that a fixed obstacle suddenly occurs at that distance in front of the car. In
the normal operation mode, the velocity control component will select a trajectory for the acceleration (or
deceleration) such that the target speed will be attained under the condition that the front distance is larger
than the safety distance. A possible way to construct such a component is described in [DHO06, [DMR14!
ORW15)].

The “steering” component controls the steering angle output variable which affects the front wheels of the
car. It uses as input the orientation (angle of the car in the forward direction of the car), the current velocity
of the car, and the measured left-to-right position of the car over the different lanes. It has an internal variable
which contains the target lane of the car. The value of this variable is set by the input action r(m) which
sets the target lane to the value m and thereby reserves lane m. When the current lane has been changed,
the component will perform a discrete transition with the output action wd-r(n) when the reservation of the
old lane n is not needed any more. A possible way to construct such a component is described in [DMR14].

The “lane control” component is responsible for determining when a lane change maneuver can be per-
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Fig. 2. Control components of a single car.

formed. Such a lane change maneuver is requested by the driver through a discrete transition with the input
action lane-change-request which tells the steering component to which lane it should move, taking the value
of the variable current lane into account. Before performing such a maneuver, the component has to make
sure that there is the necessary space on the new lane and that there is no conflict with other cars that
may want to change their lane, as described in the following sections. For this purpose, there are a number
of input and output variables through which the lane control component interacts with other cars in its
environment (see Fig. [2} res, clm, sd, current relative position).

The lane control component is the focus of this paper. In the following, its behavior is described in more
detail. It does not involve any continuous trajectories, but can be described by a finite-state input-output
automaton where transitions may have guards that depend on variables.

The following lane change procedure was proposed in [HLORII]: A car that wants to change lane, for
instance the car A in Fig. 1, first “claims” the lane to which it wants to move (this corresponds to setting
the turn signal (“blinker”) in the manual car driving mode), and then “reserves” the new lane before it moves
over on to the new lane. During this lane change, the car has two reserved lanes.

Each car has the following attributes, in addition to those mentioned above:

e res: the set of lanes reserved. It has at most two elements, namely the current lane n, and possibly an
adjacent lane m to which the car wants to move.
e clm: the set of lanes claimed. It has at most one element. The claimed element must be a lane adjacent

to the current lane n.

To describe the dynamic behavior of the lane change control component during lane change, the following
interactions are introduced:

e c(m): introduce a claim for lane m,
e wd-c(m): withdraw the claim for lane m,
e r(m): change a claim for lane m into a reservation for lane m,

e wd-r(m): withdraw the reservation for lane m.
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2.4. The safety condition

The lane control component shall ensure that cars do not collide during the lane change procedure. This
means that the part of a lane that is reserved by a car should never overlap with a part that is reserved by
another car. The meaning of a lane reservation by car c is that the lane is reserved for car ¢ over the distance
range from the current position of the car, c.pos, up to the point of its safety distance, c.pos + c.sd. We call
this range the safety envelope of c¢. The safety distance, sd, is the distance over which the car may come to
a full stop — clearly this distance depends on the current velocity of the car.

The dangerous situation of a collision is formalized by the following condition:

col =3ey,co: (e1 # co A (cr.resNca.res # D) A safetyOverlap(cy, c2)), (1)

where safetyOverlap(cy,ce) is true if there is an overlap of the ranges from the current position up to the
point of the safety distance for the two cars ¢; and co:

safetyOverlap(cy, ca) = (c1.pos < ¢a.pos < ¢1.pos + ¢1.5d) V
(ca.pos < ¢1.pos < co.pos + cz.sd).

We say that the system is safe if there is no overlap of the safety envelopes of any two cars on any given
lane, that is, if the collision condition col is false. Therefore, the safety condition is

safe =V ey, ca: (1 = ca V (c1.res Nea.res = 0) V —safetyOverlap(cy, ca)), (2)

We consider in this paper a car A, as shown in Fig. 1, which intends to change to the next-higher lane.
In this situation, the safety condition may become false for the following reasons:

1. The distance between car A and car G may become too small and safetyOverlap(A, G) becomes true.
This is avoided by the behavior of the velocity control unit of car A (as explained in [ORW15]).

2. Similarly, the distance between car A and car C may become too small and safetyOverlap(C, A) becomes
true. This is avoided by the behavior of the velocity control unit of car C.

3. After having claimed lane 1, car A reserves this lane. At this point, the following problems may occur:

a. The distance between car A and the cars B or E may become too small and safetyOverlap(A, B) or
safetyOverlap(E, A) may become true. How this is avoided is discussed in Section 3.5.

b. The car F' may want to change lane to lane 1 at the same time. After claiming this lane, it may
reserve it (while safetyOverlap(A, F) is true. How this is avoided is the main topic of Section 3.

3. Controller synthesis for multi-lane traffic maneuvers
3.1. Overview of controller synthesis

The design of controllers for hybrid systems has to deal with two aspects: the control of the continuous
flows, and the control of the discrete actions. In this paper we limit ourselves to the discrete aspects, since
we concentrate the discussion on the lane control component, which has a behavior essentially characterized
by discrete transitions, such as shown in Fig. [3] The synthesis of controllers for discrete event systems was
first described in [RWST]. Distributed control of systems consisting of several communicating components is
described in [CW10]. It turns out that the method of submodule construction, as introduced in [MvB83],
can also be used for this purpose. In [vBI3] this approach is formalized and described for different types of
interactions between the controlled system, the environment and the controller.

The typical system architecture for controlling a single component comprises the plant (to be controlled,
called world model in [DETI]), the environment, and the controller. The behavior of the plant is defined
in terms of its interactions with the environment. These interactions are classified into controllable and
uncontrollable interactions. The controller can observe a subset of these interactions, called the visible in-
teractions, and it may prevent the occurrence of a visible controllable interaction, but it has no impact
on uncontrollable or invisible interactions. In our modeling framework, we distinguish between input and
output interactions. Plant inputs from the environment are in general uncontrollable, while input from the
controller is controllable. The outputs of the plant to the controller are either controllable (can be prevented)
or uncontrollable.
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The environment provides input interactions to the plant, called disturbances in [DFTI]. These inputs
may depend on the outputs received from the plant previously. The order in which these inputs may arrive
is sometimes called the environment assumption. The behavior of the environment may be described by a
state machine model. In this case, the model explicitly describes in which state which input may be provided,
thus defining the environment assumption. The environment model is also used to define control objectives:
Safety objectives, namely that in certain states the plant should not provide certain specific outputs, can be
modeled by including in the behavior of the environment a transition for such outputs into a Fail state —
and the objective is that such a Fail state should never be reached.

We assume in the following that the set of possible sequences of interactions of the plant can be described
by a finite automaton P where all its states sp are accepting, and the set of interaction sequences of the
environment are described by a finite automaton E where its states sy are accepting, except the Fail
states. In the case of full visibility, the most general controller behavior C' that avoids the Fail states of the
environment is obtained from the finite automaton C; = P X E (product of P with F where a state (sp, $g)
of the product is accepting iff sg is accepting in E). From this automaton, certain states must be pruned,
that is, eliminated, in order to obtain the controller C.

Pruning is a recursive procedure. In each iteration, the following states are pruned: (a) any non-accepting
states, (b) any states that have a transition with an uncontrollable interaction to a state that was pruned in
an earlier iteration, and (c¢) any state that is a deadlock (that has no outgoing transition — we assume here
that the plant and the environment, separately, do not have a final (deadlocking) state). A state is pruned
by eliminating all outgoing transitions, all incoming transitions with controllable (and visible) interactions
that lead into the state, and the state itself. The procedure stops when during the next iteration no further
state is pruned.

If all states are eliminated by the pruning procedure, then there exists no suitable controller. However,
it is important to note that, if a suitable controller is found, this controller may constrain the plant so much
that the remaining behavior is not useful for the application at hand — in other words, the behavior satisfies
the safety properties defined by the control objectives, but does not satisfy the liveness properties of the
application. Controller synthesis including liveness objectives is discussed for instance in [ZS05].

In the case of partial visibility, the product automaton C; must first be projected onto the visible in-
teractions. The resulting projected automaton, which is in general non-deterministic, must be determinized
before the pruning operations can be performed. Hence, partial visibility introduces an exponential blow-up
of the set of states. In the resulting automaton C7, each state corresponds to a set of states of C;. Any state
of Cf that includes a state (sp, sg) of Cy for which sg is non-accepting must be pruned (because if this state
is reached, the environment may be in the non-accepting state sg). In the examples discussed in this paper,
all interactions are considered visible to the controller P. As explained in Section [2.2] we use in this paper
Input-Output-Automata for the modeling of discrete transitions of our hybrid automata, where interactions
are either input or output. The controller derivation theory can be adapted to this context (see for instance
[vB13]) by considering the inputs to the controller as uncontrollable and the outputs from the controller as
controllable.

For the application of multi-lane traffic control, as described in Section [2| we have a plant that consists
of a large number of cars. We would like to obtain a controller per car that is able to control the controllable
interactions of that car, and may possibly see some of the interactions of other cars, without being able
to control them. In fact, in this paper we are mainly interested in deriving a controller for the lane control
component of cars. For such a controller, all output interactions of its lane control component are controllable,
but all other interactions — including output interactions of other cars — are uncontrollable. This situation
is studied in [CWI0] and is called distributed control. We note, however, that in general the problem of
synthesizing distributed control is undecidable [Thi05].

3.2. A simple algorithm for lane change using interleaving semantics

Let us first assume that the lane control component has the simple behavior shown in Fig. [3| (a). In this
case no claims are made. The notation A.qRC means that car A is in control state ¢, it has reserved the
lanes in the set R, and it claims the lanes in the set C. The car A in lane n starts with an action r(m),
reserving one of its neighboring lanes m € {n — 1,n + 1}, which is an output action that interacts with the
steering component which will steer the car on to the new lane m. When this is done, that component will
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Fig. 3. Behavior of a car A changing from its current lane n to a neighboring target lane m € {n —1,n+ 1}:
(a) simple algorithm, (b) protocol with a claim transition c¢(m) as in [HLORII].

withdraw from the previous lane by producing the wd-r(n) interactions which is received by the lane control
component, and the car goes back to the normal driving condition.

Let us consider a given car ego with this lane change controller. Its environment consists of all the other
cars in the system and the requirement that the system should be safe in all instants. A safety condition
can be proven by showing that it holds in the initial state and remains invariant under all transitions and
flows that the system may make. In this example, the safety objective to be satisfied is the condition — col
(no collision). This can be modeled by an environment E with two states, one where — col holds, and one
where it is false. The latter is a Fail state. The plant P consists of all cars operating concurrently. In order
to simplify the situation, we consider only two cars, say cars A and F in Fig. [T} since we are interested
in understanding what happens if two cars want to reserve the same lane at the same time. In order to
understand the situation in more detail, Fig. 4] shows the states of the plant, that is, the global reachability
analysis involving the two cars A and F. Building the product C; = P x E, we see that the state 4 in
the figure is a Fail state if the two cars have a safety overlap, that is, if safetyOverlap(A, F) is true (which
implies col).

Therefore this Fail state must be pruned, if such an overlap exists. To this end, the transitions leading
into this state should be pruned (see dashed arrows in the figure). The transition A.r(n + 1) from state 3
to state 4 shown in the figure is performed by car A. It should be pruned if safetyOverlap(A, F) is true,
because car F has already reserved lane (n + 1) which makes the condition col true for the cars A and F.
Generalizing from this example, we conclude that the transition r(m) in Fig. a) should be pruned if the
following condition cc, called collision check in [HLORIII, is false:

A.ce(m) ==3c: (c# AN (m € cres) A safetyOverlap(A,c)).

This means that the predicate A.cc(m) is an enabling condition for the transition r(m) of car A. The same
condition for car F' restricts the transition F.r(n + 1) in Fig. 4| in such a way that the system remains safe.
It is important to note that here the global system model uses the interleaving semantics [Mil89], that is,
there are never two transitions that occur at the same time. That is, this simple controller is safe under the
assumption of interleaving semantics. Note that interleaving semantics was also assumed in the safety proof
of [HLORII].

We note that the output action r(m) also induces a mode change in the lane control component which
determines the front distance used by the velocity controller for keeping safe distance with the cars in front.
The function determining the front distance will have to change because the car must now keep safe distance
to the preceding cars on both lanes. Similarly, a mode change occurs with the subsequent wd-r(m) action.

3.3. Safety problems in the synchronous model

Interleaving semantics is not a realistic assumption for distributed systems where transitions are controlled
independently by different components. We show now that the simple control algorithm above is not safe
under a synchronous semantic model where transitions may occur concurrently. Suppose that all cars are
controlled by the simple controller of Sec. and that A and F in Fig. [I] decide at the same time that they
want to reserve lane number 1. They will check whether the lane is free and then perform the r(1) transition.
If transitions may occur concurrently, it would be possible that the cars A and F would simultaneously
perform a transition r(1), resulting in a collision on lane 1. Within the global system as described in Fig.
this would be the dotted transition. However, collisions, i.e., overlapping reservations, are exactly what we
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Fig. 4. Reachability analysis for two cars, A and F', behaving according to Fig.[3| (a). Solid and dashed arrows
represent the transitions in the interleaving semantics. The dotted arrow represents an additional transition
in the synchronous model.

intend to prevent. Furthermore, if car A creates its reservations immediately before car F', it is by no means
realistic to assume that car F' will notice this change before it performs its own reservation.

A better modeling paradigm to take such situations into account are synchronous systems with stuttering.
In synchronous systems, all system components perform a transition in parallel during a transition period.
Stuttering means that, in each transition period, a component may decide to do no transition, that is,
remain in the same state. For the IOA modeling paradigm that we use for the discrete transitions of the
lane control component, this means that an output transition of one component will proceed in parallel with
the corresponding input transitions of those components receiving the output as input. Other components,
during the same transition period, may remain in the same state or perform an internal discrete transition.
For the example of lane changing cars considered in this paper, this means that a transition of the lane
controller of one car may occur in parallel with a lane controller transition of another car (which is not
possible in the context of interleaving semantics).

When this modeling paradigm is used for the simple lane change algorithm discussed above, there are
problems as shown in Fig. 4] and discussed above. The dashed transitions are pruned by the cc enabling con-
dition for the r(m) transition, but this condition does not prevent the possibility of simultaneous transitions
of both cars from state (A.1, F.1) to state (4.2, F.2), as indicated by the dotted transition in the figure.
Because of the independence of the distributed controllers in cars A and F', this dotted transition can only
be pruned by also pruning the transitions from (4.1, F.1) to (4.2, F.1) and from (A.1, F.1) to (A.1, F.2),
which means that no reservations can be made at all. Therefore, there does not exist a suitable controller
for the simple algorithm for lane change when simultaneous transitions of different cars are allowed.

3.4. Lane change algorithm allowing for concurrent transitions

The problem of avoiding car collisions is an instance of the mutual exclusion problem. The space on the lane
is the shared resource that must be managed in mutual exclusion by the different cars. One of the earliest
mutual exclusion algorithms proposed by Dekker [Dij68] achieves this goal by introducing for each user a
variable ‘claimed’ which can be read by the other user. Before using the resource, a user first has to set its
own claimed variable to true, and then he can only use the resource if the claimed variable of the other user
is false.

The lane reservation protocol proposed in [HLORTI] is based on this principle and represented in Fig.
(b). In case of a conflict between the two cars, both cars abandon their claim. In order to avoid infinite
looping, it must be assumed that there is some random waiting before each user repeats his claim, similar
to the behavior of agents in the ALOHA system [Abr70].

The proposed protocol proceeds in two steps as follows, as shown in Fig.|3|(b). First, car A claims a space
on the target lane m adjacent to its current lane n by the action c(m). Note that an overlap of claimed spaces
is not safety critical. Only the transition converting a claim into a reservation is safety critical. Therefore,
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Fig. 5. Reachability analysis for two cars, A and F, behaving according to Figure [3| (b), with concurrent
transitions, trying to reserve overlapping space on the same target lane n + 1.

car A subsequently checks whether this claim intersects with the reservation or claim of any other car. If
this is the case, A withdraws its claim by the action wd-c(m). Otherwise, A turns its claim into a reservation
by the action r(m) so that it now reserves space on the two neighboring lanes m and n. During this double
reservation A performs the lane change. Once this is completed, A withdraws its reservation on the original
lane n by the action wd-r(n) and continues to drive on the target lane m.

In order to derive the necessary control constraints, we proceed along the lines discussed in Section [3.2]
Again, we consider the plant P consisting of two cars that want to reserve the same space on a given lane,
for example the cars A and F' in Fig. [1] The global plant behavior is shown by the state diagram of Fig.
which is the product of two state machines defined by Fig. [3| (b). The figure represents the uncontrolled
behavior of two cars on lanes n and n + 2 that both want to move to lane m = n+ 1. If we build the product
of the plant behavior with the environment objective, C; = P X E, we see that the lower right state becomes
a Fail state where both cars collide if they have an overlap.

As in Section we can introduce constraints (pruning) in the state machine of Fig. [3| (b) in order to
eliminate the transitions into the Fail state. This means that we introduce a constraint on the r transition
ts in Fig. [3| (b), such that this transition is not possible when the global system is in a state where the other
car is in state 2 or 3, as shown in Fig. [5| by the dashed transitions. These states are characterized by the
fact that the other car either has claimed or reserved an overlapping space on the same lane. Therefore the
constraint for the transition of a car ego is the following condition pcc, called potential collision check:

ego.pcc(m) = —3c: (¢ # ego A (m € cres V- m € c.clm) A safetyOverlap(ego, c)).

If this constraint is implemented in both cars, then the joint transition from state (A.2, F.2) in Fig. directly
into the Fail state will also be eliminated and the system is safe.

We note that the lane change algorithm obtained by our derivation approach is very similar to the lane
change controller proposed in [HLORII]. There it was proven correct under an interleaving semantics. This
paper shows that the algorithm of [HLORITI] is also correct under the synchronous model.

It is important to note, however, that the lane control component should remain in the state where a claim
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Fig. 6. Reachability analysis of car A making a reservation and another car driving on A’s target lane and
creating an overlap with the area to be reserved.

is made for a sufficiently long period such that all cars in the environment have seen this claim before the
claim is converted into a reservation. In our modeling framework, we assume that all state changes happening
during a set of parallel transitions have been seen by all system components before a next transition will be
performed.

We note that in practice, one would probably introduce some constraint for the claim transition t; in
Fig. [3| (b) in order to reduce the frequency of the looping behavior where a claim is directly followed by
a withdraw — claim transition. One could apply the same pce condition that is applied to the reservation
transition.

3.5. Interference with cars on the target lane

There is also the (potential) problem that a fast driving car (say car E in Fig.[l)) may lead to a safety overlap
with the car that changes lanes (such as car A in Fig. [1)) just at the time when the latter makes the new
reservation. And the same may happen when a car in front (say car B in Fig.[1]) drives much slower than the
lane changing car (such as car A in Fig. . These problems can be avoided, if we strengthen our condition
for changing claims to reservations.

These situations are analyzed in Fig.[6] The figure shows the product of the behavior of the lane changing
car of Fig. 3| (b) and the changing situation of the relative positions of the lane changing car with the car
on the target lane behind or in front, e.g., car E and B in Fig. [1} respectively. We assume that initially (in
the upper states of Fig. @, there is no safety overlap, and at some point in time, the overlap begins — this is
represented by the (vertical) transition t5. Again, there is a Fail state that should never be reached. In the
following, we discuss how the three transitions leading into the Fail state can be avoided:

e The transition t5 from state (A.3{m,n}{}, no overlap) cannot occur in relation with a slow car in front,
e.g. car B in Fig. [I] since in this state two lanes, m and n, are reserved by the lane changing car and
the speed control component will use the minimum of the distance in the two reserved lanes to the cars
in front for controlling its own speed, therefore avoiding any safety overlap. — In case of a conflict with
a fast car behind, e.g. car E in Fig. [1| the latter will use the distance to the new reservation for its own
speed control. We assume that this new reservation is visible to the car behind.

e The r(m) transition t3 from state (A.2{n}{m}, overlap) cannot occur because the lane changing car uses
the pcc constraint for this transition.

o If we allow that transitions of different cars occur concurrently, then we must also consider the possibility
that the two transitions ¢5 and ¢3 occur simultaneously, as shown by the transition ts||¢5 in Fig. @ One
way to avoid this joint transition is to strengthen the constraint pcc of t3 by introducing a safety margin
€ > 0 between the reservations of different cars on the same lane, that is, we use in the definition of pcc
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Fig. 7. (a) Global transition diagram involving a helper car that reads its own safety distance. Derived
behavior for (b) lane changing car and (c) helper car.

a larger “robust” safety overlap

safetyOverlapR(c1, ca) = (¢1.pos — € < ¢a.pos < ¢1.pos + ¢1.8d + €) V
(c2.pos — € < ¢1.pos < €2.p0s + c2.5d + €).

That is, we add an additional length of € to both sides of the reservation while checking for an overlap.
Since this formula will be satisfied when transition ¢3 occurs, the additional distance € > 0 between the
new reservation and the other existing reservations will ensure that the transition ¢5 (where this distance
becomes zero) cannot occur concurrently with ts.

Since pce with safetyOverlapR is stronger than pcc with safetyQOverlap, our reasoning concerning the
transition t3 from (A.2{n}{m}, overlap) still holds. Of course, safety with this approach depends on a
sensible choice of ¢, which will depend on the maximum difference of speeds of different cars and the time
it takes for a car to determine (to “read”) the reservations of the other cars.

3.6. Using a helper car

The preceding discussion assumes that a driving car has local knowledge about the reserved and claimed
lanes of other cars in its environment and of the position and safety distance of these other cars. Among
this information, the safety distance is probably the most difficult to obtain since it depends on the position
and velocity of the other car. Therefore it is considered in [HLORII] that this information may be obtained
through message exchanges with another car in the environment, which is called a helper car. Such a car ¢
should be on the target lane, but behind the lane changing car ego. It should provide information for the
evaluation of the safetyOverlap(ego, c) predicate. This predicate must be evaluated in state 2 of Fig. (3| (b),
before the transition r(m) can be performed. In Fig. [1} car E is a helper car for A in its lane change.

We would like to derive the behavior of the lane changing and helper cars from the behavior discussed in
Section for the case that the safety distance information is available locally in each car. For this purpose,
we can use the derivation algorithm described in [GvB90] or use the approach described in [CvBBI3|. In
both cases, one starts out with a global specification of the different actions and their order of execution
without being preoccupied by the question which components is responsible for executing each action, such
as shown in Fig. |3| (b). After the different actions are allocated to the components that are responsible for
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their execution, a so-called protocol derivation algorithm constructs the local behavior specification for each
component which include, in addition to the actions for which the component is responsible, the exchanges
of coordination messages that are required for assuring the orderly execution of all these actions.

The principle of the protocol derivation algorithm [GvB90] is to copy the control flow graph of the global
specification for execution by each component, but to ignore all actions performed by other components and
include instead the sending and reception of certain coordination messages. These coordination messages
depend on the control flow operators in the global specification. For concurrency and weak sequencing, i.e.,
where sequencing is enforced only locally inside components [MR97], no coordination messages are required.
However, they are essential for strict (i.e., global) sequencing, alternatives and loops. If a local action ay
performed by component ¢; is followed (strictly) by an action as performed by another component ca, a
coordination message will be send by ¢; to ¢z, and the message will be received by co before the local action
as is performed.

In the case of the system of a lane changing car with its helper car, we take as global behavior specification
a modified version of Fig.|3| (b), where an additional get-info action is introduced before entering state 2, as
shown in Fig.[7] (a). This action is executed by the helper car, while all other actions are executed by the lane
changing car. If we apply the protocol derivation algorithm, we obtain the behaviors for the lane changing
car and the helper car shown in Figures[7] (b) and (c). Sending and receiving the synthesized coordination
messages mes; and mesy guarantee the right sequencing of the get-info action and the actions of the lane
changing car.

The behavior of Fig. m (c) should be performed in each car by the lane control component concurrently
with its normal behavior described by Fig. [7|(b). The message mes; is effectively a request to send the safety
distance information, and the message mess sent by the helper car contains the information.

The algorithm obtained here is quite different from the algorithm proposed in [HLORTI]. The reason is
that in [HLORTI], the helper car makes the decision whether a lane change can be done and answers yes or
no. In our approach, the helper car simply returns the value of a local variable; the decision whether the lane
change can be done remains with the lane changing car. The algorithm proposed in this paper is simpler.

3.7. More complex lane change maneuvers

Following the approach presented in this paper a car can change to its target lane, only if there is currently
a sufficiently large gap adjacent to the car.

This strategy limits the number of successful lane changes, e.g. a sufficiently large gap moving with
the same speed as the car but misaligned can never be used for a lane change. To increase traffic flow by
increasing the number of successful lane changes, one could extend the presented maneuver as described in
detail in [WSRR11]:

e If there is a sufficiently large gap on the target lane in front of car E’s current position, F accelerates
and starts the maneuver presented here, as soon as the gap aligns with E.

e If there is no sufficiently large gap in the vicinity of car F, it negotiates with the surrounding cars to
create a gap large enough for E to change lanes.

To implement either of these strategies would require more sensor input, e.g. measuring the relative
speeds of the surrounding cars. The second maneuver additionally requires more communication, between
the cars, e.g. for reaching consensus on where to make the gap. Both approaches would also require time to
be represented in the model, since in both cases time has to elapse to reach (or create, respectively) the gap.

4. Compositional system verification

4.1. The framework

Compositional system verification and design using an assumption-guarantee-style reasoning have a long
history in program verification, software engineering, and more recently, hybrid (cyber-physical) system
design. For shared variable concurrent programs, work on rely-guarantee dates back to Jones [Jon83|. The
book by de Roever et al. [dRABH"01] gives a detailed account on suitable semantics and proof rules. For
reactive systems, the assume-guarantee paradigm for temporal properties was explored by Pnueli [Pnu85]
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and systematically explored by Abadi and Lamport [AL93], where a suitable proof is proposed. For object-
oriented software development, Meyer coined the notion of design by contract [Mey97], where a contract is
a pair of assumptions and guarantees. For more general system design Benveniste et al. [BCFT08| develop
a contract-based approach, and in [BCNT12| numerous pointers to the literature can be found. Specifically
for hybrid systems, Damm et al. explore component-based design [DDOPTI0] and apply this in a case study
involving concurrent velocity and steering control [DMR14].

Formally, a contract is a pair C = (A, G) consisting of a set A of assumptions and a set G of guarantees
or goals.. A system M satisfies a contract C, written M = (A, G), if under the assumptions A, the system
M establishes the guarantees GG. Consider a system M consisting of the parallel composition of components
M; for i € I = {1,...,n}. We stipulate that each component M; satisfies the contract consisting of the
assumptions A; and the guarantees G, expressed by M; = (A;, G;). To show that the system M satisfies
the contract (A, G), the following proof rule dating back to Abadi and Lamport [AL93] is in widespread use:

(1) /\iGI G =G,

(2) ANNie1 Gi = Nier Ai

M = (A,G)
where the premises (1)—(3) establish the following:

(1) shows that the goals of the system are implied by the guarantees of the components;

(2) shows that the assumptions of all components are implied by the guarantees of all components and the
assumptions that the system makes about the environment; and

(3) shows that the implementation of each component establishes the guarantees of its contract if the
corresponding assumptions are satisfied.

Abadi and Lamport [AL93] showed that for discrete reactive systems, such specifications avoid circular
definitions. They assumed that each discrete interaction is produced as output by a single component, but
it may be consumed by several components as input. The guarantees of a component are concerned with
properties of the outputs produced by that component (under which circumstances they may occur, what
values of parameters they may have, and what effect they may have on shared variables), and assumptions
are concerned with similar properties of the inputs received by that component. The compositional verifica-
tion can then be performed by induction over the length of the interaction sequence. For each subsequent
interaction, the guarantees of the outputting components must imply the assumptions that all inputting
components make about this interaction.

This is presented in [AL93] for discrete systems. In the case of hybrid systems, there are in addition
assumptions about the continuous evolution of input variables during flow transitions, and guarantees for
the continuous evolution of output variables. That is, we need to distinguish between continuous flows and
discrete transitions. Such a distinction is possible using extensions of temporal logic, e.g., differential dynamic
logic [Plal0], or the temporal variant of MLSL [LinI5]. In order to avoid notational overhead, we do not
state the temporal aspects of the assumptions and guarantees in a fully formal way. Whenever we make use
of temporal operators like O (always), they refer to traces of both continuous and discrete behavior in a
similar fashion to HRELTL [CRT15] or temporal dynamic logic [Pla07]. That is, OF is true for a trace ¢ of
the system, if and only if I is true at all discrete transitions, and at all time points in the continuous flows
within .

4.2. Verification of multi-lane traffic maneuvers

The system discussed in this paper consist of many cars, each containing the three components velocity
controller VC, steering controller SC, and lane controller LC (see Fig. . Their specification contract is
given by the following assumptions Ai and guarantees Gj. We note that each assertion either is about
the continuous flow or about a discrete state transition that happens in reaction to one of the discrete
interactions within the system. For example, for the velocity controller, VC.A1 and VC.G1 below talk about
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any continuous flow, while VC.A2 relates to a state change resulting from a discrete interaction r(m) or

wd-r(n).
For the velocity controller VC we consider:

VC.A1 : During a continuous flow, the front distance fd (input) does not decrease faster than the current
velocity cv (that is, there is no car in front that goes in the opposite direction): fd’ > —cv, where fd’
denotes the timewise derivation of fd.

VC.A2 : After a discrete change of the front distance fd (which may be caused by an interaction r(m) or
wd-r(n) of the lane controller), the front distance is still larger than the safety distance: sd < fd.

VC.G1 : During a continuous flow, the safety distance sd (output) remains smaller than the front distance
fd (input): sd < fd. Note that this guarantee ensures, if VC.A2 is also satisfied, that the condition sd < fd
is always true.

For the steering controller SC we consider:

SC.A1 : When an input r(m) is received, |m — current_lane| = 1 holds.

SC.G1 : After the input of an r(m) interaction, the current left-to-right position will become centered around
the middle of lane m, and then an output wd-r(n) will be sent (where n is the previous current lane).

For the lane controller LC we consider:

LC.A1 : After an output r(m) is produced, an input wd-r(current_lane) will eventually be received. Using
the eventuality operator ¢ of temporal logic, we express this as: r(m) = O wd-r(current_lane).

LC.G1 : When an output r(m) is produced, V¢ : ¢ # ego — m & c.res V —safetyOverlap(ego, c), that is,
there is no overlap between the safety envelope of the current car ego and the space reserved for the
safety envelope of any other car on lane m.

LC.G2 : The front distance output fd is always equal to the distance to the next car reservation in front on
the current lane, or when, in a lane change maneuver, a target lane is reserved, to the minimum of this
distance and the distance to the reservation in front on the target lane.

LC.G3 : When an output r(m) is produced, |m — current_lane| = 1 holds.
For the multi-lane car traffic system, the goal G is that the safety condition
safe =V cy,ca: (c1 = co V (c1.res Nca.res = ) V —safetyOverlap(cy, c2))
stated in Section [2.4] should always hold. In terms of temporal logic, we express this as:
G =0 safe.

The assertion A which the multi-lane car traffic system assumes to be satisfied by the environment is as
follows:

A = safe holds initially and VC.A1 holds during all continuous flows.

We now turn to the compositional verification.
Verification of the safety goal — premise (1) of the proof rule:

The assertion safe may become false in the following situations: (1) when the intersection cj.res N cqo.res
becomes non-empty, and (2) when the safetyOuverlap(ci, co) between two cars ¢; and ¢o with reservations on
the same lane becomes true. The first situation may only occur when ¢; (or c2) executes an r(m) interaction.
However, in this case the guarantee LC.G1 states that for all other cars ¢o (or ¢1) either m is not included
in cy.res (or ¢j.res, and therefore c;.res N ce.res remains empty) or safetyOverlap(cy, co) is false. Therefore
safe remains true.

In the second situation (two cars with reservations on the same lane), we consider the car further behind
for which the VC component controls the speed such that the safety distance sd is always smaller than
the front distance fd (guarantee VC.G1). Since the front distance fd is the minimum of the distances to
the reservations on the lanes for which the car has its own reservations (guarantee LC.G2), the distance
to all these cars remains larger than the safety distance sd, and the assertion safe remains true during the
continuous flow.
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Verification of the component assumptions — premise (2) of the proof rule:

e VC.A1 is trivially implied by the assumptions A of the multi-lane car traffic system.

e VC.A2 refers to the discrete interactions r(m) and wd-r(n). LC.G2 provides guarantees about the resulting
values of the fd variable. Only in case of an r(m) interaction is there any danger of violating VC.A2. For
this interaction, LC.G1 (for this car and all other cars in the system) ensures that VC.A2 is satisfied
after the interaction.

e SC.A1 is implied by LC.G3.
e LLC.A1 is implied by the second part of SC.G1.

Verification of component implementations — premise (3) of the proof rule:

A possible implementation of the lane controller is discussed in detail in Section 3. The main issue there
was the proof of the guarantee LC.G1. LC.G2 was discussed in Section 3.5. LC.G3 follows directly from
the state machine shown in Figure 3(b) because the transition ¢; : c¢(m) can only occur when the condition
m € {n —1,n + 1} is satisfied, where n refers to the current lane.

4.3. Other considerations
Liveness:

We showed above that safety is always satisfied. In addition, one may also be interested in proving a liveness
condition, namely that some lane change will actually occur after a lane-change-request is received. In fact,
SC.G1 states that some lane change will occur if an r(m) input is received. However, there is no guarantee
that the lane controller will generate the r(m) interaction after a lane-change-request is received.

As discussed on Section 3.4, the t5 transition of the LC state machine of Figure 3(b), which generates the
r(m), has the enabling condition that the car has no safety overlap with any reservation made by another car.
This condition may remain continuously false in very heavy traffic conditions, or there may be contention
with another car that wants to use the space (e.g. car F' in Fig. 1), This contention may lead to an infinite
loop, which may be avoided by given priority to one of the cars, or by introducing a random delay before
the claim is repeated.

An extension:

An interesting extension of the car behavior is described in [DMRI14] which concerns the reduction of the
velocity when a curved trajectory is followed in order to keep the passenger comfortable with the exerted
centrifugal force. This involves a collaboration between the steering controller and the velocity controller, as
expressed by the following additional guarantees and assumptions:

SC.A2 : When the car gets into a curve, the current velocity is sufficiently small to guarantee SC.G2 can
be satisfied.

SC.G2 : The centrifugal force due to steering is always smaller than the driver’s comfort limit.
VC.G2 : equivalent to SC.A2.
VC.G3 : The current velocity (output) is close to the target velocity (input).

The assumption SC.A2 could be assured by a corresponding guarantee of the velocity controller (namely
VC.G2). However, to realize such a guarantee, the velocity controller requires some additional inputs. For
instance, one could introduce an additional sensor that signals speed restrictions and provides two additional
inputs to the velocity controller: maximum velocity and distance where this speed restriction applies (such
restrictions may be due to highway curvature or to speed limit signs).

We note that SC.G2 (which requires VC.G2) and VC.G3 are conflicting goals, that is, it may be impossible
to realize them simultaneously. In [DMR14] it is proposed to order conflicting goals according to their priority.
In this example, SC.G2 would have higher priority than VC.G3. The paper [DMRI4] also discusses the
development of appropriate control procedures for conflicting goals.
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5. Conclusion

This paper revisits the traffic maneuvers on multi-lane highways as discussed in [HLOR11]. The main con-
clusions of the discussions in this paper, which apply to the control of hybrid systems in general, are as
follows:

(1) For verifying the safety of systems consisting of several loosely coupled components, where the behavior
of a component may depend on the state of other components and where there may be some (even small)
delay of communication, a modeling paradigm using interleaving semantics is not suitable. The possibility
that different discrete transitions of several components occur in parallel must be considered, which can be
modeled by synchronous modeling paradigms. (For a detailed discussion, see Section .

(2) Well-known algorithms for synthesizing controllers for discrete event systems (e.g. [CWI0]) can be
used for synthesizing controllers for the discrete transitions of hybrid systems. Corresponding algorithms exist
for interleaving semantics, synchronous systems, and IOA [vB13]. (For a detailed discussion, see Section [3.1)).

(3) When the global behavior involving several system components is known, for instance the actions that
should be performed by different controllers of different components, then the behavior of each controller,
including the exchange of coordination messages, can be synthesized using an algorithm described in [GvB90].
(For a detailed discussion, see Section [3.6)).

(4) A modular modeling of hybrid systems is possible, however, the different system components are nor-
mally not independent of one another. The mutual dependencies should be described using an assumption-
guarantee paradigm where the specification of each component describes (a) the assumptions that the com-
ponent makes about the behavior of the other components in its environment, and (b) the guarantees that
the component makes about its own behavior. In the HIOA specification paradigm described in [LSV03],
the assumptions involve constraints on the possible trajectories of input variables and assumptions about
possible discrete input actions.
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