Proving Safety of Traffic Manoeuvres on
Country Roads*

Martin Hilscher, Sven Linker, Ernst-Riidiger Olderog

Department of Computing Science, University of Oldenburg, Germany
{hilscher, linker, olderog}@informatik.uni-oldenburg.de

Abstract. We adapt the Multi-lane Spatial Logic MLSL, introduced
in [I] for proving the safety (collision freedom) of traffic manoeuvres on
multi-lane motorways, where all cars drive in one direction, to the setting
of country roads with two-way traffic. To this end, we need suitably
refined sensor functions and length measurement in MLSL. Our main
contribution is to show that also here we can separate the purely spatial
reasoning from the underlying car dynamics in the safety proof.

1 Introduction

The safety of road traffic can be increased by new assistance systems that are
based on suitable sensors and communications between cars. Reasoning about
car safety (collision freedom) is reasoning about hybrid systems involving car
dynamics and spatial considerations. To simplify this reasoning, we proposed in
[1] to separate the purely spatial reasoning from the car dynamics. To formalise
this idea, we introduced a dedicated Multi-lane Spatial Logic (MLSL) for ex-
pressing spatial properties on multi-lane motorways, where the traffic is flowing
on several lanes, but in one direction. We focused on the lane-change manoeuvre.

MLSL is inspired by Moszkowski’s interval temporal logic [2], Zhou, Hoare
and Ravn’s Duration Calculus [3], and Schiifer’s Shape Calculus [4]. MLSL is a
two-dimensional extension of interval temporal logic, where one dimension has
a continuous space (the position in each lane) and the other has a discrete space
(the number of the lane). In MLSL we can, for example, express that a car has
reserved a certain space on its lane. Safety then amounts to proving that under
certain assumptions the reservation of different cars are always disjoint.

In this paper we turn to the more intricate setting of (multi-lane) country
roads, with two-way traffic. We investigate the safety of an overtaking manoeu-
vre in the presence of opposing traffic. The original definition of MLSL only
allowed for qualtitative reasoning, which is not aedequate for the definition of
the overtaking protocol. Whenever a car changes into opposing traffic, it has
to check beforehand whether the free space is sufficiently large for completing
the manoeuvre. Hence we extend MLSL with the possibility to measure lengths.

* This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

Our findings are that modulo these small extensions, the setting of MLSL is well
suited to cover this setting and manoeuvre.

Related Work. Safety on multi-lane motorways was investigated extensively
in the context of the California PATH project, where manoeuvres of car pla-
toons including lane change have been studied [5]. Here the car dynamics was an
integral part of the safety reasoning. Safety in urban traffic scenarios has been
studied in [6]. The manoeuvres include lane change, double lane change with
opposing traffic, right and left turns. The analysis is based on an abstract graph
representing two possibly conflicting car trajectories and on some simplifying
assumptions like a constant speed of the cars involved.

The idea of separating the dynamics from the control layer is pursued in
the controller design for hybrid systems. In [7] the authors introduce abstrac-
tion and refinement in a hierarchical design of hybrid control systems. In [§] the
synthesis of control laws for piecewise-affine hybrid systems is introduced. In [9)
controller patterns were proposed to simplify safety proofs for two cooperating
trafic agents. Proving system correctness across a number of different abstrac-
tion layers continues a line pioneered in the ProCoS (Provably Correct Systems)
project [10], in which He Jifeng made significant contributions.

The novelty of our approach is that the control layer is given by spatial
properties formalised in MLSL. In this paper we extend this approach to country
roads with two-way traffic. To this end, we refine the abstract traffic model of [I]
by taking traffic directions into account, by defining new sensor functions, and
by adding length measurement in the logic MLSL.

2 Abstract Model

Throughout this paper we work with an abstract model of (multi-lane) coun-
try roads with two-way traffic that emphasises spatial properties, but hides the
car dynamic as much as possible. In this model a country road has an infinite
extension with positions represented by the real numbers, and lanes are repre-
sented by natural numbers 0, 1,...,n. At each moment of time each car, with a
unique identity denoted by letters A, B, ..., has its position pos, speed spd, and
acceleration acc. On country roads cars can move in two directions, one with
increasing position values, in pictures shown from left to right, and one with
decreasing position values, in pictures shown from right to left.

The abstract model is introduced by allowing for each car only local views of
this traffic. A view of a car F comprises a contiguous subset of lanes, and has a
bounded extension. A view containing all lanes with an extension up to a given
constant, the horizon, is called standard view.

What a car “knows” of its view is expressed by formulas in the multi-lane
spatial logic MLSL introduced in [I]. It extends interval temporal logic [2] to
two dimensions, one with a continuous space (the position in each lane) and the
other with a discrete space (the number of the lane). Such a formula consists
of a finite list of lanes, where each lane is characterized by a finite sequence of
segments. A segment is either occupied by a car, say E, or it is empty (free). For

2 claim E > d < A
1
El > C > size

0 F > spd(B), acc(B) = D >

safety envelope

view of E
pos(E)

Fig. 1. View of car F covering a bounded extension of lanes 0, 1, and 2. Car E
sees its own reservation and claim for preparing a change from lane 1 into the
opposing traffic of car A on lane 2 to overtake car C' ahead in lane 1. In this
view, ¥ does not see the cars B and F.

instance, in the view of car E shown in Fig. [1] the following formula ¢ holds:

_ < free ~ cl(E) ~ (free)d ~ A >
¢= free ~re(E) ~ free ~ C ™ free/’

where ™ is the chop operator of interval temporal logic; it serves to separate
adjacent segments in a lane. In the logic we can distinguish whether a car E has
reserved a space in a lane (re(E)) or only claimed a space (cl(E)) for a planned
lane change manoeuvre. We stipulate that reserved and claimed spaces have the
extension of the safety envelopes of the cars, which include at each moment the
speed dependent braking distances. The formula ¢ expresses also that there is a
distance d between the claim of car F and the opposing car A.

We shall use such formulas as guards and location invariants of abstract
controllers for car manoeuvres. In a technical realisation of such controllers, the
properties that may appear in the formulae stipulate suitable sensors of the cars,
for instance distance sensors.

2.1 Traffic snapshot

We recall definitions from [I], extending them where needed. Let L = {0,..., N},
for some fixed N > 1, denote the set of lanes, with typical elements [, m,n. We
assume a globally unique identifier for each car and take I as the set of all such
car identifiers, with typical elements A, B, To formalise two-way traffic, we
refine the setting of [I] in two ways. First, we assume a border b € L such that
traffic on the lanes [< b normally drives in the direction of increasing values
of R (from left to right), and traffic on the lanes | > b normally drives in the
direction of decreasing values of R (from right to left). Only on the lanes b and
b+ 1 cars may temporarily drive in opposite direction to perform an overtaking
manoeuvre. Second, we partition I into the sets I_, and I_, i.e., I_, UI_ =T and
I, NI_ = (. The subscripts indicate the driving direction of the cars. Cars in

I, drive from left to right, and cars in [._ drive from right to left. For simplicity
we assume I[_, and I,_ to be countably infinite.

Definition 1 (Traffic snapshot). 4 traffic snapshot TS is a structure TS =
(res, clm, pos, spd, acc), where res, clm, pos, spd, acc are functions

— res: 1 — P(L) such that res(C) is the set of lanes that car C reserves,

— cm : T — P(L) such that clm(C') is the set of lanes that car C claims,

— pos : T — R such that pos(C) is the position of the rear of car C on its lane,
— spd : I — R such that spd(C) is the current speed of car C,

— acc : T —= R such that acc(C) is the current acceleration of car C.

Let TS denote the set of all traffic snapshots.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot TS = (res,clm, pos, spd, acc). We use the
overriding notation & of Z for function updates [I1]].
TSLTS « TS' = (res, clm, pos’, spd’, acc)
AVC € I: pos'(C) = pos(C) + spd(C) - t + Sacc(C) - £

AVC € 1: spd'(C) = spd(C) + acc(C) - t (1)
TSM)TS' & TS = (res,clm, pos, spd, acc’)
A acc’ = acc ® {C + a} (2)
TSM)TS’ =3 TS' = (res,clm’, pos, spd, acc)
Aledm(C)] =0 A Jres(C)] =1
AMn+1,n—1}Nres(C)#0
Aclm' =clm & {C — {n}} (3)
TSL(C))TS’ & TS = (res,clm/, pos, spd, acc)
Aelm! = clm & {C — 0} (4)
78 %Ts o TS = (res’,clm/, pos, spd, acc)
Aelm! = cm & {C — 0}
Ares’ =res® {C — res(C) U cdm(C)} (5)
TSM)TS’ & TS = (res’, clm, pos, spd, acc)

Ares' =res® {C+— {n}}
An € res(C) A |res(C)| =2 (6)

The transitions allow for the passage of time (lf), with cars moving along the
road, and a change of acceleration . These two transitions model abstractly
the dynamic aspects of cars. To prepare for a lane change, a car may claim a
neighbouring lane, which can be thought of as setting the turn signal, while it is
not already in progress of changing lanes or has set the turn signal already . A
car may reserve a previously claimed lane . Also, it may withdraw claims
and reservations @, as long as at least one lane remains reserved by a car.

2.2 View

In our safety proof we will restrict ourselves to finite parts of a traffic snapshot
TS called views, the intuition being that the safety of manoeuvres can be shown
using local information only.

Definition 3 (View). A view V is defined as a structure V = (L, X, E), where

— L=1[,n] CL is an interval of lanes that are visible in the view,
— X =[r,t] CR is the extension that is visible in the view,
— FE €1 is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: VE' = (L', X,E) and Vx: =
(L, X', E), where L' and X' are subintervals of L and X, respectively.

For a car E and a traffic snapshot TS = (res, clm, pos, spd, acc) we define
the standard view of E as

Vi(E, TS) = (L, [pos(E) — h,pos(E) + h], E),

where the horizon h is chosen such that a car driving at maximum speed can,
with lowest deceleration, come to a standstill within the horizon h plus twice
the distance it maximally takes to perform the overtake, i.e., the worst distance
needed to pass a car and for changing lanes into the opposing traffic and back
again. This way a car can be perceived early enough when planning an overtaking
manoeuuvre.

We can give a rough estimate for the horizon h. Let us assume that a car
E driving at 100 km/h wants to overtake a slower car travelling at 80 km/h.
Passing the slower car will then take about 17 seconds. In this time the car
travels approximatly 500 m. Furthermore, we assume an overapproximation for
the braking distance of 50 m for driving at 100 km /h and 40 m for 80 km/h. Then
we can safely overapproximate h with 1.5 kilometers, i.e., twice the travelling
distance plus 500m. Thus h exceeds both braking distances plus the distance
needed for two lane changes.

Sensor Function. In [I] we introduced a sensor function 2g : I x TS — R
for each car F which, given a car identifier C' and a traffic snapshot, provides
the length of the car C, as perceived by E. For country roads we need to change
this definition taking the opposing driving directions of cars into account.

Definition 4 (New sensor function). We define the new sensor function
2 Ix TS - R as:

Ne(C,TS) for C el

25(CTS) = {—QE(C, TS) for C el

For aview V = (L, X, E) and a traffic snapshot 7S = (res, clm, pos, spd, acc)
we introduce the following abbreviations:

resy : I — P(L) with resy (C) =res(C)NL (7)
cmy : 1 — P(L) with clmy (C) = cdm(C)N L (8)

[min(pos(C), pos(C) + 2% (C, TS)),
max(pos(C), pos(C) + O (C, TS)| N X
(9)

The functions and are restrictions of their counterparts in 7S to the
sets of lanes considered in this view. The function @D gives us the part of the
road that car E perceives as occupied by a car C, cut at the edges of the view’s
extension. We changed the corresponding definitions of [I]. The new definition
of leny is due to the opposing traffic. The changes of resy and clmy correct a
technical mistake in the original paper. We note that the results from [I] remain
valid even under the modified model given above.

leny : 1 — P(X) with leny (C) =

2.3 Multi-Lane Spatial Logic with Length Measurement

We define the multi-lane spatial logic MLSL extended by length measurement
for road segments. We start from two kinds of variables. The set of car variables
ranging over car identificators is denoted by CVar, with typical elements ¢, d. To
refer to the car owning the current view, we use a special variable ego € CVar.
The set of real variables ranging over real numbers is RVar, with CVarnRVar = ()
and typical elements x, y. The set of all variables is Var = CVar U RVar, with
typical element u,v. For the length measurement we need real-valued terms.

Definition 5 (Terms). Real-valued terms 0 of MLSL are given by the syntax

Ou=rlz| flery....cn) | glbr,...,0r),

where v € R, x € RVar, ¢1,...,¢, € CVar, and f,g are n-ary function symbols
with R as result type. We denote the set of all terms with ©.

Formulae of MLSL are built up from six atoms, boolean connectors and first-
order quantification. Furthermore, we use two chop operations. The first chop is
denoted by ~ like for interval logics, while the second chop operation is given
only by the vertical arrangement of formulae. Intuitively, a formula ¢, ~ ¢o is
satisfied by a view V with the extension [r,t], if V can be divided at a point
s into two subviews V; and Vs, where V; has the extension [r,s| and satisfies
¢1 and V, has the extension [s,?] and satisfies ¢, respectively. A formula 52 is
satisfied by V with the lanes [to n, if V' can be split along a lane m into two
subviews, V; with the lanes [to m and V5 with the lanes m 4+ 1 to n, where V;
satisfies ¢; for ¢ =1, 2.

Definition 6 (Syntax). Formulae ¢ of MLSL with length measurement are
given by the syntax

¢ u=true |lu=wv | L =0 | free | re(y) | cl(v)

|¢1/\¢2|ﬁ¢1|31ﬁ¢1|¢1f\¢2|zi

where v is a variable or a car identifier, u and v are variables, and 0 is a term.
We denote the set of all MLSL formulae by ®.

In a length measurement ¢ = 6 the letter ¢ stands for length as in [3], We use
#? as an abbreviation for the formula ¢ A ¢ =6 .

Definition 7 (Valuation and Modification). A valuation is a function
v: Var — [TUR that respect types (maps car variables to car identifiers and real
variables to real values). Inductively we lift v to a function valrs,: © - TUR:

r if=reR
v) = R
valts ., (0) frs(w(cr),...,v(cn)) if 0 = f(ci,...,cn)

g(valTS,y(91)7 cee 7val7_5,u(0n)) Zfa = 9(017 ceey 971)7

where ng, g are the interpretations of f, g, with subscript TS indicating a possi-
ble dependency on a traffic snapshot TS. For a valuation v we use the overriding
notation v ® {v — a} to denote the modified valuation, where the value of v is
modified to . We assume that this modification respects types.

We define partitioning of discrete intervals. We need this notion to have a
clearly defined chopping operation, even on the empty set of lanes.

Definition 8 (Chopping discrete intervals). Let I be a discrete interval,
i.e., I = [l,n] for somel,n € L or I = 0. Then I = I, & I if and only if
LUL =1, 1NI, =0, and both I, and I, are discrete intervals such that
max (/1) + 1 =min(lz), or I; =0 or Iy = 0 holds.

Since the semantics of formulae depends on both views and valuations, we
will only consider valuations v which are consistent with the current view V =
(L, X, E), which means that we require v(ego) = E. In the following definition,
we require that the spatial atoms hold only on a view with exactly one lane and
an extension greater than zero. In the semantics of free, we abstract from cars
visible only at the endpoints of the view.

Definition 9 (Semantics). The satisfaction |= of formulae with respect to a

traffic snapshot TS, a view V = (L, X, E) with L = [l,n] and X = [r,t], and a
valuation v consistent with V' is defined inductively as follows:

TS, V,v = true for all TS,V v

TS, VivEu=v < v(u) =rv(v)
T87V7V |= =0 54 |X| = UalTS’V(H)
TS,V,v = free < |L|=1 and |X| >0 and

VC el:leny(C)N(r,t) =0
TS, V,v = re(y) < |LI =1 and | X| >0 and v(vy) €I and
resy(v(y)) = L and X = leny (v(7))
|L| =1 and | X| >0 and v(y) € I and
cdmy (v(v)) =L and X = leny (v(7))

TS, V,v = cl(y)

3

TS7VY7V':¢1/\¢2 <~ TSv‘/vV'qul andTSa‘/aV):¢2

TS, Vv I=-¢ & not TS, V,viE=o

TS, Vv ETJu: ¢ < JacluR: TS, Vive{v—a}l E¢
=

TS, Vv E 1 ~¢o Jds:r<s<tand

T87 ‘/[r,s]7 v): d)l and TSa ‘/[s,t]ay ': ¢2

(3

E'Ll,LQI LZLl@LQ and
TS, VE v = ¢y and TS, VE2 v = by

TS Vv

We write TS E ¢ if TS, V,v = ¢ for all views V' and consistent valuations v.

We remark that both chop modalities are associative. For the definition of
the controller we employ some abbreviations. In addition to the usual definitions
of V,—, <> and V, we use a single variable or car identifier v as an abbreviation
for re(vy) V cl(vy). Furthermore, we use the notation (¢) for the two-dimensional
modality somewhere ¢, defined in terms of both chop operations:

true
(P) = true ~ 0] ~true.
true

In the following, the main application of the somewhere modality is to abstract
the exact positions on the road from formulae, e.g., to identify overlaps of claims
and safety envelopes. If a view V satisfies the formula Je: (cl(ego) A re(c)), then
there is a part on some lane in V' occupied by both the claim of the car under
consideration and the safety envelope of some car c.

3 Controllers for Overtaking with Perfect Knowledge

We now present a protocol realised by several controllers for the overtaking
manoeuvre. The complexity of the controllers depends on the knowledge available
for each car about the surrounding cars. For simplicity, we assume here perfect
knowledge, i.e., all cars know the extension of all safety envelopes within their
view. This assumption can be formalised by instantiating the sensor function 2
(see Sec. as Np(I, TS) = se(I, TS), where se is a function returning the

safety envelope, an overapproximation of the braking distance. This implies that
the car F can perceive a car C' entering its view as soon as part of the safety
envelope enters E’s view. Clearly, this is an idealization that in reality would
require very powerful sensors for each car. For the setting of motorways we have
considered also more realistic sensor functions in [I], but for country roads we
leave this for future work.

We extend the lane-change automaton LCP of [I] to take the new situation
at the border lanes into account. On the rest of the country road the automaton
works as before, with slight modifications described in Sec. We assume that
ego € I, i.e., ego is driving in direction of increasing values of R. For the border
lanes, we need to employ communication with the surrounding cars to guarantee
safety, even though we assume perfect knowledge. Otherwise cars from the lanes
next to the border b, i.e., from b — 1 and b + 2, could move into the free space
either in front of the car C, which F wants to overtake, or into the lane that
FE needs for overtaking C. For example, in Fig. [1]] car D could move into lane 1
and then block the space E needs to move back. Similarly, the car B would be
allowed to move into lane 2 and block the space E needs to pass C. To prohibit
this behaviour, we use a helper automaton as described in Sec.

To simplify the safety proof in Sec. [d] we structure the overtaking manoeuvre
into the following three phases, also shown in Fig. [2|

1. Change lanes into opposing traffic.
2. Pass the car driving in front.
3. Change lanes back into the original driving lane.

4, 1. change lane @ 3. change back

Fig. 2. Protocol for overtaking

For phase 1 and 3 we will present controllers as timed automata [12] with data
variables ranging over I and L. We allow for MLSL formulae as transition guards
and invariants and evaluate them over the standard view V; (see Sec. of the
car the controller is implemented in. Furthermore we use the labels of the tran-
sition system of 7S as actions. Finally, communication is modelled via broadcast
messages, similar to UPPAAL [I3]. The notation we use for communication is
inspired by CSP [I4]. For phase 2 we will omit the presentation of an automaton
due to its simplicity but give a detailed description.

Our controllers rely on a spatial decomposition of the overtaking manoeuvre.
To formalise this, we assume function symbols interpreted as functions yielding
certain distances for cars travelling at speeds determined by the current traffic
snapshot TS (cf. Def. [7)):

— d(t) yields the maximal distance a car can travel within a given time ¢;

— di.(E) yields the distance needed for a lane change of a car E driving at a
speed determined by T'S;

— dpass(E, C) yields the distance needed for a car E to pass a car C in front,
given their speeds determined by 7'S;

— dieb(E, C) yields the distance needed for a lane change back of a car E after
passing car C with speeds determined by T'S;

— dmaz = d(tmaz), where the time t,,4, is large enough for a car to safely
change lanes twice and pass another car.

3.1 Overtaking protocol

Overall we want to maintain the property that all reservations are disjoint. We
formalise the unwanted situations in MLSL by the formula collision check:

cc = e ¢ # ego A (re(ego) A re(c))

Now we will present controllers for the three phases of the manoeuvre that
will maintain this property in a setting with opposing traffic. To construct the
complete controller for the overtaking protocol we fuse the locations without any
outgoing arcs, named ¢4 in Fig. [4] and Fig. 5] with the initial locations of the
next phase of the protocol.

1. Changing Lanes into Opposing Traffic Intuitively, we can describe this
phase of the manoeuvre as follows. The car ego drives on lane n (its original
lane) and wants to change into the target lane n + 1 next to n. Then ego first
sets a claim on the target lane and checks the following three properties:

1. Does the claim intersect with the reservation or claim of any other car?

2. Is there enough space on the original lane to change back during the com-
pletion of the manoeuvre?

3. Is there enough space for the overtaking manoeuvre on the target lane?

Should one of these conditions be violated, withdraws ego its claim and therefore
aborts the manoeuvre. Otherwise, ego proceeds by sending a message that it
starts an overtaking manoeuvre, turning the claim into a reservation and starting
moving over to the target lane. Furthermore, this message obliges the overtaken
car to keep its velocity constant.

We formalise the first property, the potential collision, i.e., car ego’s claim
intersects with another car’s claim or reservation, in the following MLSL formula:

pc = 3e: ¢ # ego A (cl(ego) A c)

For checking that there is enough space on the target lane and on the original
driving lane, we need two functions k; and ks (see Fig. :

ki :IxI— Ry with (E,C) — die(E) + dpass(E, C)

ko

T

dpass(ego,¢) 1 djep(ego, ¢)

dmam

re(c)

!
>le >e
| |
| |
| |
| |
| |
| |
1 1

k1

Fig. 3. Lengths referenced to during overtaking manoeuvre

is the distance needed by car F for a lane change with its current speed and for
passing the car C, during which F may accelerate to a higher speed.

ko :1x 1= Ry with (E,C) = ki(E,C) + die(E, C) + dimaz

adds the distance it takes E to change back into the original lane (with the speed
assumed while passing car C in front plus the maximal distance d,,q, a car on
the opposing lane can travel in the time it takes to overtake C'. With these two
functions we can now formulate the remaining two properties.

esol(c) = <re(ego) ~ (free ~re(c) ~ free)k1(e8oc) r\freed“b(ego’c)>

states that there is enough space on the original lane. Since ego is currently
holding a claim, it can reserve only one lane, and hence esol refers to ego’s
original lane. In front of the reservation there has to be enough space such that
ego can safely pass the car ¢ and then fit in front of ¢ (cf. Fig. [3).

estl(c) = <Cl(ego) ,\freekz(ego,c)>

states that there is enough space on the target lane. We fix the target lane by
checking for ego’s claim. In front of the claim there has to be enough space to
complete the overtaking manoeuvre plus the maximal distance travelled by an
opposing car during the time of the manoeuvre (cf. Fig. [3)).

Figure [4] shows the controller part for this phase of the manoeuvre. We start
in go which we assume to be safe, i.e., satisfying —cc. We hold ego’s original
driving lane in the variable n and make use of the additional variable [saving
the target lane. We use the constant ¢;. for the time that is needed to change
lanes. Note that due to the guard n = b this controller only takes effect if ego is
driving on the border and ego’s target lane is the lane with opposing traffic.

2. Passing the car ahead The controller for the car ego to pass by car ¢
of the manoeuvre is rather simple. The car ego accelerates to a higher speed,
remains at that speed until it has passed car ¢, and initiates the next phase of

pcV
=(3c : estl(c) A esol(c)) —peA
/wd c(ego) Je: estl(c)A

‘\pc

—>(qo: —cc
Adc : estl(c) A esol(c)

—pcA

Je : estl(c)A
esol(c)
peV = (Je: estl(c) Aesol(c))/wd c(ego) Jr(ego):z == O:
x > t1./wd r(ego,l);n =1 attlego

Fig. 4. Controller for the lane-change manoeuvre into opposing traffic

the manoeuvre. Furthermore, whenever ego receives a request for a lane change
from a car c, i.e., the message req?c, ego checks whether ¢ wants to occupy space
needed for the overtaking manoeuvre, i.e., whether (re(ego) ~ true ~ cl(c)) holds.
If this is the case, ego denies ¢’s request by sending the message nolc. We omit
the presentation of the described controller.

3. Changing Lanes Back into Original Driving Lane The controller for
changing the lane back into the original driving lane (see Fig. [5) is a drasti-
cally simplified version of the controller in Sec. [3.I] We already established with
esol that there is enough space to change lanes back into the original lane. We
only need to set the variable [to the original lane n — 1, then we can claim it
(c(ego,n — 1)), reserve the lane (r(ego)), and change over within ¢, time.

ego
/c(ego,n — 1); wd r(ego,l);n =1
l:=n-1

—(qo0 @ a3z <t @
n—1=5b r(ego);xz := 0 x>t/

Fig. 5. Controller LCP for the lane-change manoeuvre with perfect knowledge
back into orignal lane

3.2 Helper controller

The automaton in Fig. |§|is glued to the helper controller from [I], to prohibit cars
from moving to space used during the overtaking manoeuvre. As soon as a car

att?c A (re(c) ~ free ~re(ego)) req?c A (re(ego) ~ free ~ cl(c))

h:=c d:=c

(re(ego) ~ free ~re(h)) nold

Fig. 6. Additional automaton for helper controller

starts to overtake another car C, it calls for attention by sending its identity on
channel att (see Fig. . After receiving the message att?c, the car C can realise
that it is being overtaken, by checking whether (re(c) ~ free ~re(ego)) holds.
Then C' reacts to each request req?d of other cars to move into the free space in
front of it with a negative reply nold. The end of the overtaking manoeuvre can
be perceived by C by means of the formula (re(ego) ~ free ~ re(h)). Combined
with the lane change controller from [I] this maintains that no other car moves
into the free space in front of the car which is being overtaken.

3.3 Changing Lanes for Non-Border Lane Manoeuvres

In Fig. We present the slightly modifed controller from [I], which in cooperation
with the previous controllers ensures safety of the complete manoeuvre. This
controller is responsible for the lane change if the car is not moving into opposing
traffic during the lane change.

Je: pe(e)
/wd c(ego) —3e: pe(c)/

reqlego; x := 0

q1
n+1<b P

/c(ego,n + 1);
l:=n+1

—dc: pe(e) A = > to
/r(ego);x :=0

Je: pe(e) V no?c: ego = ¢
/wd c(ego)

x>t/
wd r(ego,l);n =1

Fig. 7. Controller LCP for the lane-change manoeuvre with perfect knowledge
on non-border lanes

Similar to the controller in Sec. [3.1] it maintains the current driving lane in
the variable n and the target lane in the variable [. Upon attempting a lane
change ego sets its claim on the target lane and brodcasts a request reqlego
awaiting an answer for the next to time units. If no abort message no?c : ego = ¢
arrives within this time-out, ego turns its claim into a reservation and starts to
move over. After ¢;. the manoeuvre is completed and ego withdraws the original
reservation. We assume the time-out to to be large enough such that a car which
previously moved into opposing traffic can answer within this time bound.

Note that ego receives a no message in the following two situations:

1. The car C behind ego is currently being overtaken.
2. ego wants to change into a lane a car D is currently using to overtake.

In the first case C sends a no to ensure that the space ego perceives free is
maintained free for the overtaking car behind C. In the second case D sends a
no message to ego to maintain that the space it currently uses to complete the
overtake manoeuvre remains free.

4 Safety of Overtaking Manoeuvre

In this section, we will give an informal safety proof of the controllers shown in
Sec.[3] Since the reservations of the model are overapproximations of the braking
distance of cars together with their physical size, we understand safety as the
non-overlapping of any reservations. Claims however may overlap, since they
represent only intentions of future car positions.

We make the following assumptions on the country road traffic. The as-
sumptions are slight extensions to the assumptions for our proof of motorway
situations [I], to take the opposing traffic into account.

Assumption A1l. There is an initial safe traffic snapshot 7Sy.

Assumption A2. Every car C' is equipped with a distance controller that keeps
the safety property invariant with respect to all cars driving in the same direction
as C under time and acceleration transitions, i.e., for every transition 7S LTS

and TSMTS' if TS is safe also TS’ is safe.

Informally, this means that the distance controller admits a positive acceler-
ation of C only if the space ahead permits this. Also, if the car ahead is slowing
down, the distance controller has to initiate braking (with negative acceleration)
of C to reduce the extension of its reservation (the safety envelope).

Assumption A3. Every car is equipped with a controller implementing the
protocol in Sec.

Finally, we assume the horizon h to be of appropriate size, as stated in Sec.

Assumption A4. The horizon h is h = senae + 2 + dimaz- This length stems
from the distance we need for the overtaking manoeuvre to take place, as shown
in the controllers, as well as the maximal length of the safety envelope sénqq-

Theorem 1 (Safety). Under the assumptions A1 to A4, the protocol specifying
the overtaking procedure of Section[3 is safe.

Proof. We sketch the safety proof by analysing the three phases of the protocol.
Let V = (L, X, E) be the view of the car E € I_, performing the overtaking of
a car C' and TSy the initial safe snapshot (Al).

The first phase is essentially the lane change procedure of our previous work
[1], under different assumptions. However, the new assumptions are stronger in
the following sense. First, we only allow for the lane change in one direction,
i.e., if E is driving on lane b, it may only change to lane b 4 1. Furthermore, in
the proof for motorway situations, the horizon was at least of the length of the
safety envelope. Since by A4 the horizon is still large enough, the lane change
manoeuvre can take place in a safe manner. In this phase, the controller has
to ensure that in the third phase, there is still enough space in front of C' to
change back to lane b. Therefore, at the instant, when E extends its reservation,
it broadcasts its ID on the channel att. Now C' is the only car, where the guard
in the helper automaton (Fig. @ is satisfied. Any car attempting to change to b
in front of C, i.e., where C' would serve as a helper car, will receive the denial
to change lanes, until E has changed back to b, as stated in the guard on the
transition back to the initial location of the helper automaton. Hence, there will
be still free space for E on lane b in the third phase of the protocol. Similarly, a
car D € I trying to perform a lane change to lane b + 1 will receive a denial
directly from ego.

Now assume that phase one was successful, i.e., F started its lane change at
snapshot 7Sy and successfully changed to lane b+ 1 on a subsequent snapshot
TS1. Then the free space in front of E on b+ 1 is still at least dpgss(E,C) +
dicp(E, C)+ (dmaz —d(tic)). The car E needs dpess(E, C) space during this phase.
Due to the definition of d,,,, an opposing car may cover at most a distance of
dmaz—2-d(t;.) in the passing phase. Hence in the worst case after this phase, there
is still at least dlcb(Ea O) + (dmax - d(tlc) - (dmax —2- d(tlc)) = dlcb(Ea C) + d(tlc)
free space left. Similarly to the description of the first phase, E denies all cars
wanting to change to its current lane the permission to do so.

For the last phase of the protocol, observe that dj.; (E, C) is the space needed
by E to change back to lane b, while d(#;..) is the largest distance an opposing car
may cover when driving at maximal velocity. Hence after the final lane change,
i.e., before E removes its reservation from lane b+ 1, in the worst case the start
of the envelope of the opposing traffic is directly in front of E’s reservation, but
they are not yet overlapping. Since the removal of reservations is instantaneous,
there is no point in time where the these reservations can overlap.

Now assume that a car D € I, on lane b+ 1 with a view V' = (L, X', D)
outside the horizon of E is also planning an overtaking manoeuvre of a car
A. Observe that this also implies that F is outside the horizon of D, i.e.,
max(leny (E)) < pos(D) — h. An unsafe situation may only occur, when the

spaces used to change back on the original lanes overlap, i.e., when

max(leny (E)) + dic(E) + dpass(E, C) + dieo(E, C)
(D)) = (die(D) 4 dpass(D, A) + diey (D, A))
(E)) + die(E) + dpass(E,C) + dieo(E, C) — dmaa
> min(leny/ (D)) — (dic(D) + dpass (D, A) + dies(D, A)) — diae (10)

> min(leny

— max(leny

Now by definition dpqz > dic(E) + dpess(E, C) + diep(E, C). Hence we get

max(leny (E)) > max(leny (E)) + dic(E) + dpess(E, C) + diepy(E, C) — dmax
(11)

By definition, we have |leny/(D)| < $€maz, and hence min(leny (D)) = pos(D)—
|leny: (D)| > pos(D)—semaz. Since also dic(D)+dpess (D, A)+diey (D, A) < dmazs
we have that

min(leny: (D)) — (dic(D) + dpass(D, A) + diep(D, A)) — dimas

— pos(D) — [leny:(D)] — (die(D) + dpass(D, A) + dica(D, 4)) — dime

> pos(D) — semaz — (dic(D) + dpass (D, A) + dicv (D, A)) — dimaz-

> p05(D) — (semas +2 - dyuas) (12)

By putting , and together and using h = sepaz + 2 - dmas, We get
max(leny (E)) > pos(D) — h, which means that E is visible within the standard
view of D, and hence contradicts our assumption. a

5 Conclusion

The novelty in our approach is the identification of a level of abstraction that
enables a purely spatial reasoning on safety. In [I] this was demonstrated for
motorways. In this paper we showed that with small extensions to the previously
developed setting, in particular explicit length measurement, we can also deal
with the two-way traffic of country roads. We proved safety for arbitrarily many
cars on country roads locally, by considering a limited amount of space.

In our future work, we would like to study variations of the assumptions
made in our safety proofs. First of all, we will lift the assumption of perfect
knowledge. In [I] we have already done this for the case of one-way motorway
traffic. There the more realistic sensor function assumes that each car knows
only the physical size of all other cars in its view; the safety envelope it knows
only of itself. Further, we intend to study the scenarios of urban traffic as in [6].
Also, we plan to link our work to hybrid systems: a refinement of the spatial
reasoning in this paper to the car dynamics is of interest. There we could benefit
from the work of [7J819].

So far, our proof of the Safety Theorem [I| is by hand. We show that the
transitions between traffic snapshots obeying our controllers preserve a suitable
safety invariant. It is our aim to ultimately provide automatic support for such

proofs. In [I5] steps in this direction are presented. There a proof system for
an extended version of the logic called EMLSL is introduced. EMLSL embraces
temporal operators, so reasoning about the transitions can be conducted within
this logic. However, mechanic support for the proofs remains a topic of future
research.

References

10.

11.
12.
13.

14.
15.

Hilscher, M., Linker, S., Olderog, E.R., Ravn, A.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In Qin, S., Qiu, Z., eds.: Intern. Conf. on
Formal Engineering Methods. Volume 6991 of LNCS., Springer (2011) 404-419
Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18 (1985) 10-19

Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. Information Processing
Letters 40 (1991) 269-276

Schifer, A.: Axiomatisation and decidability of multi-dimensional duration calcu-
lus. Information and Computation 205 (2007) 25-64

Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated
vehicles. IEEE Transactions on Automatic Control 43 (1998) 522539

Werling, M., Gindele, T., Jagszent, D., Groll, L.: A robust algorithm for han-
dling traffic in urban scenarios. In: Proc. IEEE Intelligent Vehicles Symposium,
Eindhoven, The Netherlands (2008) 168-173

Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems
based on l-complete approximations. Discrete Event Dynamic Systems 12 (2002)
83-107

Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control syn-
thesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Au-
tomatic Control 51 (2006) 938-948

Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
International Journal of Control 79 (2006) 395-421

He, J., Hoare, C.A.R., Franzle, M., Miiller-Olm, M., Olderog, E.R., Schenke, M.,
Hansen, M.R., Ravn, A.P., Rischel, H.: Provably correct systems. In Langmaack,
H., de Roever, W.P., Vytopil, J., eds.. FTRTFT. Volume 863 of LNCS., Springer
(1994) 288-335

Woodcock, J., Davies, J.: Using Z — Specification, Refinement, and Proof. Prentice
Hall (1996)

Alur, R., Dill, D.L.: A theory of timed automata. TCS 126 (1994) 183 — 235
Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In Bernardo,
M., Corradini, F., eds.: Formal Methods for the Design of Real-Time Systems,
Springer—Verlag (2004) 200-236

Hoare, C.A.R.: Communicating sequential processes. CACM 21 (1978) 666-677
Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. In Liu, Z.,
Woodcock, J., Zhu, H., eds.: 10th Intern. Col. on Theoretical Aspects of Computing
(ICTAC). (2013) to appear.

	Proving Safety of Traffic Manoeuvres on Country Roads
	Martin Hilscher, Sven Linker, Ernst-Rüdiger Olderog

