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1 Department of Computing Science, University of Oldenburg, Germany
{martin.hilscher, sven.linker, olderog}@informatik.uni-oldenburg.de

2 Department of Computer Science, Aalborg University, Denmark
apr@cs.aau.dk

Abstract. We present an approach to prove safety (collision freedom)
of multi-lane motorway traffic with lane-change manoeuvres. This is ul-
timately a hybrid verification problem due to the continuous dynamics of
the cars. We abstract from the dynamics by introducing a new spatial in-
terval logic based on the view of each car. To guarantee safety, we present
two variants of a lane-change controller, one with perfect knowledge of
the safety envelopes of neighbouring cars and one which takes only the
size of the neighbouring cars into account. Based on these controllers
we provide a local safety proof for unboundedly many cars by showing
that at any moment the reserved space of each car is disjoint from the
reserved space of any other car.

Keywords. Multi-lane motorway traffic, lane-change manoeuvre, colli-
sion freedom, abstract modelling, spatial interval logic, timed automata

1 Introduction

To increase the safety of road traffic many individual driving assistant systems
based on suitable sensors have been developed for cars. The next step is to utilize
car to car communication to combine such individual system to build up more
advanced assistance functionalities. In this paper we study one such functionality,
lane-change assistance for cars driving on a multi-lane motorway. The challenge
is to develop lane-change controllers based on suitable sensor and communication
facilities such that the safety (collision freedom) of multi-lane motorway traffic
can be demonstrated if all cars are equipped with such a controller. This is
ultimately a problem of hybrid system verification, where the car dynamics, the
car controllers, and suitable assumptions together should imply safety.

In the California PATH (Partners for Advanced Transit and Highways) project
automated highway systems for car platoons including lane change have been de-
signed. Lygeros et al. [1] sketch a safety proof taking car dynamics into account,
but admitting safe collisions, i.e., collisions at a low speed. Not all scenarios of
multi-lane traffic are covered in the analysis. Jula et al. [2] provide calculations
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of safe longitudinal distances between cars based on car dynamics. Werling et al.
[3] study car traffic in urban scenarios and an abstract representation of several
car manoeuvres. In their analysis cars are assumed to drive with constant speed.
To simplify safety proofs controller patterns are exploited in Damm et al. [4],
where a proof rule for collision freedom of two traffic agents based on criticality
functions is proposed. This proof rule has for instance been applied to verify a
distance controller. However, it is not clear how to extend this approach to deal
with arbitrarily many cars on a motorway. Our paper is inspired by approaches
to controller design for hybrid systems that separate the dynamics from the con-
trol layer. Raisch et al. [5,6] introduce abstraction and refinement to support a
hierarchical design of hybrid control systems. Van Schuppen et al. [7] introduce
synthesis of control laws for piecewise-affine hybrid systems based on simplices.

Our key idea for coping with the safety of many cars on a motorway is to show
that different cars occupy and reserve disjoint spaces. To this end, we introduce
an abstract model of multi-lane motorway traffic based on spatial properties of
local views of cars. The properties are expressed in a new dedicated Multi-Lane
Spatial Logic (MLSL) inspired by Moskowski’s interval temporal logic [8], Zhou,
Hoare and Ravn’s Duration Calculus [9], and Schäfer’s Shape Calculus [10].
MLSL is a two-dimensional extension of interval temporal logic, where one di-
mension has a continuous space (the position in each lane) and the other has a
discrete space (the number of the lane). In MLSL we can for instance express
that a car E has reserved a certain space on its lane. However, that the size of
this reservation covers the braking distance of E is not part of the spatial logic.
This would come into the picture only when refining the spatial properties to
the car dynamics, which is not part of this paper. By using MLSL, we separate
the purely spatial reasoning from the car dynamics.

As we shall see, spatial properties needed for the safety proof can be expressed
very concisely in MLSL. We shall use formulas of MLSL as guards and state
invariants of abstract lane-change controllers. In a technical realisation of such
controllers, the properties that may appear in the formulas stipulate suitable
sensors of the cars, for instance distance sensors.

The contributions of our paper are follows:

– we introduce an abstract model of motorway traffic with lane-change ma-
noeuvres and a suitable spatial interval logic MLSL (Sect. 2);

– we provide two variants of lane-change controllers, a simple one with perfect
knowledge of the safety envelopes of neighbouring cars and an elaborated
one which takes only the extension of the neighbouring cars into account,
but requires communication with a helper car (Sect. 3);

– we conduct proofs of safety (collision freedom) for both controllers (Sect. 4).

Finally, in Sect. 5 we conclude and discuss more related and future work.

2 Abstract Model

Usually, road traffic is modelled as a dynamical system, where each vehicle has a
trajectory in the plane defined by its position, its speed and its acceleration [1].



However, to conduct a proof of safety of many cars on a multi-lane motorway,
this is a far too detailed description of traffic. Thus we introduce a more abstract
model which is based on local views of cars as shown in Fig. 1.

We start from a global picture of multi-lane motorway traffic, where the road
has an infinite extension with positions represented by the real numbers and
where lanes are represented by natural numbers 0, 1, . . . , n. At each moment of
time each car, with a unique identity denoted by letters A, B, . . . , has its position
pos, speed spd, and acceleration acc. We assume that all traffic proceeds in one
direction, with increasing position values, in the pictures shown from left to right.
The abstract model is introduced by allowing for each car only local views of
this traffic. A view of a car E comprises a contiguous subset of lanes, and has a
bounded extension. A view containing all lanes with an extension up to a given
constant, the horizon, will be called standard view.
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Fig. 1. View of car E comprising a bounded extension of lanes 1 and 0. Car
E sees its own reservation, both the reservation and the claim of car A ahead,
which is preparing for a change from lane 0 to lane 1, and part of the reservation
of car C driving on a neighbouring lane behind E. It does not see the cars B,D
and F because they are driving outside of its view.

What a car “knows” of its view is expressed by formulas in a dedicated multi-
lane spatial logic, which extends interval temporal logic [8] to two dimensions,
one with a continuous space (the position in each lane) and the other with a
discrete space (the number of the lane). Such a formula consists of a finite list
of lanes, where each lane is characterized by a finite sequence of segments. A
segment is either occupied by a car, say E, or it is empty (free). For instance, in
the view of car E shown in Fig. 1, the following formula φ holds:

φ ≡
〈

free a E a free a cl(A) a free
C a free a re(A) a free

〉
Here a is the chop operator of interval temporal logic; it serves to separate
adjacent segments in a lane. In the logic we can distinguish whether a car A has
reserved a space in a lane (re(A)) or only claimed a space (cl(A)) for a planned
lane change manoeuvre. We stipulate that reserved and claimed spaces have the
extension of the safety envelopes of the cars, which include at each moment the
speed dependent braking distances. The key idea of our approach is that we
abstract from the exact values of these distances in our safety proof.



2.1 Traffic snapshot

We introduce a formal model T S of a traffic snapshot, which describes the traffic
on the motorway at a given point in time. Henceforth we assume a globally unique
identifier for each car and take I as the set of all such car identifiers, with typical
elements A,B, . . . . Furthermore, L = {0, . . . , N}, for some fixed N ≥ 1, denotes
the set of motorway lanes, with typical elements l,m, n.

Definition 1 (Traffic snapshot). A traffic snapshot T S is a structure

T S = (res, clm, pos, spd , acc),

where res, clm, pos, spd , acc are functions

– res : I→ P(L) such that res(C) is the set of lanes C reserves,
– clm : I→ P(L) such that clm(C) is the set of lanes C claims,
– pos : I→ R such that pos(C) is the position of car C along the lanes,
– spd : I→ R such that spd(C) is the current speed of the car C,
– acc : I→ R such that acc(C) is the current acceleration of the car C.

We denote the set of all traffic snapshots by TS.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot T S = (res, clm, pos, spd , acc). Note that we
use the overriding notation ⊕ of Z for function updates [11].

T S t−→T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t+ 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t (1)

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧{n+ 1, n− 1} ∩ res(C) 6= ∅
∧ clm′ = clm⊕ {C 7→ {n}} (2)

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅} (3)

T S r(C)−−−→T S ′ ⇔ T S ′ = (res′, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅}
∧ res′ = res⊕ {C 7→ res(C) ∪ clm(C)} (4)

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, pos, spd , acc)

∧ res′ = res⊕ {C 7→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2 (5)

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (res, clm, pos, spd , acc′)

∧ acc′ = acc ⊕ {C 7→ a} (6)



In (1) time can pass, which results in the cars moving along the motorway accord-
ing to their respective speeds and accelerations. A car may claim a neighbouring
lane n iff it currently does not already claim another lane or is in the progress of
changing the lane and therefore reserves two lanes (2). Furthermore a car may
withdraw a claim (3) or reserve a previously claimed lane (4) or withdraw the
reservation of all but one of the lanes it is moving on (5). Finally a car may
change its acceleration (6).

Example. The following trace shows a car C driving for t1 seconds on lane 1
or 3, then claiming lane 2, driving for t2 seconds while claiming lane 2, reserving
lane 2, driving for tlc seconds on both lanes (moving over) and then withdrawing
all reservations but the one for lane 2.

T S1
t1−→T S2

c(C,2)−−−−→T S3
t2−→T S4

r(C)−−−→T S5
tlc−→T S6

wd r(C,2)−−−−−−→T S7

2.2 View

For our safety proof we will restrict ourselves to finite parts of a traffic snapshot
T S called views, the intuition being that the safety of manoeuvres can be shown
using local information only.

Definition 3 (View). A view V is defined as a structure V = (L,X,E), where

– L = [l, n] ⊆ L is an interval of lanes that are visible in the view,

– X = [r, t] ⊆ R is the extension that is visible in the view,

– E ∈ I is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V L

′
= (L′, X,E) and VX′ =

(L,X ′, E), where L′ and X ′ are subintervals of L and X, respectively.

For a car E and a traffic snapshot T S = (res, clm, pos, spd , acc) we define
the standard view of E as

Vs(E, T S) = (L, [pos(E)− h, pos(E) + h], E) ,

where the horizon h is chosen such that a car driving at maximum speed can,
with lowest deceleration, come to a standstill within the horizon h.

Sensor Function. Subsequently we will use a car dependent sensor function
ΩE : I× TS→ R+ which, given a car identifier and a traffic snapshot, provides
the length of the corresponding car, as perceived by E. In Section 3 we will give
safety proofs for two sensor function instantiations, one delivering the safety
envelope of all cars (perfect knowledge) and one delivering only the actual size
of cars. See Fig. 1 for illustration.



Abbreviations For a given view V = (L,X,E) and a traffic snapshot T S =
(res, clm, pos, spd , acc) we use the following abbreviations:

IV = {C | C ∈ I ∧ (∃l ∈ L : l ∈ res(C) ∨ l ∈ clm(C))

∧ [pos(C), pos(C) +ΩE(C, T S)] ∩X 6= ∅} (7)

resV = res ∩ (IV × P(L)) (8)

clmV = clm ∩ (IV × P(L)) (9)

lenV :

{
IV → P(X)
C 7→ [pos(C), pos(C) +ΩE(C, T S)] ∩X (10)

The set (7) is constructed in the following way: a car C is in IV iff it occupies
(intends to change to) a lane considered in this view and C’s occupation of the
road as perceived by E intersects with the extension considered in the view. The
functions (8) and (9) are restrictions of their counterparts in T S to the sets of
lanes and identifiers considered in this view. The function (10) gives us the part
of the motorway car E perceives occupied by a car cut on the edges of the view’s
extension.

2.3 A Multi-Lane Spatial Logic

In this section we will define the syntax and semantics of the spatial logic used in
the definition of the lane change controller. Since we are interested in the safety
of manoeuvres on a motorway with multiple lanes, we call this logic multi-lane
spatial logic (MLSL). We employ five different atoms, boolean connectors and
first-order quantification. Furthermore we use two chop operations. The first
chop is denoted by a like for interval logics, while the second chop operation is
given only by the vertical arrangement of formulae.

Their intuitions are as follows. A formula φ1 aφ2 is satisfied by a view V
with the extension [r, t], if V can be divided at a point s into two subviews V1
and V2, where V1 has the extension [r, s] and satisfies φ1 and V2 has the extension
[s, t] and satisfies φ2, respectively. A formula φ2

φ1
is satisfied by V with the lanes

l to n, if V can be split along a lane m into two subviews, V1 with the lanes l to
m and V2 with the lanes m+ 1 to n, where Vi satisfies φi for i = 1, 2.

The set of variables ranging over car identifiers is denoted by Var, with typical
elements c, d, u and v. To refer to the car owning the current view, we use a
special variable ego ∈ Var.

Definition 4 (Syntax). The syntax of the multi-lane spatial logic MLSL is
given by the following formulae:

φ ::= true | u = v | free | re(γ) | cl(γ) | φ1 ∧ φ2 | ¬φ1 | ∃v : φ1 | φ1 aφ2 |
φ2
φ1

where γ is a variable or a car identifier, and u and v are variables. We denote
the set of all MLSL formulae by Φ.



Definition 5 (Valuation and Modification). A valuation is a function
ν : Var → I. For a valuation ν we use the overriding notation ν ⊕ {v 7→ α} to
denote the modified valuation, where the value of v is modified to α.

Since the semantics is defined with respect to both views and valuations, we
will only consider valuations ν which are consistent with the current view V =
(L,X,E), which means that we require ν(ego) = E. In the following definition,
observe that we require that the spatial atoms may only hold on a view with
exactly one lane and an extension greater than zero. In the semantics of free, we
abstract from cars visible only at the endpoints of the view.

Definition 6 (Semantics). In the following, let u and v be variables and γ a
variable or a car identifier. The satisfaction of formulae with respect to a traffic
snapshot T S, a view V = (L,X,E) with L = [l, n] and X = [r, t], and a valuation
ν consistent with V is defined inductively as follows:

T S, V, ν |= true for all T S, V, ν
T S, V, ν |= u = v ⇔ ν(u) = ν(v)

T S, V, ν |= free ⇔ |L| = 1 and |X| > 0 and

∀i ∈ IV : lenV (i) ∩ (r, t) = ∅
T S, V, ν |= re(γ) ⇔ |L| = 1 and |X| > 0 and ν(γ) ∈ IV and

resV (ν(γ)) = L and X = lenV (ν(γ))

T S, V, ν |= cl(γ) ⇔ |L| = 1 and |X| > 0 and ν(γ) ∈ IV and

clmV (ν(γ)) = L and X = lenV (ν(γ))

T S, V, ν |= φ1 ∧ φ2 ⇔ T S, V, ν |= φ1 and T S, V, ν |= φ2

T S, V, ν |= ¬φ ⇔ not T S, V, ν |= φ

T S, V, ν |= ∃v : φ ⇔ ∃α ∈ IV : T S, V, ν ⊕ {v 7→ α} |= φ

T S, V, ν |= φ1 aφ2 ⇔ ∃ s : r ≤ s ≤ t and

T S, V[r,s], ν |= φ1 and T S, V[s,t], ν |= φ2

T S, V, ν |= φ2
φ1

⇔ ∃m : l − 1 ≤ m ≤ n+ 1 and

T S, V [l,m], ν |= φ1 and T S, V [m+1,n], ν |= φ2

We write T S |= φ if T S, V, ν |= φ for all views V and consistent valuations ν.

For the semantics of the vertical chop, we set the interval [l,m] = ∅ if l > m.
A view V with an empty set of lanes may only satisfy true or an equality formula.
We remark that both chop modalities are associative. For the definition of the
controller we employ some abbreviations. In addition to the usual definitions of
∨,→,↔ and ∀, we use a single variable or car identifier γ as an abbreviation
for re(γ) ∨ cl(γ). Furthermore, we use the notation 〈φ〉 for the two-dimensional



modality somewhere φ, defined in terms of both chop operations:

〈φ〉 ≡ true a

 true
φ

true

 a true.

In the following, the main application of the somewhere modality is to abstract
the exact positions on the road from formulae, e.g., to identify overlaps of claims
and safety envelopes. If a view V satisfies the formula ∃c : 〈cl(ego) ∧ re(c)〉, then
there is a part on some lane in V occupied by both the claim of the car under
consideration and the safety envelope of some car c.

In the safety proof we exploit that somewhere distributes over disjunction:

〈φ1 ∨ φ2〉 ≡ 〈φ1〉 ∨ 〈φ2〉 . (11)

This equivalence is an immediate consequence of the semantics.

3 Controllers

We now present two lane-change controllers, one with perfect knowledge of the
safety envelopes (covering the necessary braking distances) of neighbouring cars
and one which takes only the physical size of the neighbouring cars into account.

The controllers are specified as timed automata [12] with clocks ranging over
R and data variables ranging over L and I. The semantics is a transition system,
where a configuration C consists of a traffic snapshot T S, the standard view V of
a car, a valuation ν (also of clocks and data variables), and the current state q of
the controller, i.e. C = (T S, V, ν, q). To restrict the transitions which are allowed
in a lane-change manoeuvre, like the creation of new claims and the extension
and shrinking of reservations, suitable MLSL formulae will appear in transition
guards and state invariants. We take care that none of our controllers introduces
a timelock, which would prevent time from progressing unboundedly.

Timed automata working in parallel can communicate with each other via
broadcast channels as in UPPAAL [13]. Using a CSP-style notation [14], sending
a value val over a channel p is denoted by p!val; receiving a value over p and
binding it to a variable c appearing free in a guard φ is denoted by p?c : φ.
Formally, T S, V, ν |= p?c : φ iff T S, V, ν⊕{c 7→ val} |= φ, where val is the value
simultaneously sent via p!val by another automaton. A message sent by a car C
is broadcast to all cars within the extension of the standard view of C.

3.1 Changing Lanes with Perfect Knowledge

Let us first assume that every car can perceive the full extension of claims and
reservations of all cars within its view. In other words, every car has perfect
knowledge of the status of the road within its view. This assumption is formalised
through the sensor function ΩE , which defines the extension of the cars seen by
the owner E of a view. Putting ΩE(I, T S) = se(I, T S) models that the sensors



return the whole safety envelope for all cars. This implies that a car E perceives
a car C as soon as C’s safety envelope enters the view of E.

Intuitively, a car C on lane n, in the following called the actor, can claim a
space on a target lane m next to n to start the manoeuvre. This does not yet
imply that C actually changes the lane. It corresponds to setting the direction
indicator to prepare for a lane change. The goal of the actor is to safely convert its
claim into a reservation ofm. If the space claimed by the actor is already occupied
or claimed by another car (potential collision check), C removes its claim and
continues driving on its current lane. Even though we assume instantaneous
transitions, we allow time to pass up to a certain time bound to between claiming
and reserving a lane. If no potential collision occurs, the actor communicates its
new reservation and starts its manoeuvre. Since we abstract from the exact form
of changing the lane, we just assume that the manoeuvre takes at most tlc time
to finish. Finally, the actor shrinks its reservation to solely m.

This intuition is formalised by the lane-change controller LCP in Fig. 2. At
the initial state q0, we assume that the car has reserved exactly one lane, which
is saved in the variable n. Furthermore, we employ an auxiliary variable l to
store the lane the actor wants to change to. The collision check cc expresses the
disjointness of the actor’s reservation and the reservations of all other cars:

cc ≡ ¬∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉 ,

the potential collision check pc(c) for a car c expresses the overlapping of the
actor’s claim with (the reservation or claim of) c:

pc(c) ≡ c 6= ego ∧ 〈cl(ego) ∧ c〉 .

q0 : cc q1 q2 :
¬∃c : pc(c)
x ≤ to

q3 : x ≤ tlc

n+ 1 ≤ N

/c(ego, n+ 1);

l := n+ 1

0 ≤ n− 1

/c(ego, n− 1);

l := n− 1

∃c : pc(c)
/wd c(ego) ¬∃c : pc(c)

/x := 0

∃c : pc(c)
/wd c(ego)

¬∃c : pc(c)
/r(ego);x := 0

x ≥ tlc/

wd r(ego, l);n := l

Fig. 2. Controller LCP for the Lane-Change Manoeuvre with Perfect Knowledge



3.2 A More Realistic Approach for Changing Lanes

The assumption that every car can perceive every safety envelope within its
view is very strong. In this section, we define a controller which accomplishes a
lane-change manoeuvre with much less information: each car knows only the size
of the other cars, while it still knows its own safety envelope. Hence the sensor
function for a view V = (L,X,E) is defined conditionally by

ΩE(I, T S) ≡ if I = E then se(I, T S) else size(I) fi.

In this setting, the potential collision check is not sufficient for the safety of the
manoeuvre, since the actor cannot know whether the safety envelope of a car on
the lane the actor wants to occupy overlaps with its own safety envelope. Our
approach to overcome this problem is the definition of a helper controller HC
(Fig. 4) implemented in addition to the lane-change controller LC (Fig. 3).

q0 : cc q1 q2 :
¬∃c : pc(c)
x < to

q4 : x ≤ tlc

q3 : x ≤ tlc

n+ 1 ≤ N

/c(ego, n+ 1);

l := n+ 1

0 ≤ n− 1

/c(ego, n− 1);

l := n− 1

∃c : pc(c)
/wd c(ego) ¬∃c : pc(c)/

req !ego;x := 0

∃c : pc(c) ∨ no?c : ego = c∨
(x ≥ to ∧ ∃c : ph(c))

/wd c(ego)

yes?c : ego = c∧
¬∃c : pc(c)/
r(ego);x := 0

¬∃c : (ph(c) ∨ pc(c))

/r(ego);x := 0

x ≥ tlc/

wd r(ego, l);n := l

x ≥ tlc/wd r(ego, l);

lc end !ego;n := l

Fig. 3. Controller LC for the Lane-Change Manoeuvre with a Helper Car

The idea of the lane-change manoeuvre with the help of these controllers
is similar to the previously described manoeuvre. The actor sets a claim and
checks whether this claim overlaps with already existing claims and reservations.
However, since the actor can perceive via re(c) only the physical size of other
cars c and not the whole of their safety envelopes, it cannot know whether its
claim overlaps with a car driving behind the actor on the target lane. Hence the



q0 q1 :
¬lc∧
x < to

q3 :¬lc ∧ x ≤ tlc

q2 : x ≤ to

q4 : U q5 : U

req?c : ¬ph−1(c)req?c : ¬ph−1(c)

req?c : ¬ph−1(c)

req?c : ph−1(c) ∧ lc

/d := c;x := 0

no!d

req?c : (ph−1(c) ∧ h 6= c)

/d := c no!d

req?c : (ph−1(c) ∧ h 6= c)

/d := c
no!d

req?c : ph−1(c) ∧ ¬lc
/x := 0;h := c

ph−1(h) ∧ x < to/

yes!h

x ≥ to/

no!h

(lc end?c : h = c)

∨x ≥ tlc

Fig. 4. Controller HC for Helper Car

actor broadcasts a request req to find a potential helper. Such a helper car has
to fulfill three conditions. It has to be on the target lane m, it has to be behind
the actor, and it must not already be involved in a lane-change manoeuvre.

The formula to identify such a car from the viewpoint of the actor is called
potential helper check :

ph(c) ≡ 〈re(c)a free a cl(ego)〉 .

If a such helper car is approached by a broadcast request req from the actor,
its controller HC checks for disjointness of its own reservation and the actor’s
claim, using the inverse potential helper check defined by

ph−1(c) ≡ 〈re(ego)a free a cl(c)〉 ,

and that it is not performing a lane-change manoeuvre, expressed by the formula

lc ≡
〈

ego
ego

〉
.

If these two conditions are satisfied, it responds with the acknowledgment yes.
Afterwards, it ensures that no other car may enter the lane in between the helper
and the actor. This is done in the urgent states [13] q4 and q5 of the controller
HC. Then, the actor may safely change the lane by extending its reserved space
to lane m and remove its claim. Otherwise, if no helper is available, the actor
waits for a certain time to without getting any response. Afterwards, it has to
check, whether a car entered its view on lane m, before possibly extending its
reservation to lane m. If m is free within the actor’s horizon, the reservation gets
extended, otherwise the actor removes its claim and returns to the initial state,
since it cannot guarantee the disjointness of its claim and the reservation of the
new car. After successfully changing the lane, the actor removes its reservation
of lane n and drives solely on lane m.



4 Safety Proof

The desired safety property is that at any moment the spaces reserved by differ-
ent cars are disjoint. To express this property we consider the formula

Safe ≡ ∀c, d : c 6= d⇒ ¬〈re(c) ∧ re(d)〉 ,

which states that in each lane any two different cars have disjoint reserved spaces.
The quantification over lanes arises implicitly by the negation of the somewhere
modality in Safe. We call a traffic snapshot T S safe if T S |= Safe holds. The
safety property depends on the following three assumptions.

Assumption A1. There is an initial safe traffic snapshot T S0.

Assumption A2. Every car C is equipped with a distance controller that keeps
the safety property invariant under time and acceleration transitions, i.e., for

every transition T S t−→T S ′ and T S acc(C,a)−−−−−→T S ′ if T S is safe also T S ′ is safe.

Informally, this means that the distance controller admits a positive acceler-
ation of C only if the space ahead permits this. Also, if the car ahead is slowing
down, the distance controller has to initiate braking (with negative acceleration)
of C to reduce the extension of its reservation (the safety envelope).

Assumption A3. Every car is equipped with a controller LCP as in Fig. 2.

Then the safety property is formalised by the following theorem.

Theorem 1 (Safety of LCP). Suppose that the assumptions A1–3 hold. Then
every traffic snapshot T S that is reachable from T S0 by time and acceleration
transitions and transitions allowed by the controller LCP in Fig. 2 is safe.

Proof. It suffices to prove safety from the perspective of each car, i.e., that there
is no other car with intersecting reserved space. Formally, we fix an arbitrary
car E and show that for all traffic snapshots T S reachable from T S0, all views
V of E, and all valuations with ν(ego) = E:

T S, V, ν |= Safe ′, where Safe ′ ≡ ¬∃ c 6= ego ∧ 〈re(ego) ∧ re(c)〉 . (12)

We proceed by induction on the number k of transitions needed to reach T S
from T S0.

Induction basis: k = 0. Then T S = T S0 and (12) holds by A1.

Induction step: k → k + 1. Consider some T S1 that is reachable from T S0 by
k transitions and thus satisfy (12) by induction hypothesis. Let T S result from
T S1 by one further transition, which we now examine.

For a transition T S1
t−→T S or T S1

acc(C,a)−−−−−→T S of any car C property (12)
holds for T S by A2. Of all other transitions allowed by the LCP controller of E,

only a reservation transition T S1
r(E)−−−→T S could possibly violate property (12).

In the LCP controller of E shown in Fig. 2 the only reservation transition starts
in state q2. This state satisfies the invariant

¬∃ c : c 6= ego ∧ 〈cl(ego) ∧ c〉 ,



which implies ¬∃ c : c 6= ego∧〈cl(ego) ∧ re(c)〉. By taking the induction hypoth-
esis (12) for T S1 into account, we thus have

T S1, V, ν |= ¬∃ c : c 6= ego ∧ 〈cl(ego) ∧ re(c)〉
∧ ¬∃ c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉 .

We transform this formula:

(¬∃ c : c 6= ego ∧ 〈cl(ego) ∧ re(c)〉) ∧ (¬∃ c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉)
↔ ¬∃ c : (c 6= ego ∧ 〈cl(ego) ∧ re(c)〉) ∨ (c 6= ego ∧ 〈re(ego) ∧ re(c)〉)
↔ ¬∃ c : c 6= ego ∧ (〈cl(ego) ∧ re(c)〉 ∨ 〈re(ego) ∧ re(c)〉)
↔ {somewhere distributes over disjunction: see (11)}
¬∃ c : c 6= ego ∧ 〈(cl(ego) ∧ re(c)) ∨ (re(ego) ∧ re(c))〉

↔ ¬∃ c : c 6= ego ∧ 〈(cl(ego) ∨ re(ego)) ∧ re(c)〉 .

Applying the Reservation Lemma 1 to the latter formula yields

T S, V, ν |= ¬∃ c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉 ,

which shows that (12) holds for T S. ut

We now connect formulae about reservations with the fact, that a newly
created reservation occupies the same space as a previous claim (A proof is
contained in the long version of this paper [15]).

Lemma 1 (Reservation). Consider a reservation transition T S r(C)−−−→T S ′ and
an MLSL formula φ′ not containing cl(γ) as a subformula. Let φ result from
φ′ by replacing every occurrence of re(γ) by re(γ) ∨ cl(γ). Then for all views
V = (L,X,E) with C ∈ IV and valuations ν with ν(γ) = C the following holds:

T S, V, ν |= φ if and only if T S ′, V, ν |= φ′.

4.1 Safety Proof for Changing Lanes with Help

As for the controller LCP, we want to prove that the property Safe is an invariant
of the allowed transitions, but now the with assumption A3 modified as follows:

Assumption A3. Every car is equipped with the controllers LC as in Fig. 3
and HC of Fig. 4 running in parallel.

Since this scenario incorporates communication between two cars, the helper
and the actor, we have to assume that a car changing a lane can perceive all cars
whose safety envelopes reach up to its position.

Assumption A4. The horizon h of the standard view (Def. 3) is at least the
length of the safety envelope of the fastest car with the smallest braking force.

Theorem 2 (Safety of LC and HC). Suppose that the assumptions A1–4
hold. Then every traffic snapshot T S that is reachable from T S0 by time and
acceleration transitions and transitions allowed by the controller LC in Fig. 3
and the helper controller HC in Fig. 4 is safe.



Proof. We refine the proof of Theorem 1. Fix an arbitrary car E and show that
for all traffic snapshots T S reachable from T S0, all helper carsH, standard views
V of E and VH of H, and valuations ν and ν′ consistent with the respective views:
T S, V, ν |= Safe ′ and T S, VH , ν′ |= Safe ′. Again, we proceed by induction on
the number k of transitions needed to reach T S from T S0.

Induction basis: k = 0. Then T S = T S0 and (12) holds by A1.

Induction step: k → k + 1. Consider some T S1 that is reachable from T S0
by k transitions and thus satisfy (12) by induction hypothesis. Let T S result
from T S1 by one further transition, which we now examine. As in the proof
of Theorem 1, the only possibly dangerous transition is a reservation transition

T S1
r(E)−−−→T S. In the controller LC of car E shown in Fig. 3 there are two such

transitions, both starting in state q2. Observe that in q2, whenever there is a
potential collision the manoeuvre is aborted. Hence, if a car D creates a new
claim overlapping with E’s claim, D or E withdraws its claim. Now, consider
the transition from q2 to q3. By A4 and since the safety envelope starts at the
position of its car, we may proceed as in the proof of Theorem 1.

Next, consider the transition from q2 to q4. We have to show that E’s claim
does not overlap with the reservation of the helper H. Let VH be the standard
view of H and ν′ be a valuation consistent with VH . Since the controller HC sends
to E the message yes!E, it has taken the transition with the guard ph−1(E),
exiting state q1 of HC, so T S1, VH , ν′ |= 〈re(ego)a free a cl(E)〉.

Since the state q1 of HC has the invariant lc, the subformula free is satisfied
by a subview with an extension greater than zero, and claims of E cannot overlap
with existing reservations of E, this implies

T S1, VH , ν′ |= ¬ 〈re(ego) ∧ (cl(E) ∨ re(E))〉 .

Since ν′(E) = E, we can apply the Reservation Lemma 1, which yields

T S, VH , ν′ |= ¬ 〈re(ego) ∧ re(E)〉 . ut

5 Conclusion

The novelty in our paper is the identification of a level of abstraction that enables
a purely spatial reasoning on safety. We proved safety for arbitrarily many cars
on the motorway locally, by considering at most two cars at a time.

More on related work. Manoeuvres of cars have been extensively studied in the
California PATH (Partners for Advanced Transit and Highways) project [16],
which aimed at an Automated Highway System (AHS) to increase safety and
throughput on highways. The project introduced the concept of a platoon, a
tightly spaced convoy of cars driving on a motorway at a relatively high speed.

In Hsu et al. [17] the architecture of the AHS system is outlined, and at the
platoon layer three manoeuvres are investigated: merge and split of platoons as
well as lane change of free traffic agents, i.e., single cars. For these manoeuvres



protocols are modelled as communicating finite state machines and tested within
the automata-based tool COSPAN by R. Kurshan. The protocol for lane change
does not take all possible traffic scenarios on neighbouring lanes into account.
For example, the scenario where cars are driving on both the target lane and the
lane next to it is not considered.

In Lygeros et al. [1] the analysis of [17] is refined by taking the hybrid con-
trollers as the model. Sufficient conditions on the car dynamics are established for
showing safety of the AHS system at the coordination layer (for communication
and cooperation between cars) and the regulation layer (for hybrid controllers
performing the traffic manoeuvres). The lane change manoeuvre is explicitly
investigated in a multi-lane safety theorem. However, its proof, based on an in-
duction argument on the number of cars, is only outlined. Moreover, the possible
scenarios of lane change in dense traffic are only partially covered. The scenario
where two cars wish to change to a common target lane is not taken into account.

The safety problem has also been studied for railway networks, which are
simpler to handle because the movements of trains are more constrained than
those of cars. Haxthausen and Peleska [18] give manual safety proof for trains
driving in an arbitrary railway network. Faber et al. [19] provide an automatic
verification of safety properties in railway networks.

Future work. On the application side we want to pursue an extension of the scope
of our work. For example, we intend to study the scenarios of urban traffic as in
[3]. Also, we would like to study variations of the assumptions made in our safety
proofs. On the foundational side we would like to investigate the connection of
MLSL with more traditional spatial logics based on topological models [20] and
its meta properties like decidability. Here proof ideas from [21] might be helpful.
This leads to question of automatic verification of the safety properties. Here
the approach of [19] could be considered.

The semantics of MLSL may be extended to include a length measurement.
Let φθ denote that φ holds for a length θ, where θ is a first-order term denoting
a real value. The semantics on p. 7 is extended by

T S, V, ν |= φθ ⇔ T S, V, ν |= φ and |X| = ν(θ).

The initial definition of MLSL semantics contained this case, but to our own sur-
prise, we did not make use of this measurement in the controllers and the safety
proofs, respectively. This is due to the fact that we reason at a very abstract
level, and that differences in lengths are only taken care of in the assumptions.

To link our work to hybrid systems, a refinement of the spatial reasoning in
this paper to the car dynamics is of interest. There we could benefit from the
approaches in [5,6,7,4] and expect that length measurements are needed.
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