
Algorithmic Foundation of Parallel Paging and Scheduling under Memory Constraints

A Dissertation presented

by

Rathish Das

to

The Graduate School

in Partial Ful�llment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

January 2021

Stony Brook University

The Graduate School

Rathish Das

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Michael A. Bender - Dissertation Advisor

Professor, Department of Computer Science

Rezaul Chowdhury - Dissertation Advisor

Associate Professor, Department of Computer Science

Joseph S. B. Mitchell - Dissertation Advisor

Professor, Department of Applied Mathematics & Statistics and Computer Science

Steven Skiena - Chairperson of Defense

Professor, Department of Computer Science

Esther M. Arkin

Professor, Department of Applied Mathematics & Statistics and Computer Science

Kunal Agrawal - External Committee Member

Associate Professor, Computer Science and Engineering, Washington University in St. Louis

This dissertation is accepted by the Graduate School

Eric Wertheimer
Dean of the Graduate School

ii

Abstract of the Dissertation

Algorithmic Foundation of Parallel Paging and Scheduling under Memory Constraints

by

Rathish Das

Doctor of Philosophy

in

Computer Science

Stony Brook University

2021

Every modern computer—be it a desktop or a supercomputer—uses hierarchical memory. One
of the crucial characteristics of any memory hierarchy is that there is a small, fast memory, fol-
lowed by a large, slow memory (possibly followed by more levels). The small, fast memory is a
scarce resource, and e�ciently managing it is crucial to high performance. Data is served to the
CPU from the small, fast memory.

Sharing the small and fast memory among multiple processors gives rise to many challenges.
The �rst challenge is to e�ciently share the small and fast memory among multiple processors
even if the processors access disjoint sets of pages. The second challenge is to avoid the race
conditions that arise when processors access sets of pages which overlap. Race conditions occur
when two or more processors access the same memory location, and at least one modi�es its
content. The third challenge is to e�ciently synchronize the processors to minimize the parallel
running time.

The contribution of this dissertation is thus three-fold. To handle the �rst challenge, we
develop an algorithmic foundation for automated management of shared-memory in multilevel-
memory systems. We consider the parallel paging problem where p processors share a memory
of size k. The goal of the problem is to partition the memory among the processors over time to
minimize the average completion time. We resolve this long-standing open problem by designing
online algorithms with tight upper and lower bounds of Θ(log p) competitive ratio with O(1)
resource augmentation.

We further extend the parallel paging problem to a new kind of multilevel-memory system
where there are bandwidth di�erences among the memory levels. This new kind of memory
is called high-bandwidth memory (HBM), and is common in new supercomputers. Systems
equipped with HBM do not �t into classical memory-hierarchy models due to HBM’s atypical
characteristics, and hence natural and classical paging policies perform poorly. We present a
simple but counterintuitive constant-competitive online algorithm for HBM management.

To handle the second challenge, we give provably good algorithms that manage memory

iii

usage in a parallel computation to avoid race conditions and achieve optimal or near-optimal span
(parallel running time). We ask the following question: given a �xed budget of extra memory for
mitigating the cost of races in a parallel program, how should memory be used or scheduled in
order to minimize the overall running time? We provide NP-hardness results and constant factor
single and bicriteria approximation algorithms to this question.

To handle the third challenge, we present techniques that take into account synchronization
costs among processors and yet achieve the optimal span at the cost of slightly increasing work.
We present optimalO(log n) span algorithm for Strassen’s Matrix Multiplication (MM) with only
a Θ (log log n)-factor blow-up in work as well as a near-optimalO(log n log log n) span algorithm
with no asymptotic blow-up in work.

iv

Dedicated to my parents Ramesh Das, Manju Das, and my sister Manasi Das.

Contents

Acknowledgments ix

Publications x

1 Introduction 1

1.1 Scope and Contribution of this Dissertation . 2
1.2 Algorithmic Foundation for Automated Management of Shared Memory (Han-

dling the First Challenge): . 2
1.2.1 Parallel Paging . 3
1.2.2 Paging in High-Bandwidth Memory (HBM) 4

1.3 Avoiding Race Conditions with Extra Memory (Handling the Second Challenge) . 6
1.4 Reducing Synchronization Cost of the Processors with Extra Memory (Handling

the Third Challenge) . 7
1.5 Organization of this Dissertation . 7

2 Algorithmic Foundation of Parallel Paging 8

2.1 Introduction . 8
2.2 Technical Overview . 13

2.2.1 A Useful Tool: Box Pro�les . 13
2.2.2 Tight Bounds for Green Paging . 14
2.2.3 Using Green Paging to Solve Parallel Paging 16
2.2.4 Transforming Green Paging Lower Bounds into Parallel Paging Lower

Bounds . 18
2.2.5 Putting Pieces Together . 19

2.3 The Models . 20
2.3.1 The Green Paging Model . 20
2.3.2 The Parallel Paging Model . 21

2.4 A Toolbox for Paging Analysis . 23
2.4.1 Memory Expansions . 23
2.4.2 Space and Time Normalization . 23
2.4.3 Compartmentalization . 25

2.5 The Tight Relationship between Green Paging and Parallel Paging 26
2.5.1 Transforming Green Paging Algorithms into Parallel Paging Algorithms . 27
2.5.2 Transforming Green Paging Lower Bounds into Parallel Paging Lower

Bounds . 30

vi

2.6 Tight Bounds for Green Paging . 32
2.6.1 Lower Bounds for Green Paging . 32
2.6.2 O(log p)-Competitive Green Paging . 33

3 How to Manage High-Bandwidth Memory Automatically 40

3.1 Introduction . 40
3.1.1 Results . 42
3.1.2 Related Work . 43

3.2 HBM Model . 44
3.3 Technical Overview . 45
3.4 O(1)-Competitive Online Algorithm for HBM Block Management 47

3.4.1 Constant-approximation o�ine algorithm 48
3.4.2 Online algorithm . 51

3.5 FCFS with LRU is not a Good Policy in the HBM Model 54
3.6 NP-hardness of the Makespan-minimization Problem 56
3.7 Performance Metric in HBM Model . 59

3.7.1 How does uneven bandwidth a�ect makespan? 61
3.8 Minimizing Total Completion Time O�ine . 62

3.8.1 Reduction to a resource constrained scheduling problem 62
3.8.2 Solving the Scheduling Problem . 64

4 Avoiding Races with Extra Memory 67

4.1 Introduction . 68
4.2 Preliminaries, Problem Formulation . 72
4.3 Approximation Algorithms . 74

4.3.1 Bi-criteria Approximation for Non-increasing Duration Functions 74
4.3.2 Single-criteria Approximation for k-Way and Recursive Binary Splitting . 78
4.3.3 Improved Bi-criteria Approximation for Recursive Binary Splitting Func-

tions . 79
4.3.4 Exact Algorithm for Series-Parallel Graphs 81

4.4 NP-Hardness . 82
4.4.1 Reuse Over a Path with General Non-increasing Duration Function 82
4.4.2 Reuse Over a Path with Recursive Binary Splitting and k-Way Splitting . 86
4.4.3 Underlying Bounded Treewidth Graph . 89

4.5 Alternate hardness proof from numerical 3D matching 90

5 Reducing Synchronization Cost with Extra Memory 96

5.1 Introduction . 96
5.2 Strassen’s Matrix Multiplication . 99

5.2.1 k-way Strassen’s MM. 100
5.2.2 Strassen-S MM. 100
5.2.3 Strassen-S-Adaptive MM. 107

5.3 Lower Bounds. 109

vii

6 Conclusion 110

6.1 Algorithmic Foundation of Parallel Paging . 110
6.2 How to Manage High-Bandwidth Memory Automatically 111
6.3 Avoiding Races with Extra Memory . 111
6.4 Reducing Synchronization Cost with Extra Memory 112

viii

Acknowledgments

I would like to express my deep gratitude to my advisors Profs. Michael A. Bender, Rezaul A.
Chowdhury, and Joseph S. B. Mitchell, who have always been making things simple to under-
stand. Without their deep insight into this domain and valuable time to teach me, it would not
have been possible for me to move ahead properly.

I would like to thank Prof. Esther Arkin for educating me with many concepts of approxima-
tion algorithms and hardness proofs. I am indebted to Profs. Kunal Agrawal, Enoch Peserico, and
Michele Squizzatto for all the engaging discussions on the parallel paging problem that became
a core component of this dissertation.

I am also very grateful to Profs. Martín Farach-Colton, Jie Gao, Mayank Goswami, Rob John-
son, Matthew J. Katz, Benjamin Moseley, Enoch Peserico, Valentin Polishchuk, Michele Scquiz-
zato, Steven Skiena, and Csaba D. Tóth for their constant guidance in the research projects that
I worked on during my Ph.D. I also thank Cynthia Phillips and Jonathan Berry from Sandia Na-
tional Lab for sharing their expertise in computer systems.

I also had the opportunities to work with and learn from my colleagues Zafar Ahmad, Anand
Aiyer, Rory Bennett, Arghya Bhattacharya, Arani Bhattacharya, Ayon Chakraborty, Rohit Chat-
terjee, Abiyaz Chowdhury, Sharmila Duppala, Aaron Gregory, Mohammad Javanmard, William
Kuszmaul, Tianchi Mo, Andrea Lincoln, Quanquan Liu, Sarthak Ghosh, Logan Graham, Jayson
Lynch, Sam McCauley, Prashant Pandey, Sikha Singh, David Tench, Shih-Yu Tsai, Helen Xu, and
Yimin Zhu. My labmates Zafar Ahmad and Aaron Gregory helped me a lot at di�erent stages of
my Ph.D.

I am especially indebted to Ayon Chakraborty, Pramod Ganapathi, and William Kuszmaul
for their constant support and all the things they have taught me. They have helped me a lot to
improve my presentation and writing skill. I had a very enjoyable experience with them while
discussing the technicalities of the research problems that I worked on during my Ph.D.

I thank the Institute of Advanced Computation Science, Stony Brook University for support-
ing me with a Junior Researcher Award Fellowship. I am also thankful to the NSF for support-
ing my research through grants CCF-1725543, CSR-1763680, CCF-1716252, CCF-1617618, CNS-
1938709, and CCF-1439084.

My deepest gratitude extends to my parents and my sister who were always very supportive
to me. I am also very grateful to my uncle Arun Biswas who at my absence helped my parents
during our di�cult times.

ix

Publications

Referred Conference Publications during My Ph.D.

• (Alphabetical) Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato, “Tight Bounds of Parallel Paging and Green Paging.” Pro-

ceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Alexandria,
USA (Virtual conference), pp. 3022-3041, 2021.

• (Alphabetical) Michael A. Bender, Rathish Das, Martín Farach-Colton, Tianchi Mo, David
Tench, and Yung Ping Wang, “Mitigating false positives in �lters: to adapt or to cache?” Pro-

ceedings of the 2nd SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS),
Alexandria, USA (Virtual conference), pp. 16-24, 2021.

• Rathish Das, Kunal Agrawal, Michael Bender, Jonathan Berry, Benjamin Moseley, and Cyn-
thia Phillips, “How to Manage High-Bandwidth Memory Automatically.” Proceedings of the

32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Philadelphia, USA
(Virtual conference), pp. 187-199, 2020.

• (Alphabetical) Esther Arkin,RathishDas, Jie Gao, Mayank Goswami, Joseph Mitchell, Valentin
Polishchuk, and Csaba D. Toth, “Cutting Polygons into Small Pieces with Chords: Laser-Based
Localization.” Proceedings of the 28th Annual European Symposium on Algorithms (ESA-Track
A), Pisa, Italy (Virtual Conference), pp. 7:1-7:23, 2020.

• (Alphabetical) Michael Bender, Rezaul Chowdhury, Rathish Das, Rob Johnson, William Kusz-
maul, Andrea Lincoln, Quanquan Liu, Jayson Lynch, and Helen Xu, “Closing the Gap Between
Cache-oblivious and Cache-adaptive Analysis.” Proceedings of the 32nd ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), Philadelphia, USA (Virtual Conference),
pp. 63-73, 2020.

• (Alphabetical) Michael Bender, Rathish Das, Martin Farach-Colton, Rob Johnson, and William
Kuszmaul, “Flushing Without Cascades,” Proceedings of the 31st Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), Salt Lake City, USA, pp. 650–669, 2020.
• RathishDas, Shih-Yu Tsai, Sharmila Duppala, Jayson Lynch, Esther Arkin, Rezaul Chowdhury,

Joseph Mitchell, and Steven Skiena, “Data Races and the Discrete Resource-time Tradeo� Prob-
lem with Resource Reuse over Paths,” Proceedings of the 31st ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), Phoenix, Arizona, USA, pp. 359–368, 2019.
• Mohammad Javanmard, Pramod Ganapathi, Rathish Das, Zafar Ahmad, Stephen Tschudi, and

Rezaul Chowdhury, “Towards E�cient Architecture-Independent Algorithms for Dynamic Pro-
grams,” Proceedings of the 33rd International Conference on High Performance Computing (ISC),
Frankfurt. Germany, pp. 143–164, 2019.

x

Short Paper(s)/Workshop Paper(s)/Poster(s) during My Ph.D.

• (Alphabetical) Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato, “Tight Bounds of Parallel Paging and Green Paging.” Pro-

ceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
Philadelphia, USA, pp. 493-495, 2020.

• Mohammad Javanmard, Pramod Ganapathi, Rathish Das, Zafar Ahmad, Stephen Tschudi, and
Rezaul Chowdhury, “Towards E�cient Architecture-Independent Algorithms for Dynamic Pro-
grams:poster,” Proceedings of the 24th Symposium on Principles and Practice of Parallel Program-

ming (PPoPP), Washington D. C. USA, pp. 413–414, 2018.
• (Alphabetical) Esther Arkin, Peter Brass, Rathish Das, Jie Gao, Mayank Goswami, Joseph

Mitchell, Valentin Polishchuk, and Csaba D. Toth, “Optimal Cutting of a Polygon by Lasers,”
26th Fall Workshop of Computational Geometry (FWCG), New York, USA, 2016.

xi

Chapter 1

Introduction

Every modern computer, be it a desktop or a supercomputer, uses hierarchical memory. Hierar-
chical memory consists of multiple levels of memory—registers, followed by L1, L2, and possibly
L3 caches, and then DRAM and disk—that vary in latency and size. The idea is to put the mem-
ory with the lowest latency closer to the CPU to feed the CPU at a faster rate and to increase the
memory size down the hierarchy gradually.

One of the crucial characteristics of any memory hierarchy is that they have a small, fast
memory, followed by a large, slow memory (possibly followed by more levels).

The small, fast memory is a scarce resource, and e�ciently managing it is crucial to high
performance. Data is served to the CPU from the small, fast memory. Since the small memory
often cannot �t all the data required by a processor, data is transferred between the small and the
large memories. Often the time spent on data transfers between the memory levels dominates the
running time of programs. Hence, optimizing data transfers and e�ciently managing the fast,
small memory play a vital role in getting high performance.

Sharing the small and fast memory among multiple processors gives rise to many challenges.
In recent times, there has been a surge in use of multiprocessor architectures. The end of Moore’s
law [134, 139] suggests that a processor’s clock speed has almost reached its limit. Hence, to main-
tain steady growth in processing power, vendors have taken a di�erent strategy—using multiple
processors instead of a uniprocessor to share the same workload. This new technique has placed
parallel computation at the forefront of high performance computing. At the same time, mul-
tiprocessor systems bring new challenges that are not seen when memory is used by a single
processor only.

The �rst challenge is to e�ciently share the small and fast memory among multiple proces-
sors even if the processors access disjoint sets of pages. As all processors compete for the same
shared memory, e�ciently sharing that memory is a signi�cant concern to minimize the proces-
sors’ parallel running time. The marginal bene�t of more memory may vary across processors,
and this relationship may not have a good structure. For instance, it may be that Processor 1
derives more marginal bene�t from one extra page compared to Processor 2, while at the same
time, Processor 2 derives more bene�t from ten extra pages compared to Processor 1. Besides,
this marginal bene�t of extra memory can vary over time. Complicating matters even further, the
actual scheduling of processors matters. For instance, running a small subset of processors—and
temporarily stalling all others—may allow for better performance compared to running all pro-
cessors at once. Therefore, deciding how the di�erent processors’ schedules are interleaved is an

1

essential part of e�ciently managing any shared-memory multiprocessor system.
The second challenge is to avoid race conditions that arise when processors do not access dis-

joint sets of pages. Race conditions occur when two or more processors access the same memory
location, and at least one modi�es its content. Races are often undesirable as they can lead to
nondeterministic and incorrect program behavior. Hence, designing race-free programs is very
critical for shared-memory multiprocessor systems. Races can be eliminated by associating a
mutual-exclusion lock with the memory location or allowing only atomic accesses to it. Such
a solution, however, makes all accesses to that location serial and thus destroys all parallelism.
For associative and commutative updates to a memory cell, one can instead use a reducer, which
allows parallel race-free updates at the expense of using some extra space. More extra space usu-
ally leads to more parallel updates, which in turn improve the parallelism of a multiprocessor
system.

The third challenge is to e�ciently synchronize processors to minimize parallel running time.
In the classical PRAM model, spawning p threads into p processors takes Θ(1) time, which is
not very realistic. The Binary-Forking model is a relatively new model that charges Θ(log p)
span (parallel running time) to spawn (fork) p threads in parallel, thus taking into account the
synchronization cost to spawn p processors. One can trivially transform an algorithm from the
PRAM model to the binary-forking model by simply adding an extra Θ(log n) span for every
such fork/join operation. This increases the span by a factor of O(log n). The question looms:
can an algorithm from the PRAM model be transformed to the binary-forking model with the
same asymptotic bounds for span and work?

1.1 Scope and Contribution of this Dissertation

The scope of this dissertation is to tackle the three vital challenges described above that arise in
shared-memory multiprocessor systems: (1) e�ciently managing the memory shared by multiple
processors, (2) avoiding race conditions with minimal loss in parallelism, and (3) synchronizing
processors e�ciently to minimize span. The contribution of this dissertation is thus three-fold.
(1) To handle the �rst challenge, we develop an algorithmic foundation for automated manage-
ment of shared-memory in multilevel-memory systems; (2) to handle the second challenge, we
give provably good algorithms that schedule memory in a parallel computation to avoid race
conditions and achieve optimal or near-optimal span (parallel running time); (3) to handle the
third challenge, we present techniques that take into account synchronization costs among the
processors and yet achieve optimal span at the cost of slightly increasing work.

1.2 Algorithmic Foundation forAutomatedManagement of

Shared Memory (Handling the First Challenge):

The problem of managing the contents of a cache (i.e., a small fast memory) is crucial to achiev-
ing good performance on large machines with multi-level memory hierarchies. This problem is
classically known as caching or paging [23, 104, 126, 42]. When a processor accesses a location
in fast memory, the access cost is small (the access is a hit); when it accesses a location that is not
in fast memory, the access cost is large (the access is a miss or a fault). The paging algorithm

2

decides which pages (or blocks) remain in fast memory at any point in time, or in other words,
which page(s) to evict when a new page is brought into fast memory. This problem is gener-
ally formulated as being online, meaning that the paging algorithm does not know the future
requests.

Sequential paging—when there is a single processor which accesses fast memory—has been
studied for decades and has many positive results [23, 104, 126, 42] and lower bounds [126]. There
are also many extensions with di�erent weights, block sizes, and beyond-worst-case competitive
analyses [112, 63, 14, 62, 17, 79, 141, 43, 20, 18, 70, 82, 83].

We study the problem of parallel paging where p processors share the same fast memory
of some size k. Each processor runs its own program, and the set of pages accessed by di�erent
programs are disjoint.1 The goal is to share the small memory among the processors in a way
that minimizes some objective function of processors’ completion times. We focus on minimizing
average completion time, and we also give bounds on makespan (i.e., maximum completion time)
and median completion time.

We further extend the parallel paging problem to a new kind of multilevel-memory system
where there are bandwidth di�erences among the memory levels. This new kind of memory is
called high-bandwidth memory (HBM) and is common in new supercomputers.

1.2.1 Parallel Paging

The parallel paging problem was �rst articulated by Fiat and Karlin [69] in 1995 and has remained
open since then. The parallel paging problem introduces new challenges that are not encountered
in the sequential problem.

First, multiple processors compete for the same resource (shared cache) and the paging al-
gorithm must decide, for each processor and at each time, how many and which of its pages to
keep in cache. The marginal bene�t of having more memory may vary across processors and this
relationship may not have good structure. For instance, it may be that Processor 1 derives more
marginal bene�t from one extra page compared to Processor 2 while at the same time, Processor 2
derives more bene�t from ten extra pages compared to Processor 1.

In addition, this marginal bene�t of extra cache can vary over time and the online paging algo-
rithm must change the number of pages of fast memory allocated to the processors accordingly.
Complicating matters even further, the actual scheduling of processors matters. For instance,
running a small subset of processors—and temporarily stalling all others—may allow for better
performance compared to running all processors at the same time. Therefore, how the di�erent
processors’ accesses are interleaved is an important part of what the parallel paging algorithm
must decide, and di�erent interleavings of accesses can lead to vastly di�erent performances.

Whereas sequential paging has been understood for decades [23, 104, 126, 42], parallel paging
has largely resisted analysis. The only known upper bounds for parallel paging [47, 69, 22, 88,
94, 68, 106] consider relaxations of the problem in which the interleaving of accesses by di�erent

1It would also be interesting to consider the related problem in which the processors are collectively running a
single program in a shared address space. To model this, one would have to also capture dependencies within the
parallel program, for example with a dependency DAG. Complicating matters further, for many parallel programs
the dependency DAG is non-deterministic depending on data races. This work focuses on disjoint entities, that
can be arbitrarily interleaved without dependencies, and aims to understand how such entities can e�ciently share
memory resources.

3

processors is �xed ahead of time—in particular, this is enforced by making it so that, whenever
any processor blocks on a miss, all of the processors block, which in turn eliminates a large amount
of the parallelism inherent to the problem. The known lower bounds [80, 102], on the other hand,
focus only on the o�ine parallel paging problem, and on analyzing the performance of traditional
paging algorithms such as LRU. Parallel paging has also been extensively studied within the
systems community, particularly after multicore processors became mainstream—starting from
some pioneering work on (o�ine and online) heuristics that dynamically adjust the sizes of the
cache partitions dedicated to each processor (see, e.g., [135, 130, 132, 99, 140, 48]).

Our Contributions. We consider this long standing open problem of parallel paging in its gen-
eral form when the interleavings are not �xed. As in [80, 102], we analyze this problem in a timed
model where a hit takes unit time and a miss takes s time units for some parameter s > 1. Note
that, in the traditional model used for paging [126, 42], a hit costs 0 and a miss costs 1 — we will
call this the 0-1 model. The timed model is more general and captures the 0-1 model as a special
case (by letting s tend towards in�nity).

An important feature of the timed model is that it captures the passage of time even when a
processor experiences a hit. Modeling this passage of time allows for a more �ne-grained analysis
of parallel paging since it allows us to compare the progress of one processor to another even
if one is experiencing hits while the other is experiencing misses. This avoids the unrealistic
assumption in the 0-1 model that a particular processor can have an in�nite number of hits in
the time that another processor has a single miss.

We give tight upper and lower bounds for the deterministic online parallel paging problem
in the timed model showing that the optimal competitive ratio for average completion time is
Θ(log p), using constant resource augmentation. We also consider makespan, proving a lower
bound of Ω(log p) and an upper bound of O(log2 p) for the competitive ratio. This result repre-
sents signi�cant progress on a long-standing open problem, even for the 0-1 model. A remarkable
feature of our algorithms is that they are oblivious to s, achieving optimal competitive ratios for
all values of s simultaneously.

1.2.2 Paging in High-Bandwidth Memory (HBM)

We now extend the parallel paging problem to a new kind of multilevel-memory system where
there are bandwidth di�erences among the memory levels. This new kind of memory is called
high-bandwidth memory (HBM) and is common in new supercomputers.

In the past two decades, the number of cores per chip has grown signi�cantly. As a result,
the relative memory capacity, de�ned as memory capacity divided by available giga�ops, has
decreased by more than 10x [93]. Thus, processors are becoming more starved for data. Recent
innovations in 3D die-stacking technology have driven vendors in implementing a new approach
for improving memory performance [109, 92], speci�cally, memory bandwidth. The approach is
to bond memory directly to the processor package where there can be more parallel connections
between the memory and the processors’ private caches, enabling a higher bandwidth than can
be achieved using older technologies. Throughout the rest of this dissertation, we refer to on-
package 3D memory technologies as high-bandwidth memory or HBM .2

2Hardware vendors use various brand names such as High-Bandwidth Memory (HBM), Hybrid Memory Cube
(HMC), and MCDRAM for this technology.

4

HBM, with its improved ability to feed processors, provides an opportunity to overcome this
memory bottleneck, if application software can use it.

HBM is not a replacement for DRAM (“main memory”) since it is generally about 5 times
smaller than DRAM due to constraints such as heat dissipation, as well as economic factors.
For example, current HBM sizes range from 16 gigabytes per compute node (the Department of
Energy’s “Trinity” [61]) to 96 gigabytes per compute node (the Department of Energy’s “Sum-
mit” [138]), several times smaller than the per-node sizes of DRAM on those systems (96 GB and
512 GB, respectively).

HBM management is not identical to cache management as it introduces complications that
do not exist in more traditional memory hierarchies. In particular, cores compete not only for
HBM capacity, but also for the more limited channel capacity between HBM and DRAM. HBM
does not �t into a standard memory hierarchy model [74, 27], because in traditional hierarchies,
both the latency and bandwidth improve as the levels get smaller. This is not true of HBM.

The question looms: are there provably good algorithms for automatically controlling HBM?

Our Contributions We propose a multicore model for HBM that captures the high bandwidth
from the cores to HBM and the much lower bandwidth to DRAM. There are p parallel channels
connecting p cores to the HBM but only a single channel connecting HBM to DRAM. This con�g-
uration captures the high (on-package) bandwidth between the p cores and HBM and the much
lower (o�-package) bandwidth between HBM and DRAM. Data is transferred in blocks — there
are up to p parallel block transfers from the HBM to the cores, but only one block transfer at
a time between DRAM and HBM. The roughly comparable latencies are captured by setting all
block-transfer costs (times) to 1.

We focus on instances where the multicore’s threads access disjoint sets of blocks. This em-
phasizes the cores’ competition for HBM and the limited bandwidth between HBM and DRAM.
We present the following set of results.

• Sharing the HBM-to-DRAM channel fairly does not work. We consider how to design block-
replacement policies for the HBM coupled with the First-Come-First-Serve (FCFS) algo-
rithm for determining the order of accesses from HBM to DRAM. We show that even though
LRU is a very good block-replacement policy, if we use FCFS in the HBM-to-DRAM channel,
LRU performs poorly. In particular, with any constant amount of resource augmentation
the makespan of using FCFS with LRU is an Ω(p)-factor away from the optimal policy in
the worst case. This negative result establishes that more sophisticated management of the
channel between HBM and DRAM is central to designing a good algorithm for the problem.
The seemingly fair FCFS policy is bad.

• Priority-based mechanism for managing the HBM-to-DRAM channel. Our main contribution
is to devise aO(1)-competitive online algorithm that minimizes the maximum running time
of p processors sharing an HBM. We give a priority-based policy for managing the channel
between HBM and DRAM. We impose a pecking order on the cores, so that a high-priority
core never has a request to DRAM blocked by a request from a lower-priority core. Our
algorithms for HBM management are built around this priority-based mechanism.

• Minimizing the maximum running time is strongly NP-hard.

• O(1)-approximation algorithms for average completion time

5

1.3 AvoidingRaceConditionswithExtraMemory (Handling

the Second Challenge)

We now consider the case where the processors collectively execute a single program in a shared
address space. Sharing an address space often gives rise to determinacy races. A determinacy race
[108, 66] occurs if two or more logically parallel instructions access the same memory location,
and at least one of them modi�es its content. Races can lead to nondeterministic and incorrect
program behavior, and thus they are often undesirable.

A data race is a special case of a determinacy race which can be eliminated by associating a
mutual-exclusion lock with the memory location in question or allowing only atomic accesses
to it. Such a solution, however, makes all accesses to that location serial and thus destroys all
parallelism.

Reducers [72, 41, 117] give an alternative way to eliminate data races on a shared variable
without destroying parallelism when the variable’s update operations are associative and com-
mutative. Such elimination of data races is achieved by using extra space.

We model data races in a program using a directed acyclic graph, assuming that there are
no cyclic read-write dependencies among the memory locations accessed by the program. Each
node in the DAG represents a memory location, and a directed edge from node u to node v means
that v is updated using the value stored at u. The in-degree d(in)

v of node v gives the number of
times v is updated.

Naturally, the question emerges: given a �xed budget of extra space for mitigating the cost
of races in a parallel program, which memory locations should be assigned reducers and how
should the space be distributed among those reducers in order to minimize the overall running
time?

We concentrate on a variation of this problem where space reuse among reducers is allowed
by routing every unit of extra space along a (possibly di�erent) source to sink path of the DAG
and using it in the construction of multiple (possibly zero) reducers along the path. This prob-
lem variation is motivated by the bottleneck seen in highly parallel programs when a single
global memory manager is used. Recursive fork-join programs often avoid repeated calls to
an external memory manager altogether, along with the overhead of repeated memory alloca-
tions/deallocations. Instead, recursive fork-join programs allocate a large segment of memory at
the beginning of the program execution and then split and merge the memory segment along the
fork and join nodes, respectively.

Remarkably, our problem formulation extends to more general problems such as project schedul-
ing, inventory management, etc.

Our Contributions We generalize our race-avoiding space-time tradeo� problem to a discrete
resource-time tradeo� problem with general non-increasing duration functions and resource
reuse over paths of the given DAG.

For general DAGs, we show that even if the entire DAG is available to us o�ine the prob-
lem is strongly NP-hard under all three types of duration functions, and we give approximation
algorithms for solving the corresponding optimization problems. We also prove hardness of ap-
proximation for the general resource-time tradeo� problem and give a pseudo-polynomial time
algorithm for series-parallel DAGs.

6

1.4 Reducing Synchronization Cost of the Processors with

Extra Memory (Handling the Third Challenge)

We now turn our attention to a parallel computation model, called the binary-forking model,
that better captures the performance of parallel algorithms implemented using modern multi-
threaded programming languages on multicore shared-memory machines. The widely studied
theoretical PRAM model does not consider costs of spawning and synchronizing threads, and
the costs are often non-constant in real machines. The binary-forking model incurs a cost of
Θ(log n) to spawn or synchronize n tasks or threads, and thus realistically captures the per-
formance of modern parallel machines. As a result, algorithms achieving optimal performance
bounds in the PRAM model may not be optimal in the binary-forking model. Often, algorithms
need to be redesigned to achieve optimal performance bounds in the binary-forking model, and
the non-constant synchronization cost makes the task challenging.

For many problems in the binary-forking model, one can achieve the same span as in PRAM
at the expense of increasing the total work of an algorithm. For example, Cole’s parallel merge
sort achieves optimal span Θ(log n) and does optimal total work Θ(n log n) in the PRAM model.
One could trivially retain the optimal Θ(log n) span in the binary-forking model by increasing
work to Θ(n2)—in parallel, each item �nds its rank in the sorted array by comparing itself with
n − 1 other items. So the real challenge to design algorithms in the binary forking model is to
retain both the same span and work bounds as in the PRAM model.

Our contributions In this dissertation, we design e�cient parallel algorithms in the binary-
forking model for fundamental problems such as Strassen’s (and Strassen-like) matrix multipli-
cation (MM). Our results easily extend to many dynamic programming algorithms in the binary-
forking model. We present an optimal O(log n) span algorithm for Strassen’s Matrix Multiplica-
tion (MM) with only a Θ (log log n)-factor blow-up in work as well as a near-optimalO(log n log log n)
span algorithm with no asymptotic blow-up in work.

A remarkable feature of our algorithms is that we avoid the use of atomic instructions except
possibly inside the join operations, which are implemented by the runtime system.

1.5 Organization of this Dissertation

This dissertation is organized as follows. In Chapters 2 and 3 we handle the �rst challenge to
e�ciently share the small and fast memory among multiple processors. In Chapter 2 we present
tight bounds for parallel paging. In Chapter 3 we extend the parallel paging problem to a modern
memory hierarchy, called high-bandwidth memory. In Chapter 4 we handle the second challenge
to avoid race conditions. In Chapter 5 we present techniques to reduce synchronization costs
among processors in order to achieve better span and work bounds. Finally, we give a conclusion
in Chapter 6.

7

Chapter 2

Algorithmic Foundation of Parallel

Paging

In the parallel paging problem, there are p processors that share a cache of size k. The goal is to
partition the cache among the processors over time in order to minimize their average completion
time. For this long-standing open problem, we give tight upper and lower bounds of Θ(log p) on
the competitive ratio with O(1) resource augmentation.

A key idea in both our algorithms and lower bounds is to relate the problem of parallel paging
to the seemingly unrelated problem of green paging. In green paging, there is an energy-optimized
processor that can temporarily turn o� one or more of its cache banks (thereby reducing power
consumption), so that the cache size varies between a maximum size k and a minimum size k/p.
The goal is to minimize the total energy consumed by the computation, which is proportional to
the integral of the cache size over time.

We show that any e�cient solution to green paging can be converted into an e�cient solution
to parallel paging, and that any lower bound for green paging can be converted into a lower bound
for parallel paging, in both cases in a black-box fashion. We then show that, with O(1) resource
augmentation, the optimal competitive ratio for deterministic online green paging is Θ(log p),
which, in turn, implies the same bounds for deterministic online parallel paging.

Portions of this work are based on preliminary results contained in the thesis [122]. This work
was presented as a brief announcement at SPAA 2020 [9] and as a full paper at SODA 2021 [10].

2.1 Introduction

The problem of managing the contents of a cache (i.e., a small fast memory) is critical to achiev-
ing good performance on large machines with multi-level memory hierarchies. This problem is
classically known as paging or caching [42]. When a processor accesses a location in fast mem-
ory, the access cost is small (the access is a hit); when it accesses a location that is not in fast
memory, the access cost is large (the access is a miss or a fault). The paging algorithm decides
which pages (or blocks) remain in fast memory at any point in time or, in other words, which
page(s) to evict when a new page is brought into fast memory. This problem is generally formu-
lated as being online, meaning that the paging algorithm does not know the future requests.

Sequential paging—when there is a single processor accessing the fast memory—has been

8

studied for decades and is a very well-understood problem [23, 104, 126, 42], including several of
its extensions.

In this work, we study the problem of parallel paging where p processors share the same
fast memory of some size k. Each processor runs its own program, and the set of pages accessed
by di�erent programs are disjoint. At each point in time, the paging algorithm gets to decide how
much cache goes to each processor, and also gets to dictate each processor’s eviction strategy. The
goal is to share the small memory among the processors in a way that minimizes some objective
function of processors’ completion times. We focus on minimizing average completion time, and
we also give bounds on makespan (i.e., maximum completion time) and median completion time.

The parallel paging problem introduces complexity that is not seen in the sequential problem.
First, multiple processors compete for the same resource and the paging algorithm must decide,
for each processor and at each time, how many and which of its pages to keep in cache. The
marginal bene�t of having more memory may vary across processors and this relationship may
not have good structure. For instance, it may be that Processor 1 derives more marginal bene�t
from one extra page compared to Processor 2 while at the same time, Processor 2 derives more
bene�t from ten extra pages compared to Processor 1. In addition, this marginal bene�t of extra
cache can vary over time and the online paging algorithm must change the number of pages
of fast memory allocated to the processors accordingly. Complicating matters even further, the
actual scheduling of processors matters. For instance, running a small subset of processors—
and temporarily stalling all others—may allow for better performance compared to running all
processors. Therefore, how the di�erent processor’s accesses are interleaved is an important part
of what the parallel paging algorithm must decide, and di�erent interleavings of accesses can
lead to vastly di�erent performances.

Whereas sequential paging has been understood for decades [23, 104, 126, 42], parallel paging
has largely resisted analysis. The only known upper bounds for parallel paging [47, 69, 22, 88,
94, 68, 106] consider relaxations of the problem in which the interleaving of accesses by di�erent
processors is �xed ahead of time—in particular, this is enforced by making it so that, whenever
any processor blocks on a miss, all of the processors block, which in turn eliminates a large amount
of the parallelism inherent to the problem. The known lower bounds [80, 102], on the other hand,
focus only on the o�ine parallel paging problem, and on analyzing the performance of traditional
paging algorithms such as LRU. Parallel paging has also been extensively studied within the
systems community, particularly after multicore processors became mainstream—starting from
some pioneering work on (o�ine and online) heuristics that dynamically adjust the sizes of the
cache partitions dedicated to each processor (see, e.g., [135, 130, 132, 99, 140, 48]).

This Dissertation. In this work, we consider this long-standing open problem of parallel paging
in its general form when the interleavings are not �xed. As in [80, 102], we analyze this problem
in a timed model where a hit takes unit time and a miss takes s time units for some parameter
s ≥ 1.1 Note that, in the traditional model used for paging [126, 42], a hit costs 0 and a miss costs
1 — we will call this the 0-1 model. The timed model is more general and captures the 0-1 model
as a special case (by letting s tend towards in�nity).

An important feature of the timed model is that it captures the passage of time even when a
processor experiences a hit. Modeling this passage of time allows for a more �ne-grained analysis

1We use the letter s to be consistent with the notation used in the full access cost model [42], which charges 1
for an access to fast memory and s ≥ 1 to move a page from slow to fast memory.

9

of parallel paging since it allows us to compare the progress of one processor to another even
if one is experiencing hits while the other is experiencing misses. This avoids the unrealistic
assumption in the 0-1 model that a particular processor can have an in�nite number of hits in
the time that another processor has a single miss.

We give tight upper and lower bounds for the deterministic online parallel paging problem
in the timed model showing that the optimal competitive ratio for average completion time is
Θ(log p), using constant resource augmentation. (Resource augmentation is perhaps the most
popular re�nement of competitive analysis that allows bypassing overly pessimistic worst-case
bounds by endowing the online algorithm with more resources than the o�ine optimum it is
compared to [42].) We also consider makespan, proving a lower bound of Ω(log p) and an upper
bound ofO(log2 p) for the competitive ratio. This result represents signi�cant progress on a long-
standing open problem—it was �rst articulated by Fiat and Karlin [69] in 1995 and has remained
open even in the 0-1 model. A remarkable feature of our algorithms is that they are oblivious to
s, achieving optimal competitive ratios for all values of s simultaneously.

A foundational idea in both our algorithms and lower bounds is to relate the problem of par-
allel paging to the (seemingly unrelated) problem of green paging, which focuses on minimizing
the memory usage (hence, e.g., the energy consumption) of a (single) processor’s cache for a
computation, and is a problem of independent interest.

Green Paging. In green paging, the fast memory consists of memory banks that can be turned
on or o� over time. Memory banks that are active (i.e., turned on) can store pages—and thus
requests for those pages result in a hit—but also consume energy; memory banks that are inactive
cannot store pages, but do not consume energy. The goal in green paging is to minimize the total
energy consumption of a computation. More formally, there is a single processor that is running,
and the green paging algorithm gets to control both the page-eviction policy and the size of the
processor’s cache over time, assigning any size between a minimum of k/p and a maximum of k,
where p is a given parameter. The goal is to service the request sequence while minimizing the
integral of memory capacity over time—a quantity we call memory impact.2 This is a simple
model for studying the total amount of memory usage over time by a computation.

In this work, green paging serves both as a problem to be studied on its own, and as an
analytical tool for studying parallel paging. Indeed, both our upper and lower bounds hinge on
unexpected relationships between the two problems. We remark that the use of the same variable
p for apparently unrelated quantities in the two problems is intentional, as it plays exactly the
same role when “translating” one model into the other.

Results. We now summarize our results for deterministic online parallel and green paging. All
of the results assume a constant factor of resource augmentation (which is necessary even for
sequential paging [126, 73, 33]).

• Relating parallel and green paging. We show that green and parallel paging are tightly
related. In particular, any green paging algorithm with k memory can be translated “black box”

2Note that it is not always optimal to keep the cache size at k/p since this can lead to a larger number of misses,
thereby increasing the running time of the computation. As an example, say a processor accesses 4 pages in round-
robin, accessing each page t times. If we give the processor a cache of size 4, it will �nish in time 4t for a total
memory impact of 16t. On the other hand, if we give it a cache of size 2, at least half of its accesses will be misses.
Therefore, the running time will be at least 2st for a total memory impact of 4st. For any s > 4, allocating a cache
of size 4 results in a smaller memory impact than allocating a smaller cache of size 2.

10

into a parallel paging algorithm with O(k) memory capacity. If the former is online, so is the
latter. If the former has a competitive ratio of β, then the latter achieves an average completion
time with a competitive ratio ofO(β); additionally, the latter achieves a (1−ε)-completion time
(i.e., the time to complete all but an ε fraction of sequences) that is O(β log(ε−1))-competitive
with the optimal (1− ε/2)-completion time.
We also prove a relationship between lower bounds for the two problems. If we have an online
lower bound construction against online algorithms for green paging, achieving a competitive
ratio of Ω(β), then all online algorithms for parallel paging must also have competitive ratio
Ω(β) for both mean completion time and maximum completion time.

• Tight bounds for green paging. For a lower bound, we show that any online deterministic
algorithm has a competitive ratio of at least Ω(log p) even with O(1) resource augmentation.
And for an upper bound, we give a simple memory allocation algorithm that is both online and
memoryless (i.e., it does not depend on future or past requests) and that can be combined with
LRU replacement to achieve the optimal competitive ratio of O(log p).

• Tight bounds for parallel paging. Using the previous two results, we obtain tight upper and
lower bounds of Θ(log p) for the parallel paging problem, both when the objective is to mini-
mize mean completion time, and when the objective is to minimize the time spent completing
a constant fraction of processes. We also arrive at an upper bound of O(log2 p) and a lower
bound of Ω(log p) for the competitive ratio of optimizing makespan.

Bottom line: optimize memory impact. The relationship between green and parallel paging
is powerful. For decades, little progress has been made on parallel paging partly because it has
been unclear how to handle the interleaving and interference between di�erent processors. The
algorithms in this work give a clear lesson: rather than focusing on the interactions between
processors, and rather than greedily focusing on optimizing the running times of processors, one
should instead focus on minimizing the memory impact of each processor (the same value that
is optimized by green paging!). This—along with basic load balancing to keep processors from
getting too far ahead or behind—allows the processors to share the cache with each other in the
most constructive possible way.

Related Work on Sequential Paging. As mentioned above, sequential paging has been stud-
ied for decades for a two-layer memory heirarchy in the 0-1 model. The simple algorithm LFD
(Longest Forward Distance) that evicts the page accessed furthest in the future has long been
known to be optimal [23, 104]. In the online setting, where the algorithm does not know the fu-
ture, the competitive analysis framework is typically used to analyze algorithms. In the 0-1 model,
an online paging algorithm has a competitive ratio of (no more than) β if, for every request se-
quence, it incurs at most β times as many faults as an optimal o�ine algorithm incurs with a
memory of capacity h ≤ k (plus an additive constant independent of sequence length). The ratio
α = k/h is called the resource augmentation factor. Many simple, deterministic algorithms
including LRU, FIFO, FWF, and CLOCK have a competitive ratio of k

k−h+1
[126, 42]; and the same

ratio holds for RAND [42]. This ratio is optimal for deterministic algorithms, and even for ran-
domized ones if page requests can depend on previous choices of the paging algorithm. Since

k
k−k/2+1

< 2, this ratio implies that these algorithms never fare worse than the optimal o�ine
algorithm would on a memory system with half the capacity and twice the access cost.

11

Related Work on Parallel Paging. The theoretical understanding of the parallel paging prob-
lem remains incomplete. Most prior positive results assume that the p request sequences are
combined into a single �xed interleaved sequence, to be serviced by selecting which pages to
keep in memory so as to minimize the total number of faults [47, 69, 22, 88, 94] or other met-
rics [106]. That is, the speed at which processors progress relatively to each other is treated as
being independent of the number of page faults made by each processor, even though in reality
a processor that incurs few faults will progress much faster than one that incurs many faults.
Feuerstein and Strejilevich de Loma [68] further relax the problem so that they can choose the
interleaved sequence rather than assuming that it is given.

An unfortunate consequence of the �xed-interleaving assumption is that whenever a proces-
sor incurs a fault, all other processes “freeze” until the fault is resolved. This negates much of the
inherent parallelism in the problem since, when a processor encounters a fault, other processors
should continue working. However, when one doesn’t make this assumption, the problem be-
comes much more complicated since processors can advance while other processors are blocking
on faults, and thus the relative rates at which processors advance is determined by when they hit
or miss. This means that the actual interleaving of request sequences of di�erent processors depends
on the paging algorithm, since the paging algorithm determines when processors hit or miss.

Some recent works [80, 102, 55, 87] do not make the �xed-interleaving assumption; these
works investigate the complexity of the o�ine problem and show lower bounds for traditional
paging algorithms such as LRU, or consider restricted models. However, no general upper bounds
or lower bounds are known, and the fully general problem of how to manage a shared fast memory
among multiple processors has remained open.

Related Work on Green Paging. The last decade has seen a surge in interest for paging mod-
els where memory capacity is not static, but can instead change over time [50, 101, 79, 113, 114,
33, 31, 22]. One justi�cation for such models is the increased popularity of virtualization/cloud
services: the amount of physical memory allotted to a speci�c virtual machine often varies con-
siderably over time based on the number and priority of other virtual machines supported by the
same hardware. Another justi�cation for dynamic capacity models lies in the ability of modern
hardware to turn o� portions of memory so as to reduce power, often with the goal of minimizing
the overall energy used in a computation—this is the task we refer to as green paging.

The �rst work to address green paging was [50], allowing the paging algorithm to determine
both the capacity and the contents of the memory on any given request, with the goal of min-
imizing a linear combination of the total number of faults and of the average capacity over all
requests. This problem has been investigated by López-Ortiz and Salinger [101] and later, in the
more general version where pages have sizes and weights, by Gupta et al. [79]. Subsequent work,
and in particular the elastic paging of [113, 114], showed that one can e�ectively decouple page
replacement from memory allocation: even if the latter is chosen adversarially, LFD is still opti-
mal, and a number of well-known paging algorithms like LRU or FIFO are optimally competitive,
with a competitive ratio that is extremely close albeit not quite equal to the classic k/(k−h+ 1).
A similar line was taken by adaptive caching [33] with a slightly di�erent cost model. These
results [113, 114, 33] imply that green paging is a problem of memory allocation: once memory is
allocated, one can simply use LRU for page replacement—as its cost will be within a factor O(1)
of the optimal (for that memory allocation).

12

2.2 Technical Overview

This section gives an overview of our main results and of the techniques that we use to prove
them. Recall that we will use the timed model where cache hits take time 1, and cache faults take
time s for some integer s ≥ 1. A detailed speci�cation of the models for parallel paging and for
green paging can be found in Section 2.3.

The relationship between Parallel and Green Paging. In parallel paging, the fact that pro-
cessors must share a cache of size k suggests that the cache-usage per processor should be treated
as a critical resource. Green paging, in turn, optimizes this resource for an individual processor
by minimizing the total memory impact for that processor.

Green paging does not concern itself with minimizing running time directly though—for ex-
ample, a green paging algorithm might choose to use a very small portion of the cache for a
long time rather than a larger portion for a short time. Additionally, since green paging focuses
on only a single processor, it does not say anything about the interactions between concurrent
processors. These interactions (i.e., the ways in which the working sets for di�erent processors
change relative to each other over time) play a critical role in the parallel paging problem.

One of the key contributions of this work is that, in spite of these obstacles, memory impact
really is the right way to think about parallel paging. Even though parallel paging involves com-
plicated interactions between processors, we show that the problem can be decomposed in a way
so that each individual processor can be optimized separately. The result is a black-box reduc-
tion from the parallel-paging problem to green paging. Remarkably, the opposite direction is also
true: any online lower-bound construction for green paging can be transformed in a black-box
fashion to obtain an online lower-bound construction for parallel paging.

By proving a tight relationship between green and parallel paging, and then giving tight
bounds for green paging, we immediately obtain tight bounds for parallel paging as a result.

In the rest of this section, we �rst describe a series of simpli�cations that allow us to think
about each individual processor’s use of cache in terms of a so-called boxed memory pro�le. We
then explain how to achieve tight bounds for green and parallel paging.

2.2.1 A Useful Tool: Box Pro�les

In the green paging problem, the paging algorithm sets a memory pro�le m(i), which dictates
how much cache the processor uses at each point in time. A key insight, however, is that we need
only consider pro�les with a certain nice geometric structure, called box pro�les.

Box pro�les. A memory box of height h is a time-interval of length Θ(sh) during which a
processor is allocated exactly h memory. We call a memory pro�le m a box pro�le if it can be
decomposed into a sequence of memory boxes b1, b2,

Box pro�les are without-loss-of-generality in the following sense: If an online algorithm for
green paging produces a memory pro�lem, then the algorithm can be modi�ed (online) to instead
produce a box pro�le m′. Moreover, the box pro�le m′ will incur at most a constant-factor more
memory impact than does m.

The intuition behind this transformation is the following: without loss of generality, the pro-
�lem never grows at a rate of more than 1 per s time steps, because fetching a page from the slow
memory to the fast memory takes s time (although it can shrink arbitrarily fast). Thus, whenever

13

the memory pro�le m is at some height h, the pro�le must have already been at height Ω(h) for
time at least Ω(sh). This naturally allows for one to decompose the pro�le into (overlapping)
chunks where each chunk closely resembles a box. Making these chunks not overlap, and so that
the decomposition is online, requires several additional ideas that we give in Section 2.4.

Box pro�les were previously used as analytical tools for understanding cache-adaptive algo-
rithms [33, 31], which are algorithms that exhibit optimal cache behavior in the presence of a
varying-size cache. An interesting feature of our work is that box pro�les play an important role
not just analytically, but also algorithmically in our treatments of green and parallel paging.

Simplifying box pro�les: compartmentalization, smooth-growth, and optimal eviction.

We can also assume that the box pro�le m′ has additional nice properties, the simplest of which
are that every box has a power-of-two height 2j , and that the height-to-width ratio of every box
is always the same.

On top of these, we can assume compartmentalization. This property says that, at the
beginning of each box b’s lifetime, the cache is �ushed (i.e., the cache size brie�y dips to 0). This
means that each box of height h must incur h cache misses just to populate its cache. These
cache misses can be handled by increasing the box’s width by an additional sh. Since the box
already had width Θ(sh), the increase does not change the asymptotic memory impact of the box.
Compartmentalization plays an important role in the design of algorithms for parallel paging,
since it means that consecutive boxes in a processor’s pro�le need not be scheduled adjacently
in time.

We can also assume the smooth-growth property: whenever two boxes bi, bi+1 come after
one another, the height of the latter is at most twice that of the former. This property will be
especially useful when proving lower bounds.

Finally, because each box in a box pro�le has a �xed height, LRU in a box of height 2j is
guaranteed to perform 2-competitively with the optimal eviction policy OPT in a box of height
2j−1 [126]. Up to a constant factor of resource augmentation, we can therefore assume without
loss of generality that the optimal policy OPT is used within each box.

2.2.2 Tight Bounds for Green Paging

Consider a green paging instance with maximum memory k and minimum memory k/p. One can
assume without loss of generality that k, p are powers of 2. In addition, we can assume that the
page replacement strategy is optimal (or LRU) within each box—therefore, the algorithm needs
only decide the sequence of boxes to be used. Furthermore, as discussed at the beginning of the
section, one can also assume that the asymptotically optimal solution OPT is a box pro�le using
boxes with heights k/p, 2k/p, 4k/p, . . . , k.

A Universal Box Pro�le. In Section 2.6.2, we present the BLIND algorithm for green pag-
ing (speci�cally, to decide the sequence of boxes that the algorithm should use), which achieves
competitive ratio O(log p) using constant resource augmentation. A remarkable property of this
algorithm is that the sequence of boxes that it uses is oblivious to the input request sequence σ. In
particular, the BLIND algorithm always uses a �xed sequence of boxes that we call the universal
box pro�le U .

We construct the universal box pro�le U by performing repeated traversals of a tree T , where
each node in T is associated with a certain box size. The tree T has 1 + log2 p levels, and each

14

internal node in the tree has four children. For each of the levels 0, 1, 2, . . . , log2 p, starting at
the leaves, the nodes in level i are boxes of height 2ik/p. In particular, the root node is a box
of height k, and the leaves are boxes of height k/p. The key property of this tree is that each
internal node’s memory impact is equal to the sum of the memory impact of all its children and
therefore, the sum of the memory impacts of the boxes at each level i is the same for every level.

The universal box pro�le U is constructed by performing a postorder traversal of the tree
T (i.e., we start in the bottom left leaf, and we always visit children before visiting parents).
Whenever the postorder traversal completes, it then restarts.

Analyzing the BLIND Algorithm. In Section 2.6.2, we prove the following theorem.

Theorem 1. Using resource augmentation α = 2, the competitive ratio of BLIND is O(log p).

To analyze the BLIND algorithm, consider the optimal box pro�le OPT, which uses boxes
x1, x2, . . ., and compare it to the universal box pro�le U , which uses boxes y1, y2, Let Upre�x =
〈y1, y2, . . . , yj〉 be the smallest pre�x of U that contains OPT as a subsequence, and call a box yi
successfully utilized if it is used in the OPT subsequence.

The challenge is to bound the total memory impact of Upre�x byO(log p) times the total mem-
ory impact of OPT. In the rest of this overview, let us focus on only the �rst tree-traversal in
Upre�x.

The key combinatorial property of the BLIND algorithm is that, for every root-to-leaf path P
in the tree T , at least one box in that pathP is guaranteed to be successfully utilized. In particular,
in Section 2.6.2 we show that if the path P has nodes p1, p2, . . . , pj where pj is a leaf, then once
BLIND’s postorder traversal reaches pj , the next box that the algorithm successfully utilizes is
guaranteed to be one of p1, p2, . . . , pj .

The tree T is designed so that each box b has exactly the same memory impact as the sum
of its descendant leaves. Since every root-to-leaf path contains at least one successfully utilized
box, it follows that: the sum of the memory impacts of successfully utilized boxes is at least as
large as the sum of memory impacts of all leaves.

By design, the sum of the memory impacts of the leaves in T is 1/(1 + log p) of the total
memory impact of all boxes in T . The consequence is that, the memory impacts of successfully
utilized boxes must represent at least a 1/(1 + log p) fraction of Upre�x’s memory impacts, as
desired.

It is interesting that the BLIND algorithm achieves a competitive ratio ofO(log p) while being
oblivious to the input sequence σ. On the other hand, the fact that BLIND is oblivious gives hope
that an even smaller competitive ratio might be achievable by an adaptive algorithm. Remarkably,
this turns out not to be the case.

Lower-Bound Construction: Go Against the Flow. In Section 2.6.1, we prove the following:

Theorem 2. Suppose s ≥ p1/c
for some constant c. Consider the green paging problem with max-

imum box-height k and minimum box-height k/p. Let ALG be any deterministic online algorithm

for green paging, and let α be the amount of resource augmentation. Then, the competitive ratio of

ALG is Ω
(

log p
α

)
.

For simplicity, here we focus on the case where the resource augmentation α = 1, where
s ≥ p, and where the minimum box-height for OPT is normalized to 1 (meaning that k = p).

15

Consider an request sequence σ for ALG in which, at every step we request the element i
most-recently evicted from ALG’s cache. (In particular, ALG misses on every request.) Let cALG
be the total memory impact of ALG on the sequence σ.

We now design (o�ine based on σ) an algorithm OFF that achieves total memory impact
cOFF ≤ O(cALG/ log p).

The algorithm OFF selects a threshold 2j and always does the opposite of what ALG does with
respect to that threshold. Namely, whenever ALG has cache-size 2j or greater (we call these time
intervals islands), OFF sets its cache-size to 1. And whenever ALG has cache-size less than 2j

(we call these time intervals seas), OFF sets its cache-size to 2j .
For now, the only constraint that we will place on the threshold 2j is that log p ≤ 2j ≤

k/ log p. Later, however, we will see that a careful selection of 2j is essential to complete the
proof.

Analyzing the Lower-Bound Construction. In order to analyze cOFF, we begin by considering
the islands. During these time intervals, both ALG and OFF miss on every request, but ALG uses
a cache of size 2j ≥ log p whereas OFF uses a cache of size 1. Thus the memory impact of ALG
is at least a factor of log p larger than that of OFF during the islands.

Next, we consider the seas. Each of these time intervals has a transition cost for OFF, in
which OFF must transition from a cache of size 1 to a cache of size 2j , and incurs 2j − 1 misses
in order to �ll its cache. If we ignore the transition costs for a moment, then it turns out that OFF
never incurs any cache misses within a sea. This is because the request sequence σ is designed
to only have memory footprint ≤ 2j within a given sea. Since ALG always misses, each request
costs ALG at least s. On the other hand, since OFF never misses (but uses a cache of size 2j), each
request costs OFF 2j ≤ k/ log p ≤ s/ log p. Again we have that the memory impact of ALG is at
least a factor of log p larger than that of OFF.

If the threshold size 2j is not selected carefully, then the transition costs can end up dominat-
ing the other costs in OFF. Indeed, if not for the transition costs, one could select the threshold
2j to be√p and force a competitive ratio of Ω(

√
p) (rather than Ω(log p)).

In order to minimize the transition costs, one must select the threshold size 2j in a special
way. We select 2j to be the box-height in the range [log p, k/ log p] that contributes the least
total memory impact to ALG over all such box heights. That is, for i ∈ {0, . . . , log k} de�ne
S(2i) to be the total memory impact incurred by boxes of height 2i in ALG, and de�ne j =

arg min
k/ log p

2i=log p
S(2i). Since

∑
i S(2i) = cALG, one can deduce that S(2j) ≤ O(cALG/ log p).

To complete the proof, we show that the sum of the transition costs is O(S(2j)). By the
smooth-growth property, between every sea and island, ALG always has at least one box of height
2j . The cost of this box for ALG is within a constant factor of the corresponding transition cost for
OPT. This establishes that the total of the transition costs is O(S(2j)) ≤ cALG/ log p, as desired.

2.2.3 Using Green Paging to Solve Parallel Paging

In Section 2.5.1, we prove the following theorem:

Theorem 3. Given an online algorithm for green paging with competitive ratio β, one can construct
an online algorithm for parallel paging with competitive ratio O(β) for average completion time.

Moreover, if the green paging algorithm uses α resource augmentation, then the parallel paging

algorithm uses O(α) resource augmentation.

16

We also extend our analysis to show that the same algorithm achieves guarantees on the
completion time for a given number of processors. This provides a continuous tradeo� between
average-completion-time type guarantees and makespan-type guarantees, and allows for us to
obtain guarantees for metrics such as median completion time.

Theorem 4. Given an online algorithm for green paging with competitive ratio β, one can construct
an online algorithm for parallel paging that achieves the following guarantee: For any i ∈ N, the
maximum completion time for all but a fraction 2−i of all sequences is within a factor of O(iβ) of
the optimal time to complete all but a fraction of 2−i−1

. Moreover, if the green paging algorithm uses

α resource augmentation, then the parallel paging algorithm uses O(α) resource augmentation.

Two important special cases of Theorem 4 are: the makespan is within a factor of O(β log p)
of optimal, and the median completion is within a factor of O(β) of the optimal time to complete
at least 3/4 of the processors.

In the rest of this section, we give an overview of the proof of Theorem 3, meaning that our
focus is on minimizing average completion time. For ease of notation, we will do the reduction
in the special case where β = 1 (meaning we are given an optimal algorithm for green paging)
and α = Θ(1). In the following discussion, let OPT denote the optimal solution to the parallel
paging problem (for minimizing average-completion time).

A Warmup: The Box-Packing Algorithm. We begin by describing a simple parallel-paging
algorithm which we call the Box-Packing algorithm. The Box-Packing algorithm behaves well
on a certain special class of inputs (which we call uniform-impact), but will not guarantee small
average completion times in general. Later in the section, we will use the algorithm as a building
block to construct a di�erent algorithm that does o�er general guarantees.

During the Box-Packing algorithm, each processor runs an instance of green paging in order
to produce a sequence of boxes with heights between k/p and k/2. The Box-Packing algorithm
then greedily packs these boxes into a memory of size k over time using the following approach:
if at any point in time, less than k/2 of the memory is being used, then the Box-Packing algorithm
selects a processor q that is not currently executing (if such a processor exists), and places the
next box for that processor into the cache.

An important feature of the Box-Packing algorithm is that, when picking which processor
q to allocate space for in the cache, the algorithm performs a form of load balancing. Rather
than giving priority to the processors q that have run for the least total time (which might seem
natural), the algorithm instead selects the processor q that has incurred the smallest total memory

impact so far, out of the processors that are idle. We call this the impact-balancing property.

When the Box-Packing Algorithm Does Well: Uniform-Impact Processors. Despite not
being an optimal algorithm for parallel paging in general, the Box-Packing algorithm does do
well in one important special case: the case where the processors are uniform-impact.

For each processor q, let Iq denote the total memory impact used by the green-paging solution
for q. We call the processors 1, 2, . . . , p uniform-impact if I1 = I2 = · · · = Ip = I for some I .

The fact that the processors are uniform-impact ensures that the cache is always close to
fully utilized. In particular, a critical failure mode for the Box-Packing algorithm is if the size-k
memory is under-utilized (i.e., less than k/2 of the memory is allotted to boxes), but there are
no remaining processors to schedule (because too many processors have already �nished). If

17

the processors are uniform-impact, however, then the Box-Packing algorithm �nishes all of the
processors at roughly the same time, avoiding the under-utilization failure mode.

Because the memory is close to fully utilized, the total running time is equal to the total
memory impact of all processors divided by k, i.e., Θ(pI/k).

On the other hand, assuming that the processors are impact-balanced, we can show that the
optimal average completion time is also Θ(pI/k). In particular, in OPT, the p/2 processors that
�nish �rst must together incur total memory impact at least Ω(pI),3 thereby requiring time at
least Ω(pI/k). Thus the p/2 processors that �nish last in OPT each incur running times Ω(pI/k).

The Final Algorithm: The Phased Box-Packing Algorithm. In order to do well when the
processors are not uniform-impact, we introduce the Phased Box-Packing algorithm. This is the
algorithm that gives the guarantees in Theorems 3 and 4.

The algorithm consists of 1 + log p phases 0, 1, 2, . . . , log p, where phase i begins at the �rst
point in time where only p/2i processors remain. During each phase i, the Phased Box-Packing
algorithm runs an instance of the Box-Packing algorithm on the p/2i processors that remain, and
then terminates that instance prematurely at the end of the phase. Let ∆Ti be the running time
of the i-th phase, and let Si denote the set of processors that �nish during the i-th phase.

Analyzing the Phased Box-PackingAlgorithm byComparing Phases. The key to perform-
ing a competitive analysis of the algorithm is to analyze each phase based not on the average
completion time of the processors Si that �nish in that phase, but instead based on the average
completion time of the processors Si+1 that �nish in the next phase. Note that the processors Si+1

represent a 1/4 fraction of the processors that execute during phase i. By the impact-balancing
property, it follows that the processors Si+1 incur a constant fraction of the memory impact that
is incurred in phase i, and that all of the processors in Si+1 incur (almost) the same memory im-
pacts as one-another in phase i. This means that, by ignoring the other processors that execute
during phase i, one can treat the processors in Si+1 as being uniform-impact, and conclude that
the average completion time in OPT for the processors in Si+1 is Ω(∆Ti).

Phase i contributes running time at most ∆Ti to at most 2|Si+1| processors. On the other
hand, the processors Si+1 require average running time at least Ω(∆Ti). Thus we can perform
a charging argument where we use the running time of processors Si+1 in OPT to pay for the
running times of all processors in phase i. This proves that the algorithm is O(1)-competitive
with OPT.

2.2.4 Transforming Green Paging Lower Bounds into Parallel Paging

Lower Bounds

We now consider how to transform an arbitrary lower-bound construction for green paging into
a matching lower-bound construction for parallel paging. Section 2.5.2 proves the following the-
orem.

3Without loss of generality, we assume that OPT always allocates at least Ω(k/p) space to each processor, since
up to a factor of 2 in resource augmentation we can feel free to spread half of OPT’s memory equally among the
processors and limit OPT’s control to the other half. Note that, without this minimum-allocation height assumption,
the following problem might arise: OPT could use boxes of height o(k/p), possibly achieving memory impact less
than I for some processor. The minimum-allocation height assumption �xes this by ensuring that all of OPT’s boxes
have height Ω(k/p).

18

Theorem 5. Suppose there exists a green paging lower bound construction L that achieves com-

petitive ratio Ω(β). Then all deterministic parallel paging algorithms (that use α ≤ O(1) resource
augmentation) must incur competitive ratio Ω(β) for both average-completion time and makespan.

Consider a deterministic parallel paging algorithm A that has resource augmentation α =
Θ(1). We can assume without loss of generality that A always allocates space at least k/(2p)
to every processor. In particular, these minimum allocations combine to only use half of the
memory, which up to a constant factor in resource augmentation can be ignored.

AsA executes the p processors on their request sequences σ1, σ2, . . . , σp (which we will de�ne
in a moment), each processor’s request sequence σi is executed with some memory pro�le mi.
Since mi always allocates between k/(2p) and k memory, one can think of mi as being a green-
paging solution for sequence σi.

To construct adversarial sequences σ1, σ2, . . . , σp forA, we use the lower-bound construction
L to construct each of the sequences in parallel. We terminate each of the sequences σi once the
corresponding memory pro�le mi produced by A reaches some large memory impact R.

The fact that each of the pro�les mi have the same memory impacts R allows for us to lower
bound the average completion time for algorithmA. In particular, the �rst p/2 processors to com-
plete must incur total memory impact at least Ω(pR), thereby incurring total running time at least
Ω(pR/k). It follows that the �nal p/2 processors to complete each take time more than Ω(pR/k).
Thus Ω(pR/k) is a lower bound for both the average completion time and the makespan of A.

In order to complete the proof, we construct an alternative parallel-paging solutionB that has
makespan (and thus also average completion time) onlyO(pR/kβ). Note that, because algorithm
A is analyzed with resource augmentation α, the maximum memory size for B is k/α.

Now we consider the optimal green-paging solution for each request sequence σi, where the
optimal solution is restricted to have minimum box height k/(4αp) and maximum box height
k/(2α) (i.e., the optimal solution is limited by a factor-of-2α resource augmentation in compar-
ison to the solutions produced by A). Let mOPT

i be the (boxed) memory pro�le produced by the
optimal green-paging solution for σi. By the de�nition of the lower-bound construction L, we
know that the memory impact of each mOPT

i is only O(R/β).
To construct the parallel-paging solution B, we simply perform the Box-Packing algorithm

from Section 2.2.3 on the box pro�les mOPT
1 , . . . ,mOPT

p . In particular, whenever the total memory
allocated to processors is less than k

2α
, algorithmB selects a processor i out of those not currently

executing (if there is one) and allocates space for the next box the pro�lemOPT
i . Note that the box

is guaranteed to �t into B’s memory of size k/α, since the maximum box height in any pro�le
mOPT
i is only k/(2α).

A simple way to analyze the average running time of B is to note that (without loss of gen-
erality) the request sequences mOPT

1 ,mOPT
2 , . . . ,mOPT

p are impact balanced, each having the same
memory impact I = Θ(R/β). By the analysis in Section 2.2.3, the total makespan for B is only
O(pI/k) = O (Rp/kβ). Since this is a factor of Ω(β) smaller than the average completion time
and makespan of A, this completes the lower-bound transformation.

2.2.5 Putting Pieces Together

Combining the upper and lower bounds for green paging in Section 2.2.2, we arrive at the fol-
lowing tight bound on green paging.

19

Theorem 6. Suppose s ≥ p1/c
for some constant c. Consider the green paging problem with maxi-

mum box-height k and minimum box-height k/p. Then there exists a deterministic online algorithm

(with O(1) resource augmentation) that achieves competitive ratio O(log p). Moreover, this compet-

itive ratio is asymptotically optimal for deterministic online algorithms.

Note that the assumption in Theorem 6 that s ≥ p1/c is natural for the following reason: if
any green paging algorithm ever uses a square of height more than sk/p, then the algorithm
would be better o� using a square of height k/p (and just incurring cache misses everywhere).
Thus the natural parameter regime for green paging is when the maximum box-height k is less
than sk/p, meaning that p ≤ s.

By combining the upper and lower bounds for green paging with the reductions in Sections
2.2.3 and 2.2.4, we arrive at the following bounds for parallel paging:

Theorem 7. There exists an online deterministic algorithm for parallel paging that achieves com-

petitive ratio O(log p) for average completion time, using resource augmentation O(1). Moreover,

for any i ∈ N, the maximum completion time for all but a fraction 2−i of all sequences is within a

factor of O(i log p) of the optimal time to complete all but a fraction of 2−i−1
. One consequence of

this is that a competitive ratio of O(log2 p) is achieved for makespan. Furthermore, any determinis-

tic parallel paging algorithm must have competitive ratio Ω(log p) for both average completion time

and makespan, as long as s ≥ p1/c
for some constant c.

2.3 The Models

Before proceeding with our results, we �rst take a moment to discuss the models for green paging
and parallel paging in detail and, in particular, to highlight some of the unintuitive di�erences
between these problems and classic paging.

2.3.1 The Green Paging Model

Green paging models computations in environments, such as cloud computing or low-power com-
puting, where the amount of memory resources allocated to a given task can be changed dynami-
cally, and the objective is to complete the task minimizing the total amount of memory resources
consumed over time.

Formally, in green paging, like in standard paging, an algorithm controls a memory system
with two layers: a fast memory that can hold a limited number of pages, and a slow memory
of in�nite capacity. Accessing a page takes one time step if that page is in fast memory. If a
requested page is not currently in fast memory, it can be accessed only after copying it into fast
memory; fetching a page from slow to fast memory takes s ≥ 1 time steps. During the s time
steps of a fault, the corresponding fast memory page must be available and not otherwise in use.
In practice, s� 1; we assume for simplicity that s is an integer, allowing us to work with discrete
time steps. Pages can be brought into fast memory only when requested, but can be discarded
at any time, instantaneously and at no cost. We denote by PALG(i) the set of pages kept in (or
being loaded into) fast memory throughout the i-th time step by a paging algorithm ALG.

Two main di�erences set green paging apart from classic paging. The �rst is that the fast mem-
ory capacity is not �xed, but in general varies over time under the control of the paging algorithm,

20

between a maximum of k and a minimum of k/p pages. We denote by mALG(i) ≥ |PALG(i)|
the fast memory capacity set by ALG throughout the i-th time step. We call the function m(i)
the memory pro�le.4 The second di�erence is that the paging algorithm must access any given
sequence of page requests σ = 〈r1, . . . , rn〉 minimizing not the total time taken TALG(σ) (or,
equivalently, the number of faults) but instead the integral, over that time interval, of the fast
memory capacity, that is,

∑TALG(σ)
i=0 mALG(i). We call this quantity the memory impact of a

paging algorithm. As mentioned in Section 3.1, lower capacity does not necessarily translate
into a lower memory impact, if it means more page faults and thus more processing time—think
of a cycle over four pages serviced with memory capacity m(i) = 4 or with memory capacity
m(i) = 2 for all i.

Solely to simplify the analysis, we also introduce a third, minor, di�erence: we allow the
possibility of idling on any given time step following a page access (or another idle time step).
The time step is counted towards the memory integral, but the request sequence does not advance
and the memory contents do not change (unless |PALG(·)| must decrease as a consequence of a
reduction of mALG(·)). This is justi�ed by the availability of the No OPeration (NOP) instruction
in most processors.

Denote by rALG(i) the request from σ serviced at time step i by a green paging algorithm
ALG. ThenALG is online if it determinesmALG(i) andPALG(i) based solely on rALG(1), . . . , rALG(i).
Informally, we de�ne the competitive ratio with α ≥ 1 resource augmentation by comparing
the memory impact of the online algorithm with that of an optimal o�ine algorithm that runs
on a system with α times less capacity and pays α times as much for the same capacity, i.e.,
one whose memory capacity during the i-th time step mOPT (i) lies between bk/pαc and bk/αc,
and that incurs a cost equal to

∑TOPT (σ)
i=0 α · mOPT (i). In other words, the memory impact of

the optimal algorithm is scaled by a factor α, so that for all j, it costs the optimal algorithm the
same amount to allocate j/α memory as it does for the online algorithm to allocate j memory
(i.e., allocating a p-fraction of memory costs the same for both algorithms). We remark that the
main focus of this work is the case of α = Θ(1), however, in which case this distinction is not
important.

Note that in general we do not assume k/p = 1. This models a number of situations of
practical interest. In some systems, memory can be only allocated in units signi�cantly larger
than a single block. More typically, computing systems incur other running costs (e.g., the power
consumed by a motherboard or processor) that cannot be reduced below a certain threshold per
unit of time if a computation is running at all, regardless of how little memory is used; in these
cases k/p represents the memory capacity below which these other costs become dominant, and
thus below which memory capacity reductions cannot grant signi�cant cost reductions, per unit
of time, to the system as a whole.

2.3.2 The Parallel Paging Model

Parallel paging models computations where multiple processing units, each operating concur-
rently and independently, share nonetheless the same fast memory—a situation that multicore

4This should not be confused with the memory pro�le function as de�ned in [33]. In both cases a memory pro�le
function speci�es the quantity of memory available at any given time, but (1) in [33], this quantity is set adversarially
and not under the control of the algorithm, and (2) in [33] time advances with the page faults of the algorithm.

21

processors have made over the last two decades the standard on virtually all computing systems
from supercomputers to mobile phones. As in classic paging, the goal is to choose at each point in
time which pages to keep in fast memory so as to minimize some objective function of processors’
completion times.

The model we adopt is essentially the one introduced by López-Ortiz and Salinger [102].
We have p processors that share the same fast memory of size k. We assume k ≥ p. Each
processor issues a sequence of page requests; hence we have p sequences of page requests σ1 =
〈r1

1, . . . , r
1
n1〉, . . . , σp = 〈rp1, . . . , rpnp〉. (Note that the number of processors is denoted by the same

parameter, p, that denotes the ratio between the maximum and the minimum memory capacity
in the green paging problem. This is intentional since, although the two quantities are drastically
di�erent, when showing the equivalence between green paging and parallel paging we will show
that they play exactly the same role.) We assume that the sets of pages requested by di�erent
processors are disjoint, corresponding to separate processes.

Accessing a page takes one time step if that page is in fast memory (i.e., cache). If a requested
page is not currently in fast memory, it can be accessed only after copying it into fast memory;
fetching a page from slow to fast memory takes s ≥ 1 time steps. During the s time steps of a
fault, the corresponding fast memory page must be available and not otherwise in use. In practice,
s� 1; we assume for simplicity that s is an integer, allowing us to work with discrete time steps.
The goal of the paging algorithm is to choose which pages to maintain in fast memory so as to
minimize the maximum, average or median time to service σ1, . . . , σp. As in green paging, we
allow the possibility of idling on any given time step following a page access (or another idle time
step).

The parallel paging model allows for all of the processors to make progress in parallel. That
is, multiple processors can experience cache misses and cache hits concurrently. However, it may
sometimes be useful for the algorithm to temporarily halt some subset of processors (i.e., those
processors are simply idle) in order to make the best possible use of the fast memory (e.g., in
order to �t the entire working set for some subset of processors into fast memory).

Note that the only interaction between the p processors lies in the fact that the fast memory
must be partitioned (dynamically) between them; in particular, we denote bymj

ALG(i) the amount
of fast memory allocated by a paging algorithm ALG throughout the i-th time step to the j-th
processor (so that

∑p
j=1m

j
ALG(i) ≤ k for all i) and by P j

ALG(i) the set of its pages in, or being
loaded into, the fast memory at that time step. In general, note that mj

ALG(i) can be 0 if and
only if the j-th processor is idle on the i-th time step. We also remark that, although the order in
which each processor accesses its own page sequence is �xed, the sequences will be interleaved
in di�erent ways depending on how much memory and thus “speed” each request sequence is
allocated.

Denote by rjALG(i) the request from σj serviced on time step i by a parallel paging algorithm
ALG. Then ALG is online if m1

ALG(i), . . . ,mp
ALG(i) and P 1

ALG(i), . . . , P p
ALG(i) depend solely on

r1
1, . . . , r

1
ALG(i), . . . , rp1, . . . , r

p
ALG(i). A factor of α ≥ 1 of resource augmentation simply means

that the optimal o�ine algorithm is restricted to a memory of size bk/αc.

22

2.4 A Toolbox for Paging Analysis

The goal of this section is to show how imposing certain constraints on the memory allocation
does not signi�cantly degrade performance. In a nutshell, these involve rounding capacity to the
next power of two, ensuring that capacity does not change “too often”, and periodically lowering
capacity to 0. Operating under these constraints signi�cantly simpli�es subsequent analyses.

2.4.1 Memory Expansions

Let mALG(i) denote the memory capacity set by algorithm ALG throughout the i-th clock tick.
In our analyses, we shall often compare two algorithms by allotting to the �rst “more (memory)
space” or “more time”. A more formal de�nition of this notion is that of expansion of a memory
pro�le function m(t)—basically a new memory pro�le in which each clock tick with memory m
is replaced by one or more clock ticks with memory at least m.

De�nition 1. Consider a memory pro�le function m(t) : N → N . An expansion of m(t) is pair
of functions t̄(t) : N → N and m̄(t̄) : N → N , with the following properties:

1. t̄(t+ 1) > t̄(t).

2. for each t̄, either:

(a) there exists t such that t̄ = t̄(t), and then m̄(t̄) ≥ m(t), or

(b) there exist t− and t+ = t− + 1 such that t̄(t−) < t̄ < t̄(t+), and then m̄(t̄) ≥
min(m(t−),m(t+)).

If ∀t we have that t̄(t) and m̄(t̄(t − 1) + 1), . . . , m̄(t̄(t)) can be determined solely on the basis of

the page requests up to time t, then we say that the expansion is online.

If a paging algorithm can service a request sequence before clocktick T given m(t) memory,
then an optimal o�ine algorithm can obviously always service the same request sequence on any
expansion of m(t) before (the image of) T – essentially by “wasting” any extra memory, and
idling through extra clockticks while preserving the memory contents. Note that it is not true in
general, for all paging algorithms. Indeed, even if m(t) and m̄(t) are constant, there are online
algorithms such as FIFO that service some sequences faster if given less memory (a phenomenon
known as Belady’s anomaly [42]).

De�nition 2. The memory impact of a memory pro�le function m(t) is the integral of memory

(space) allotted to the pro�le over time, that is

∑
tm(t).

For the rest of the work, we use the memory impact and cost of a memory pro�le interchange-
ably.

2.4.2 Space and Time Normalization

To simplify memory management, we consider expansions of memory pro�les m(t) with some
constraints. More precisely, we show how any “natural” memory pro�le can be expanded online

23

into another memory pro�le that satis�es some constraints and incurs a memory impact within
a factor of O(1) of the original pro�le.

With “natural” we mean having a very simple, speci�c property: on any tick in which allo-
cated memory increases, it increases by at most one page and then remains constant for (at least)
s − 1 more ticks. This re�ects the fact that it is pointless to increase the memory pro�le unless
one needs to load one or more pages not currently in memory, which takes s clockticks per page.
More formally:

De�nition 3. A memory pro�le functionm(t) is natural if, for any t such thatm(t + 1) > m(t),
m(t+ 1) = · · · = m(t+ s) = m(t) + 1.

We remark that the expansions of natural memory pro�les we consider are not, in general,
natural. The idea is that the expanded pro�les are actually wasting space, but their de�nition
makes them easier to handle in proofs. It would not be di�cult, albeit extremely cumbersome, to
consider natural expansions for which all proofs still work.

The �rst constraint a memory expansion must satisfy is that the allocated memory should, at
any given time, be a power-of-2 multiple of the minimum allowed memory capacity kmin.

De�nition 4. A memory pro�le function m(t) is space-normalized if, for all t, there exists some

i ∈ Z+
0 such thatm(t) = 2ikmin.

The second constraint imposes that, roughly speaking, whenever allocated memory changes
to a new value m, it should remain m for a number of clockticks that is an integer multiple of
s ·m. This is formally de�ned as follows.

De�nition 5. A memory pro�le functionm(t) is time-normalized if any maximal interval during

whichm(·) maintains constant valuem lasts a number of clockticks equal to an integer multiple of

s ·m. We call such an interval a box.5

Figure 2.1 shows an example of a space- and time-normalized memory pro�le function. We
now show how to expand online any natural memory pro�le functionm(t) into a space- and time-
normalized function m̄(t̄) such that the total memory impact incurred by the latter is within a
constant factor of that incurred by the former, that is,

∑
t̄ m̄(t̄) = O(

∑
tm(t)). Informally, given a

memory capacitym(t), we roundm(t) up to the nearest power-of-2 multiple of kmin (normalizing
space) and then maintain memory constant at this normalized capacity for the minimum interval
that guarantees time normalization – adding idle cycles if necessary, i.e. if m(·) would grow
above the allotted capacity before the end of the interval.

More formally, denoting by m̄(t̄) the normalized memory pro�le function, we consider a
set t̄0, . . . , t̄n of upticks, which are the only destination ticks in which m̄(t̄) may change (i.e.
m̄(t̄i) = · · · = m̄(¯ti+1 − 1)), so m̄(t̄) is completely de�ned by its values on the upticks. We map
the original clocktick 0 into t̄0 = 0, and denote in general with ti the original clocktick mapped
into t̄i. Then, for any i ≥ 0 we set m̄(t̄i) to the lowest power-of-2 multiple of kmin no smaller
than m(ti), i.e. m̄(t̄i) = kmin · 2dlog(

m(ti)

kmin
)e, and determine ¯ti+1 as follows. Let t+i be the earliest

5Recall that in the technical overview (Section 3.3), for convenience, we de�ned boxes to always have �xed width
Θ(sm), rather than having width equal to an integer multiple of s ·m. If one breaks each box (as de�ned here) into
multiple boxes of the form described in Section 3.3, then one can assume without loss of generality that all boxes
have the form described in Section 3.3.

24

0 100 200 300 400 500 600

2
4

8

16

32

2(s · 32)

t

m(t)

Figure 2.1: A space- and time-normalized memory pro�le.

original clocktick, if any, after ti such that m(t+i) > m̄(t̄i). If there is no such t+i equal to or
smaller than ti + s · m̄(t̄i), then either we are at the very end of the request sequence, or the
original memory pro�le remains below m̄(t̄i) for at least s · m̄(t̄i) ticks – in the latter case we
simply map ti, . . . , ti + s · m̄(t̄i) into t̄i, . . . , t̄i + s · m̄(t̄i), and set ¯ti+1 = t̄i + s · m̄(t̄i) and thus
ti+1 = ti + s · m̄(t̄i)). If we are at the very end of the request sequence, we simply imagine there
is a sharp rise of memory consumption after it, and we set t+i to be the �rst clocktick after the

completion of the request sequence with m(t+i) = ∞. Whether this is the case, or whether t+i
“occurred naturally”, we map ti, . . . , t+i − 1 into t̄i, . . . , t̄i + (t+i − ti) − 1, as above, and map
the single clocktick t+i into the interval t̄i + (t+i − ti), . . . , t̄i + s · m̄(t̄i), with all clockticks in
the interval save the last having memory m̄(t̄i) (thus achieving time-normalization). The last
clocktick becomes the �rst clocktick ¯ti+1 of the (i+ 1)-th interval, and is allotted memory equal
to the lowest-power-2 multiple of kmin that is no smaller than m(t+i).

By construction, the space and time normalization does not increase the memory integral of
the original pro�le by more than a constant factor.

2.4.3 Compartmentalization

An additional useful transformation we can apply to a (space- and time-normalized) memory
pro�le, and implicitly to a generic page replacement algorithm, is compartmentalization. Com-
partmentalization expands the memory pro�le by adding to each box a pre�x of duration equal
to s times the capacity of that box, and a su�x of identical duration at the end of which all pages
are evicted from memory. Note that compartmentalization can always be carried out online.

We can easily show that if an optimal page replacement algorithm services a request sequence
over a sequence of boxes, it does the same even if the boxes are compartmentalized. Very simply,
one can reload at the beginning of the box any pages in memory, or being loaded in memory,
in the absence of compartmentalization; at s ticks per page, this takes no longer than the added
pre�x. Note that the original algorithm could have started the box with a pending fault, termi-
nating after s′ ≤ s ticks. If so, we simply idle for s′ ticks, and then reproduce the original page

25

replacement, ending with the memory exactly in the same state (including any pending fault).
Then, we allow any pending fault to terminate (which takes at most s ticks), and idle through
the rest of the su�x. The page replacement strategy above is not necessarily optimal, but it ob-
viously provides an upper bound on the memory impact of the optimal strategy in the presence
of compartmentalization. We then immediately have:

Proposition 1. Under optimal replacement policy, compartmentalization increases the memory

impact of a time-normalized memory pro�le by a factor of at most three.

We stress that the above holds for the optimal replacement policy, not necessarily for any

policy—in fact, it is not di�cult to show that it does not hold for some online algorithms. But
ultimately, we only care about bounds under optimal page replacement, because we know we can
translate them into bounds under e.g. LRU with onlyO(1)-overhead (in terms of memory impact
and resource augmentation).

The usefulness of compartmentalization lies in the fact that we can subsequently add be-
tween (expanded) boxes stretches of arbitrarily little memory without hindrance—we do so in
Section 2.5.1. Note that such an addition is not necessarily an expansion, because the added
intervals could sport lower capacity than both the boxes preceding them and those following
them—so they could cause a loss of memory contents and a degradation of performance if they
were added without compartmentalization. This is not the case with compartmentalization, since
the memory contents are cleared at the end of each box anyways. Compartmentalization is a way
to add these extra stretches knowing that they will at most triple the memory impact of a time-
normalized memory pro�le. Compartmentalization also plays a crucial role in circumventing a
subtle issue encountered in Section 2.6.2 that arises from the unexpected power of idling around
the discontinuities of a memory pro�le function.

2.5 The Tight Relationship between Green Paging and Par-

allel Paging

Green paging and parallel paging appear to be two wildly di�erent variants of paging, both in
terms of system model (sequential processing with variable memory vs. parallel processing with
constant memory) and in terms of goals (minimizing memory consumption over time vs. mini-
mizing completion time).

In this section, we describe a black-box approach for turning online algorithms for green
paging into online algorithms for parallel paging with the same competitive ratio. We then show
a relationship in the other direction, which is that any lower bound construction for online green
paging can be transformed in a black-box fashion into an online lower-bound construction for
(deterministic) parallel paging.

For simplicity, we shall hereafter assume that p is a power of two. The same results can be
obtained, with some additional complications, assuming that p is just an integer, substituting
dlog pe for log p in all formulas. All logarithms in this work are to base 2.

26

2.5.1 Transforming Green Paging Algorithms into Parallel Paging Al-

gorithms

The key idea to translate an e�cient algorithm for green paging algorithm into an e�cient one
for parallel paging is simply to generate independently an e�cient green paging strategy for
each of the p parallel sequences, and “pack” (expansions of) the memory pro�les together into
the shared memory, guaranteeing that (a) as little memory as possible is wasted in the process,
including the expansion, and (b) at any given time, the integral of the memory in each pro�le
so far is roughly the same. We remark that even though the use of normalization results in
memory pro�les that are sequences of “rectangular” boxes of space-time (to be packed within a
large rectangle of space-time, with height equal to the amount of shared memory k, and width
equal to the time taken to service the sequences), one cannot exploit standard 2D packing results:
one cannot treat each pro�le as a single enveloping rectangle without potentially wasting Θ(k)
memory, but one cannot treat each pro�le as a set of rectangles to be packed independently either,
since the individual boxes of each pro�le must obviously be placed after each other in a speci�c
order and cannot overlap temporally.

We now describe this packing process. We assume the p green paging memory pro�les we
start with are already compartmentalized and space- and time-normalized. E�ectively, given the
partition of each memory pro�le into boxes, at any given time step we execute (one box of) one
or more memory pro�les in parallel, adding an idle cycle at capacity zero to all the other memory
pro�les. Note that di�erent consecutive boxes of the same pro�le potentially take place in non-
contiguous intervals of time.

At any given time, we assign highest priority to the pro�le without any allocated memory—
i.e., the processor is idle or has just completed a box—that has incurred, so far, the lowest total
memory impact (with ties broken arbitrarily); any memory page that becomes available is then
reserved for that pro�le, until enough pages become available that its next box can be scheduled.
No other pro�le with no allocated memory can be executed before, not even if enough room in
memory is available. Clearly, priorities change dynamically, so if a processor q that just completed
a box has currently the highest priority, then the space in memory is reserved for q. (Put another
way: at any time step, if two processors p and q have no allocated memory and q has had a lower
memory impact than p so far, then p does not get to run unless and until q gets (enough memory)
to run.) Note that this process is online, since each box is scheduled without any knowledge of
future boxes.

We now show that this process completes within 3cmax/kmin clockticks, where cmax is the
maximum cost of any pro�le.

Lemma 1. Consider p (space- and time-normalized, and compartmentalized) green paging strate-

gies for p request sequences σ1, . . . , σp with memory capacity between k and kmin = k/p, and let

cmax be the maximum memory impact of any pro�le. Then, they can be packed online to yield a

parallel paging strategy that completes within time 3cmax/kmin.

This immediately yields the following.

Theorem 8. Consider p (space- and time-normalized, and compartmentalized) green paging strate-

gies for p request sequences σ1, . . . , σp with memory capacity between k and kmin = k/p, and as-

sume that each is optimal withα resource augmentation within a factor of β, and that their respective

27

costs are within a factor of γ of each other. Then they can be packed to yield a parallel paging strat-

egy that completes, with α resource augmentation, within time 6βγ of any parallel paging strategy

for the p sequences. Furthermore, if the green paging is online, so is the parallel paging.

Proof. Let cmin be the minimum cost of any of the p green paging strategies, and cmax ≤ γcmin
be the maximum. Then, by Lemma 1, the p green paging strategies can be packed online into a
single parallel paging strategy that completes within time T = 3γcmin/kmin. Suppose there were
a parallel paging strategy that completed all p sequences in time less than T/6βγ. This would
automatically yield a green paging strategy for each of the p sequences, with memory capacity
between k and 0 (note, not kmin). The least expensive of these strategies would then have cost
less than (k/p) · (T/6βγ); raising the memory capacity to kmin whenever lower would increase
the cost to less than

k

p
· T

6βγ
+ kmin ·

T

6βγ
=

2kminT

6βγ
=

2kmin
6βγ

· 3γcmin
kmin

=
cmin
β

,

against the hypothesis that the p strategies were all optimal within a factor of β for green paging
with memory capacity between k and kmin = k/p.

Analyzing Max, Average, and Median

Theorem 8 proves that, if one can come up with a green paging algorithm that is optimal within
a factor of c with a certain resource augmentation, one can automatically obtain parallel paging
with the same resource augmentation that is optimal within a factor of O(c) provided that the

di�erent sequences one is servicing incur green paging costs within a constant factor of each other.
In this case every sequence takes Θ(1) the time any other sequence takes to complete, and it is
straightforward to prove that the median and average completion times are also within a factor
of O(c) of the optimal.

It is then also immediate to extend the analysis to a situation where one has p sequences of
in�nite length, and one is seeking a parallel paging algorithm ALG that minimizes, simultane-

ously for every memory integral w, the time necessary to complete all of the pre�xes of the p
sequences that could be completed, each in isolation, with a memory integral equal to at most
w. The same strategy also obviously minimizes, within a constant factor, the average time for all
these pre�xes, and the median time.

The situation is di�erent if one has �nite sequences of drastically di�erent cost. In this case,
simply packing the corresponding green paging sequences can be a provably suboptimal choice
for parallel paging, because one might be left after some time with only a few sequences uncom-
pleted, whose green paging allocations are consuming only very little memory and “wasting”
the rest—instead of using it in a way that increases the memory integral (potentially by poly(p),
as it would be easy to prove), but correspondingly decreases the total completion time (again
potentially by poly(p), as it would be easy to prove).

In this case, we show that a simple variation on the scheme above that starts with a green
paging algorithm with resource augmentation α and optimal within a factor of β, that is still
online if the starting scheme is online, and provides a parallel paging strategy that, still with
resource augmentation α, yields:

1. An average completion time that is optimal within a factor of O(β).

28

2. For any i ∈ N, a maximum completion time for all but a fraction 2−i of all sequences that is
within a factor ofO(iβ) of the optimal time to complete all but a fraction 2−i−1; this means:

(a) a maximum completion time within a factor of O(β log p) of the optimal, and
(b) a median completion time (intended as the time to complete at least 1

2
p schedules)

within a factor of O(β) of the optimal time to complete at least 3
4
p schedules.

It’s not too di�cult to show that, in terms of the inverse of the fraction of uncompleted
sequences 2i a) the logarithmic loss in time and b) the O(1) “quantile augmentation” are both
fundamentally inevitable in an online setting. So we can’t do better. More precisely, quantile
augmentation is necessary if you consider a set of sequences of exponentially growing length
2p, (2p)2, . . . , (2p)p—basically because by the time you need only one more sequence completed
to meet your quantile target, the work you’ve done so far is vanishingly small compared to what
you still have to do, but because you do not know which sequence you have to focus on, you have
to split your work evenly among all survivors, meaning that crucial sequence will receive only
little space and take more time than necessary.

The scheme is simply to pack together the green paging strategies with memory between k
and k/p for the p sequences, until p/2 of them have completed; then, pack together green paging
strategies with memory between k and k

p/2
for the su�xes of the remaining p/2 sequences, until

p/4 have completed; and so on, packing at each stage with p/2i “survivors” the green paging
strategies with memory between k and k

p/2i
for those survivors, until all sequences have com-

pleted. Recall that in each stage, we pack the next box of a processor that has the highest priority
(whose memory impact is minimum so far). This is obviously an online strategy as long as the
green paging strategies it is based on are online.

In the scheme above denote by Ti, with i = 0, . . . , log(p)+1, the �rst time when no more than
p
2i

sequences remain uncompleted, and by σp+1−j , with 1 ≤ j ≤ p, the j-th sequence to complete
– so that σ1 completes last, σp completes �rst, and all of σ2i , . . . , σ2i−1+1 complete between Tlg(p)−i
and Tlg(p)−i+1. The key idea is that σ2i , . . . , σ2i−1+1 remain all uncompleted at time Tlg(p)−i, but
constitute at least one quarter of those sequences uncompleted at time Tlg(p)−i−1, so that they
“occupy” at least one quarter of the “memory space" in the interval [Tlg(p)−i−1, Tlg(p)−i] – and if
their memory occupation is optimal within a factor of β, writing for brevity (Tj − Tj−1) as ∆Tj ,
it would then be impossible to complete them all in time less than 1

4β
∆Tlg(p)−i. In fact, σ1 also

occupies the entire memory space throughout the last interval [Tlg(k), Tlg(p)+1] (in addition to at
least one quarter – in fact, at least one half – of the space in the interval [Tlg(k)−1, Tlg(p)]), and so
it would be impossible to complete in time less than 1

4β
∆Tlg(p) + 1

β
∆Tlg(p)+1.

Then under any algorithm the average completion time of the p sequences is at least:

Tavg =
1

β
∆Tlg(p)+1 +

lg(p)∑
i=1

1

4β

p

2i
∆Ti >

lg(p)∑
i=0

1

4β

p

2i+1
∆Ti+1 (2.1)

while under the scheme above the average completion time is no more than:
lg(p)∑
i=0

p

2i
∆Ti+1 < 8βTavg. (2.2)

Thus we have the following theorem:

29

Theorem 3. Given an online algorithm for green paging with competitive ratio β, one can construct
an online algorithm for parallel paging with competitive ratio O(β) for average completion time.

Moreover, if the green paging algorithm uses α resource augmentation, then the parallel paging

algorithm uses O(α) resource augmentation.

In a similar fashion, note that to complete all but a fraction 2−(i+1) of all p sequences, any
algorithm must complete for any j ≥ lg p−i all but at most 2−(i+1)p of σ1, . . . , σ2j , thus requiring
time at least 1

4β
∆Tlg p−j , since each of the 2j sequences requires at least 1

2jβ
∆Tlg p−j space. Then,

the total time T2−(i+1) for any algorithm to complete all but a fraction 2−(i+1) of all sequences
satis�es

T2−(i+1) ≥ max
j≤i

1

4β
∆Tlg p−j ≥

1

4βi

i∑
j=0

∆Tlg p−j, (2.3)

where the last term is no more than 1
4βi

the time our scheme takes to complete all but a fraction
2−i of all sequences.

Thus we arrive at the following theorem:

Theorem 4. Given an online algorithm for green paging with competitive ratio β, one can construct
an online algorithm for parallel paging that achieves the following guarantee: For any i ∈ N, the
maximum completion time for all but a fraction 2−i of all sequences is within a factor of O(iβ) of
the optimal time to complete all but a fraction of 2−i−1

. Moreover, if the green paging algorithm uses

α resource augmentation, then the parallel paging algorithm uses O(α) resource augmentation.

2.5.2 Transforming Green Paging Lower Bounds into Parallel Paging

Lower Bounds

In this section, we consider the problem of transforming an arbitrary lower-bound construction
for green paging into a matching lower-bound construction for parallel paging. Throughout the
rest of the section, k denotes the maximum amount of memory that can be allocated in green
paging, and k/(2p) the minimum amount. We also use k to represent the amount of memory
available in parallel paging, and p to be the number of processors.

De�ning the notion of lower-bound construction for green paging We begin by formally
de�ning the notion of a green paging lower-bound algorithm L. A lower-bound algorithm L
takes as input a deterministic online green-paging algorithmA (that usesO(1) resource augmen-
tation), and produces a request sequence σ(A) on which A performs poorly. The way in which
the lower-bound algorithmL and the green paging algorithmA interact is that the i-th request in
σ(A) is determined based on the behavior of algorithm A while serving the �rst (i− 1) requests
in σ(A).

Each lower-bound algorithmLmust have a termination size R. This means that the request
sequence σ(A) terminates once the total memory impact incurred by A reaches R. Note that R
is independent of the algorithm A.

A lower-bound algorithm L is said to achieve competitive ratio β if every green-paging
algorithm A with O(1) resource augmentation incurs a factor of Ω(β) more memory impact on

30

σ(A) than does the optimal green-paging algorithm6. That is, the optimal green paging algorithm
incurs memory impact only O(R/β).

We prove the following theorem.

Theorem 5. Suppose there exists a green paging lower bound construction L that achieves com-

petitive ratio Ω(β). Then all deterministic parallel paging algorithms (that use α ≤ O(1) resource
augmentation) must incur competitive ratio Ω(β) for both average-completion time and makespan.

Proof. Let A be a deterministic algorithm for parallel paging that uses resource augmentation
α = O(1). We can assume without loss of generality that A always allocates space at least
k/(2p) to every processor. In particular, these minimum allocations combine to only use half of
the memory, which up to a constant factor in resource augmentation can be ignored.7

As A executes the p processors on their request sequences σ1, σ2, . . . , σp, each processor’s
request sequence σi is executed with some memory pro�lemi. Sincemi always allocates between
k/(2p) and k memory, one can think of mi as being a green-paging solution for sequence σi.

Given a lower-bound algorithm L, we construct each of the request-sequences σ1, σ2, . . . , σp
by running parallel instances of L, with resource augmentation 2α. The result is that each mem-
ory pro�lemi incurs total memory impactR (whereR is the termination size ofL and is assumed
without loss of generality to be su�ciently large). Moreover, if mOPT

i is de�ned to be the mem-
ory pro�le that the optimal green-paging solution uses for request-sequence σi, then the total
memory impact incurred by mOPT

i is O(R/β). Without loss of generality, each pro�le mOPT
i is

a box pro�le (i.e., it is normalized and compartmentalized). Because we are considering L with
2α resource augmentation (meaning that the algorithm against which L is competing has 2α re-
source augmentation), each pro�le mOPT

i consists of boxes with heights between k
4αp

= Θ(k/p)

and k
2α

= Θ(k).
We now consider the average completion time for Algorithm A. Since each processor has

memory impact R, the �rst p/2 processors to complete must incur total memory impact at least
Ω(pR), thereby incurring total running time at least Ω(pR/k). This means that the �nal p/2
processors to complete each take time more than Ω(pR/k). Thus Ω(pR/k) is a lower bound for
both the average completion time and the makespan of A.

In order to complete the proof, we construct an alternative parallel-paging solutionB that has
makespan (and thus also average completion time) only O(pR/kβ). Because A has α resource
augmentation, the amount of memory available to the parallel-paging algorithm B is only k/α.

We can assume without loss of generality that the pro�les mOPT
i are box pro�les. The algo-

rithmB performs the Box-Packing algorithm from Section 2.2.3 on the box pro�lesmOPT
1 , . . . ,mOPT

p .
In particular, whenever the total memory allocated to processors is less than k/2α, algorithm B
selects a processor i out of those not currently executing (if there is one) and allocates space for
the next box the pro�le σOPT

i . Note that the box is guaranteed to �t into B’s cache of size k/α,
since the maximum box height in any pro�le σOPT

i is only k/(2α).
Whenever algorithm B is in a state where it has allocated at least k

2α
memory to boxes, we

call B saturated, and whenever B has not allocated k
2α

memory to boxes (because there are no
6Note that α = O(1) resource augmentation means that the optimal green-paging algorithm has minimum box-

size k/(2αp) and maximum box size k/(2α).
7By allowing for an extra factor of two in resource augmentation, we can actually think of A as having 2k

memory, k of which is pre-allocated evenly among the processors (note that giving A extra memory can only help
it). By re-normalizing this new size to k, it follows that every processor has at least k/(2p) memory at all times.

31

more processors to allocate boxes to) we call B unsaturated. The makespan (i.e., running time)
of B can be broken into two components, the amount of time T1 during which B is saturated,
and the amount of time T2 during which B is unsaturated.

Since the total memory impact of pro�les σOPT
1 , . . . , σOPT

p is O(pR/β), the amount of time T1

that B can spend saturated is at most O(pR/βk) (recall that α ≤ O(1) so α does not appear
here).

On the other hand, whenever B is unsaturated, all of the remaining processors are exe-
cuting simultaneously. It follows that T2 is upper-bounded by the makespan of the processor
i ∈ {1, 2, . . . , p} with the largest makespan (the makespan of a processor is the sum of the
widths of the boxes in mOPT

i). Each processor i incurs total memory impact O(R/β) and has
has minimum box-height Ω(k/p). It follows that the sum of the widths of the boxes in mOPT

i is
O(R/β)/Ω(k/p) ≤ O(pR/βk).

Combining T1 and T2, the total makespan of algorithm B is at most O(pR/βk). This is a
factor of Ω(β) smaller than the average-completion time and the makespan for algorithm A, as
desired.

2.6 Tight Bounds for Green Paging

This section proves both lower and upper bounds for green paging. These results also appear
in [122]. Once these green paging results are proved, the equivalence results from the previous
section immediately translate them into corresponding bounds for parallel paging.

2.6.1 Lower Bounds for Green Paging

In this section we show lower bounds on the competitive ratio of deterministic algorithms.

Theorem 2. Suppose s ≥ p1/c
for some constant c. Consider the green paging problem with max-

imum box-height k and minimum box-height k/p. Let ALG be any deterministic online algorithm

for green paging, and let α be the amount of resource augmentation. Then, the competitive ratio of

ALG is Ω
(

log p
α

)
.

Proof. The proof proceeds as follows. First, we brie�y recap the model parameters and some as-
sumptions we make. Then, we consider for a generic online algorithm a speci�c request sequence,
on which it is guaranteed to fault on every request, and that has some additional properties. Then,
we show how an o�ine algorithm can service the same sequence paying, informally, α times the
cost on a fraction at most 1/ log p of all requests – and α/ log p times the cost on all remaining
requests.

Let us brie�y recap the model parameters and assumptions. Let k be the maximum memory
available to the online algorithm ALG, and k/p the minimum. ALG is compared to an o�ine
algorithm OFF with memory between h = k/α and k/(αp), that pays α times as much for the

same space: i.e., τ timesteps at memory size k/α cost OFF a total of kτ , while they would cost
ALG only kτ/α. Accessing a page costs ALG 1 timestep if the page is in memory. Otherwise, s
timesteps are required to bring it into memory, and 1 more to access it.

We can assume without loss of generality that ALG is normalized and compartmentalized—
since normalization and compartmentalization can be performed online, and increase the total

32

cost by at most a constant factor. By the same token we assume for simplicity that k, p and α
are powers of 2. We can also assume without loss of generality that ALG is “smooth-growing”,
in the sense that no box of capacity c is ever preceded by a box of capacity less than c/2; again,
it is trivial to verify that any online algorithm can be transformed online into a smooth-growing
one by increasing the total cost by at most a factor O(1) (in fact, 4/3 = 1 + 1/4 + 1/16 + . . .).

Also, we can assume s ≥ p: if s were smaller, we can simply modify an algorithm to never
exceed a capacity threshold of more than s times the minimum – by simply substituting boxes of
minimum capacity for any boxes exceeding the threshold. Then servicing the same requests in
these boxes can take no more than s times longer, with a capacity that is at least s times smaller.
Note that, this implicitly replaces p with s, meaning that the lower bound that we will get is
Ω(log s). Since s ≥ p1/c, this is Ω(log p).

Given ALG, we construct an evil request sequence σ as follows. First, we request k+1 distinct
pages p0, p1, . . . , pk. Then, every further request is for the most recently evicted page; we extend
the request sequence to include at least (k + 1) log p/α requests. It is immediate that ALG faults
on every request (and the cost on the initial k + 1 is a fraction at most O(α/ log p) of the total).
Let B(2i) for i = 1, 2, . . . , log k, be the total cost budget spent by ALG on boxes of capacity 2i

(i.e., 2i times their total duration). Obviously, the cost incurred by ALG cALG equals
∑

iB(2i).
Now, let j = arg miniB(2i) for (k/p) log p < 2i < k/max(α, log p); note that B(2j) =

O(cALG/ log p). We service σ with a normalized and compartmentalized algorithm alternating
between capacity 2j and the minimum capacity k/(αp). In particular, whenever ALG’s capacity is
at least 2j , we adopt minimum capacity k/(αp); we refer to any maximal interval of such requests
as an island. Whenever ALG’s capacity is less than 2j , we adopt the larger capacity 2j ; we refer
to any such maximal interval of such requests as a sea. We refer to the �rst box of a sea, and of
an island, as its shore.

We show that we can service any one sea with at most 2j faults on its shore. We do so by
loading and holding in our memory a copy of ALG’s memory, and an eviction stack with the pages
not in ALG’s memory that have been most recently evicted by ALG (in particular, with the most
recently evicted on top). It is immediate that after the initial setup phase (which takes place on
the sea shore and incurs at most 2j faults), every request will be for the page on the top of the
stack—which is never empty since at sea ALG’s capacity is strictly less than 2j .

Note that the total number of sea and land shores di�ers by at most 1; and that, by the smooth-
growth property, all island shores are boxes of capacity 2j , preceded by a box of capacity 2j−1

Then, the total cost we incur on sea shores is at most αO(B(2j)), i.e. (by the de�nition of j) no
larger than O(α/ log p)cALG. Once o�shore, we have capacity that is at most O(p/ log p) that of
ALG, and since we never fault and ALG always does, we incur a cost that is at most O(α/ log p)
of ALG’s. Similarly, on land requests, our capacity is k/(αp) while ALG’s is at least (k/p) log p.
Thus, as we both fault on each land request, our cost is at most O(α/ log p) ALG’s.

Then, we can service the entire request sequence with a cost that is O(α/ log p)cALG.

2.6.2 O(log p)-Competitive Green Paging

We now present a deterministic online algorithm, which we call BLIND, whose competitive ratio
is O(log p) when provided with a factor of (at least) two of resource augmentation, that is, when
h ≤ k/2. According to Theorem 2, this is optimal to within a constant factor when a constant
amount of resource augmentation is given.

33

Algorithm BLIND is quite simple: it implements the LRU replacement policy, running with
a suitably predetermined sequence of capacities. That is, the maximum amount of pages that
BLIND retains in its cache at a given time step is independent of σ. Hence, not only BLIND does
not use information about future requests in order to adjust its capacity (because it is an online
algorithm): it doesn’t even look at the past requests (whence the name blind)! The intuition is
that, roughly speaking, BLIND, for each suitably de�ned period of time, “divides” its incurred
cost among capacities k/p, 2k/p, 4k/p, . . . , k in such a way that at least a log p-th fraction of its
incurred cost is spent at the “right” capacity, that is, at roughly the same capacity that OPT has
on the same subsequence of requests.

The road to the speci�cation and the analysis of BLIND is divided into three parts: �rst,
we design an O(1)-approximation o�ine algorithm by building a “quantized” version of OPT;
second, we obtain a simpli�ed version of the above algorithm which achieves a logarithmic (in p)
approximation; and lastly, we show that a non-clairvoyant version of the latter algorithm achieves
the same approximation factor when provided with a cache of size at least twice. We begin with
some necessary preliminaries.

De�nition 6. For integer i, an i-phase of an algorithm for the green paging problem is a sequence

of 3s2i consecutive time steps spent at capacity 2i.

Thus, the total memory impact incurred by an algorithm for an i-phase is 3s4i. We now de�ne
an (i, k/p)-universal box pro�le, a key concept in the design of our algorithm. Its de�nition is
recursive.

De�nition 7. Let i be an integer and k/p be a power of two. A (i, k/p)-universal box pro�le of an

algorithm for the green paging problem is a log k/p-phase if i ≤ log k/p, and the concatenation of

four consecutive (i− 1, k/p)-universal box pro�les followed by an i-phase otherwise.

The memory impact (cost) of a (i, k/p)-universal box pro�le is easily established.

Lemma 2. The memory impact of a (i, k/p)-universal box pro�le is 3s4i(log
⌈

2i

k/p

⌉
+ 1).

Proof. By induction on i. The base case is for i ≤ log k/p; in this case, an (i, k/p)-universal
box pro�le is a log k/p-phase, whose cost is, by de�nition, at most 3s(k/p)2. Then assume the
statement holds for i − 1, with i > log k/p, and consider an (i, k/p)-universal box pro�le. By
de�nition of (i, k/p)-universal box pro�le and by applying the inductive hypothesis, its total cost
is at most

4(3s4i−1(log

⌈
2i−1

k/p

⌉
+ 1)) + 3s4i = 3s4i(log

⌈
2i−1

k/p

⌉
+ 1) + 3s4i

= 3s4i(log

⌈
2i−1

k/p

⌉
+ 2)

= 3s4i(log 4

⌈
2i−1

k/p

⌉
)

= 3s4i(log 2

⌈
2i

k/p

⌉
)

= 3s4i(log

⌈
2i

k/p

⌉
+ 1),

34

where in the second-to-last equality we have used the hypothesis that k/p is a power of two.

We say that an algorithmA services a subsequence of consecutive requests σj over an i-phase
when σj gets serviced in 3s2i time steps with A using capacity 2i, but where each time step t is
charged for a cost of exactly 2i, even if P (t), the number of pages in cache at time t, is smaller.
Broadly speaking, its cost is accounted as if its capacity were exactly 2i for each time step. (This is
reasonable in practice since a paging algorithm works with boxes of cache locations rather than
single locations, and thus the “cost”—in terms of its energetic costs or in terms of space taken
away from other processors—of a box should be accounted even when not all the locations of the
box are used). Thus, a subsequence of consecutive requests serviced over an i-phase comes at a
cost of exactly 3s4i. Finally, Let OPTi, i = 0, 1, . . . , log k be an optimal o�ine algorithm running
with capacity at most 2i. Obviously, OPTi(σ) ≥ OPTi+1(σ), since an o�ine algorithm does not
need to use all its cache locations.

We now introduce BLOCKi, a recursively-de�ned o�ine algorithm which well approximates
OPTi. BLOCKi is de�ned as an o�ine algorithm that services an input sequence σ by servicing its
longest possible pre�x either over an i-phase (in this case we say that BLOCKi maximizes) or by
simulating BLOCKi−1 for the same cost 3s4i as an i-phase (in this case we say that BLOCKi sim-

ulates), whichever yields the longest pre�x; after having serviced such a pre�x, BLOCKi �ushes
its memory and services the remaining su�x of σ in the same way. Note that BLOCKi e�ectively
partitions σ into subsequences σ1, σ2, . . . , σx each of them (with the possible exception of σx)
serviced incurring cost 3s4i. We have the following result, which shows that BLOCKi does not
spend much more than OPTi.

Proposition 2.

BLOCKi(σ) ≤ 64 · OPTi(σ).

Proof. In order to prove an upper bound on the approximation ratio of BLOCKi, we shall consider
the concatenations of two consecutive subsequences σj and σj+1 and compare 2 · 3s4i, the cost
spent by BLOCKi for them, with (a lower bound to) the cost spent by OPTi for servicing the same
pair of subsequences.

It is su�cient to prove the claim when BLOCKi maximizes on subsequence σj+1, that is, when
σj+1 gets serviced over an i-phase. It is easy to verify that, by construction, OPTi must use at least
2i−1 + 1 memory locations for servicing at least one request of σj+1; in fact, if this is not the case,
then BLOCKi would have serviced σj+1 by never exceeding capacity 2i−1, that is, BLOCKi would
have simulated BLOCKi−1, since by doing so it would have payed, for the same subsequence of
requests, half the cost of maximizing, and used the remaining half of the budget 3s4i to process
more requests than those in σj (because (3/2)s4i is clearly su�cient to service at least one request
with a cache of size 2i), thus servicing a pre�x longer than σj+1, a contradiction.

Let t be the �rst time step when OPTi has 2i−1 + 1 pages in cache while servicing requests of
σj+1, and consider the s2i−2 time instants that precede t. We are going to prove that (i) the total
cost accrued by OPTi in such time steps is at least (3/2)s4i−2, and that the subsequence serviced
in such time steps is a subsequence of the concatenation of σj and σj+1. If this is the case, then
we have that given any subsequence of consecutive requests of σ serviced by BLOCKi with a cost
of at most 2 · 3s4i, the cost accrued by OPTi(σ) for the same subsequence is at least (3/2)s4i−2.
Since 2 · 3s4i = 64(3/2)s4i−2, the theorem follows.

35

Recalling that every o�ine algorithm grows its current capacity only upon a page fault, and
thus only by at most one at each requests, it follows that during all the s time steps that precede
t, OPTi has at least 2i−1 pages in cache, during the s preceding time steps it has at least 2i−1 − 1
pages in cache, and so forth for 2i−2 times, until s2i−2 time instants are considered. The total cost
accrued by OPTi in such time steps is at least

2i−2−1∑
x=0

s
(
2i−1 − x

)
= s

2i−1∑
x=2i−1−2i−2+1

x

=
s (2i−2) (2i − 2i−2 + 1)

2

≥ s
(
2i−2

)(
2i−1 − 2i−2

2

)
= s

(
2i−2

)(
2 · 2i−2 − 2i−2

2

)
=

3

2
s
(
4i−2

)
,

and thus we have proved (i).
It remains to prove (ii), that is, that the subsequence serviced by OPTi in the s2i−2 time steps

the precede t is “not too long”. To this end, observe that we can assume that BLOCKi at the be-
ginning of subsequence σj loads in cache all the pages that OPTi holds at the same moment (since
the latter does not need to process σj starting with an empty cache), since the corresponding cost
is at most s4i, and thus BLOCKi remains with a budget of at least 2s4i. This budget is clearly
su�cient to process the at most s2i−2 requests that OPTi services in the s2i−2 time steps the pre-
cede t, since BLOCKi, once loaded in cache all the pages that OPTi holds at the beginning, can
simply mimic the behavior of the latter. By construction, σj is the longest subsequence following
σj−1 that BLOCKi services with cost 3s4i, and thus claim (ii) is proved.

Now we give an o�ine algorithm, IDLE-BLINDi, which is aO(log p) approximation of BLOCKi.
This is an intermediate step towards both the de�nition and the analysis of our sought online al-
gorithm, BLIND. IDLE-BLINDi is an o�ine algorithm that services each such subsequence σj
over an (i + 1, k/p)-universal box pro�le (and thus with capacity 2i+1), as follows. If BLOCKi
maximizes over σj , IDLE-BLINDi idles (that is, it stops servicing requests) over the four initial
(i, k/p)-universal box pro�les of the (i + 1, k/p)-universal box pro�le, services σj over the last
(i + 1)-phase applying a LRU replacement policy, and then possibly idles until the end of the
(i + 1)-phase. Otherwise, if BLOCKi simulates over σj , IDLE-BLINDi services σj with IDLE-
BLINDi−1 over the four initial (i, k/p)-universal box pro�les, and then possibly idles until the end
of the (i+ 1)-phase. Notice that the capacity of IDLE-BLINDi is simply a sequence of (i+ 1, k/p)-
universal box pro�les, and thus is independent of the request sequence, and in particular of the past
requests. The next proposition bounds from above the performance of IDLE-BLINDi.

Proposition 3.

IDLE-BLINDi(σ) ≤ 4(log

⌈
2i+1

k/p

⌉
+ 1) · BLOCKi(σ).

36

Proof. The key point of the proof is showing that subsequence all the requests of σj can actually
be serviced by IDLE-BLINDi over an (i + 1, k/p)-universal box pro�le. To do so, it is su�cient
to prove this fact when BLOCKi maximizes over σj , since the other case holds by induction.
If BLOCKi maximizes over σj , IDLE-BLINDi, by construction, services requests of σj over an
(i + 1)-phase, that is, using capacity 2i+1 for 3s2i+1 time steps. This means that, for processing
σj , IDLE-BLINDi can use twice the capacity used by BLOCKi, for twice the time. By the well-
known result of Sleator and Tarjan for classic paging, IDLE-BLINDi, which replaces pages using
LRU, incurs at most twice the faults incurred by BLOCKi on that subsequence; this means that,
after 3s2i time steps, IDLE-BLINDi has serviced at least half the requests of σj , and thus after
3s2i+1 time steps has serviced all of them.

Now we can compare the cost incurred by IDLE-BLINDi with the cost of BLOCKi. By de�ni-
tion, IDLE-BLINDi pays the cost of a (i + 1, k/p)-universal box pro�le every time that BLOCKi
incurs the cost of an i-phase, that is, 3s4i; hence, by Lemma 2,

IDLE-BLINDi(σ) ≤
3s4i+1 · (log

⌈
2i+1

k/p

⌉
+ 1)

3s4i
· BLOCKi(σ)

= 4(log

⌈
2i+1

k/p

⌉
+ 1) · BLOCKi(σ).

Now observe that IDLE-BLINDi exploits its clairvoyance only to decide when to idle. We de-
�ne BLINDi similarly to IDLE-BLINDi, with the di�erence that BLINDi never idles. Notice that
BLINDi is an online deterministic algorithm.

The unexpected power of idling around the discontinuities of a memory pro�le function is
neutralized when memory pro�les are compartmentalized. In fact, if capacity never changes there
is clearly no advantage in idling; but when it changes, roughly speaking, there is still no advantage
in idling since the memory contents are cleared at the end of each box anyways. Hence, thanks
to compartmentalization, and leveraging properties of the LRU replacement policy adopted by
both BLINDi and IDLE-BLINDi, we have the following.

Proposition 4. Assume compartmentalization. Then,

BLINDi(σ) ≤ IDLE-BLINDi(σ).

Proof. Let bj be the j-th box of the memory pro�le (i.e., a maximal interval of time during which
the capacity of the memory pro�le remains unchanged) of the two algorithms, and let cj be its
capacity. Let σbj be the subsequence of consecutive requests of the request sequence σ that IDLE-
BLINDi services during box bj . It is then su�cient to show that, for any j, BLINDi has serviced
all the requests of σbj by the end of box bj .

We show this by induction on j. The claim clearly holds for the �rst box b1 of the memory
pro�le because both algorithms start with an empty memory, both start to service requests from
the beginning of σ, and since the memory capacity never changes till the end of the box there is
clearly no advantage in idling.

Then assume the claim holds for each box bj′ with 1 < j′ < j, and consider box bj . If BLINDi

has serviced all the requests of σbj before box bj begins, then we are done. Otherwise, by the
inductive hypothesis, when box bj begins algorithm BLINDi has to service a su�x of σbj . Hence,
we have to show that BLINDi services any su�x of σbj by the end of box bj or, in other words,

37

that LRU, starting with an empty memory (because of compartmentalization) of �xed capacity,
takes more time to service a sequence of requests than to service any of its su�xes.8

The page requests in the su�x of σbj serviced by BLINDi during the j-th box of the memory
pro�le can be partitioned into (at most) two parts: those up to the cj-th distinct page request in
the su�x (if it exists), and the subsequent requests. For the �rst part of requests, BLINDi misses
only on the �rst occurrence of a requested page. Observe that IDLE-BLINDi might not miss on
all such requests during box bj , since it may already have the corresponding pages in memory
because they were needed to service some requests in the pre�x of σbj . However, because of
compartmentalization, each of such pages must have been brought in memory by IDLE-BLINDi

when �rst requested in the pre�x of σbj . Therefore, the time taken by BLINDi to service the �rst
part of the su�x is no larger than the time taken by IDLE-BLINDi to service all the requests of
σbj up to the �rst part of the su�x.

It now remains to consider the (possible) second part of requests of the su�x of σbj serviced
by BLINDi, which begins right after cj distinct page requests appeared in the su�x. Since both
BLINDi and IDLE-BLINDi use LRU, at that moment they have the same set of pages in fast mem-
ory, and the order of such pages according to their latest access is clearly the same for both sets.
Therefore, from that point till the end of the su�x the two algorithms identify, yielding the claim
for box bj .

Proposition 5. When the LRU replacement policy is applied, compartmentalization increases the

cost of a time-normalized memory pro�le by a factor of at most two.

Proof. Since in a time-normalized memory pro�le each box lasts a number of clockticks equal to
an integer multiple of s times the memory capacity, the expansion due to compartmentalization
at most doubles the cost of the memory pro�le.

Now it remains to show that any sequence serviced without compartmentalization can also
be serviced in its entirety when compartmentalization is applied. Let bj be the j-th box of a time-
normalized memory pro�le, and let cj be its capacity. Let σbj be the subsequence of consecutive
requests that LRU services during box bj . It is then su�cient to show that, for any j, all the
requests of σbj get serviced by the end of box bj in the compartmentalized expansion of the
memory pro�le.

We show this by induction on j. By construction, the claim clearly holds for the �rst box b1 of
the memory pro�le. Then assume the claim holds for each box bj′ with 1 < j′ < j, and consider
box bj . If in the compartmentalized expansion all the requests of σbj have been serviced before
box bj begins, then we are done. Otherwise, by the inductive hypothesis, when box bj begins
LRU has to service a su�x of σbj . Hence, we have to show that LRU takes more time to service a
sequence of requests than to service, starting with an empty memory but with s · cj more time
steps available, any of its su�xes.

The page requests in any su�x of σbj can be partitioned into (at most) two parts: those up
to the cj-th distinct page request in the su�x (if it exists), and the subsequent requests. For the
�rst part of requests, LRU with compartmentalization misses only on the �rst occurrence of a
requested page, whereas without compartmentalization LRU might not miss on such requests
since those pages may be already in fast memory because they were needed to service some

8Recall that, somewhat surprisingly, this is not true in general: for instance, it is not true for the FIFO replacement
policy—see Section 2.4.3.

38

requests in the pre�x of σbj . However, observe that compartmentalization allows enough extra
time to do the extra work of bringing those pages in fast memory.

It now remains to consider the (possible) second part of requests of the su�x of σbj , which
begins right after cj distinct page requests appeared in the su�x. Because of the LRU replacement,
at that moment the contents of the fast memory are the same in both—i.e., with and without
compartmentalization—cases; moreover, the order of those pages according to their latest access
is clearly the same in both cases. Therefore, from that point till the end of the su�x the two
executions identify, yielding the claim for box bj .

De�ne BLIND as BLINDlog k/2. Below we provide its straightforward pseudocode.

Algorithm 1 BLIND
1. Service σ through a sequence of (log k, k/p)-universal box pro�les, evicting the least re-

cently used page(s) whenever capacity is adjusted downwards or a page fault occurs.

Putting all pieces together, we obtain the following result.

Theorem 1. Using resource augmentation α = 2, the competitive ratio of BLIND is O(log p).

Proof. Combining Proposition 1 with the results of [33],9 Proposition 2, Proposition 3, and Propo-
sition 4, we have

BLINDi(σ) ≤ 3 · IDLE-BLINDi(σ)

≤ 12(log

⌈
2i+1

k/p

⌉
+ 1) · BLOCKi(σ)

≤ 768(log

⌈
2i+1

k/p

⌉
+ 1) · OPTi(σ).

Hence, on a cache of size k = 2i+1, and with resource augmentation α = 2, the competitive
ratio of BLINDi is at most 768(log

⌈
2i+1

k/p

⌉
+ 1), and since BLIND coincides with BLINDlog k/2, the

theorem follows.

9When LRU in applied, the pre�x of duration equal to s times the capacity of the box need not be added, and as
a result the overhead is only two rather than three.

39

Chapter 3

How to Manage High-Bandwidth

Memory Automatically

This chapter develops an algorithmic foundation for automated management of the multilevel-
memory systems common to new supercomputers. In particular, the High-Bandwidth Memory
(HBM) of these systems has a similar latency to that of DRAM and a smaller capacity, but it has
much larger bandwidth. Systems equipped with HBM do not �t in classic memory-hierarchy
models due to HBM’s atypical characteristics.

Unlike caches, which are generally managed automatically by the hardware, programmers of
some current HBM-equipped supercomputers can choose to explicitly manage HBM themselves.
This process is problem speci�c and resource intensive. Vendors o�er this option because there is
no consensus on how to automatically manage HBM to guarantee good performance, or whether
this is even possible.

We give theoretical support for automatic HBM management by developing simple algorithms
that can automatically control HBM and deliver good performance on multicore systems. HBM
management is starkly di�erent from traditional caching both in terms of optimization objec-
tives and algorithm development. Since DRAM and HBM have similar latencies, minimizing
HBM misses (provably) turns out not to be the right memory-management objective. Instead,
we directly focus on minimizing makespan. In addition, while cache-management algorithms
must focus on what pages to keep in cache; HBM management requires answering two ques-
tions: (1) which pages to keep in HBM and (2) how to use the limited bandwidth from HBM to
DRAM. It turns out that the natural approach of using LRU for the �rst question and FCFS (First-
Come-First-Serve) for the second question is provably bad. Instead, we provide a priority based
approach that is simple, e�ciently implementable and O(1)-competitive for makespan when all
multicore threads are independent.

This work is published in the proceedings of SPAA 2020 [56].

3.1 Introduction

Enabled by the recent innovations in 3D die-stacking technology, vendors have begun implement-
ing a new approach for improving memory performance by increasing the bandwidth between
on-chip cache and o�-package DRAM [109, 92]. The approach is to bond memory directly to

40

the processor package where there can be more parallel connections between the memory and
caches, enabling a higher bandwidth than can be achieved using older technologies. Throughout
the rest of this work, we refer to the on-package 3D memory technologies as high-bandwidth
memory or HBM .1

The HBM cannot replace DRAM (“main memory”) since it is generally about 5 times smaller
than DRAM due to constraints such as heat dissipation, as well as economic factors. For exam-
ple, current HBM sizes range from 16 gigabytes per compute node (the Department of Energy’s
“Trinity” [61]) to 96 gigabytes per compute node (the Department of Energy’s “Summit” [138]),
several times smaller than the per-node sizes of DRAM on those systems (96 GB and 512 GB, re-
spectively). HBM therefore augments the existing memory hierarchy by providing memory that
can be accessed with up to 5x higher bandwidth than DDR4, today’s DRAM technology, when
feeding a CPU [1], and up to 20x higher bandwidth when feeding a GPU [138], but with latency
similar to DDR4.

As the number of cores on a chip has grown in the past two decades, the relative memory

capacity, de�ned as memory capacity divided by available giga�ops, has decreased by more than
10x [93]. Thus, processors are becoming more starved for data. HBM, with its improved ability
to feed processors, provides an opportunity to overcome this bottleneck, if application software
can use it.

HBM has a critical limitation besides its constrained size: since it uses the same technology as
DRAM, it o�ers little or no advantage in latency. Therefore, the HBM is not designed to accelerate
memory-latency-bound applications, only memory-bandwidth-bound ones.2

How HBM is managed. Intel’s Knights Landing processors [129] on Trinity can boot into mul-
tiple modes. In “cache mode,” the HBM is system-controlled and is integrated into the memory
hierarchy as the “last level of cache.” In “�at mode,” the programmer controls HBM by explicitly
copying data in and out of HBM, trying to squeeze as much performance from the system as
possible. Hybrid mode splits the HBM into one “�at” piece and one “cache” piece.

This proliferation of HBM modes exists because there is no consensus on how to automatically
manage HBM e�ciently, or whether this is even possible.

On the other hand, on most systems, on-chip cache is automatically managed by the hardware
and works well enough that application programmers can treat the cache hierarchy a a black
box. They can also assume su�cient support from libraries of cache-aware and cache-oblivious
algorithms. Ideally, we would like a system controlled HBM to also work well-enough to free the
programmer from the need to manage it.

However, managing the HBM is not identical to managing caches and introduces complica-
tions that do not exist in more traditional memory hierarchies. In particular, cores compete not
only for HBM capacity, but also for the more limited channel capacity between HBM and DRAM.
HBM does not �t into a standard memory hierarchy model [74, 27], because in traditional hi-
erarchies, both the latency and bandwidth improve as the levels get smaller. This is not true of
HBM.

The question looms: Are there provably good algorithms for automatically controlling HBM?
1Hardware vendors use various brand names such as High-Bandwidth Memory (HBM), Hybrid Memory Cube

(HMC), and MCDRAM for this technology.
2HBM does not increase o�-package DRAM bandwidth. It does not accelerate a scan of a large chunk of data in

DRAM that does not �t into the HBM, because the operation is limited by the DRAM bandwidth. Therefore, HBM
improves some memory-bandwidth-bound computations but does not automatically improve all.

41

3.1.1 Results

Multicore HBM model. We propose a multicore model for HBM that captures the high band-
width from the cores to HBM and the much lower bandwidth to DRAM. There are p parallel
channels connecting p cores to the HBM but only a single channel connecting HBM to DRAM;
see Figure 3.1. This con�guration captures the high (on-package) bandwidth between the p cores
and HBM and the much lower (o�-package) bandwidth between HBM and DRAM. Data is trans-
ferred in blocks — there are up to p parallel block transfers from the HBM to the cores, but only
one block transfer at a time between DRAM and HBM. The roughly comparable latencies are
captured by setting all block-transfer costs (times) to 1.
HBM management. We focus on instances where the multicore’s threads access disjoint sets
of blocks. This emphasizes the cores’ competition for HBM and the limited bandwidth between
HBM and DRAM.

What should the performance objective be? The high-level objective is to improve the perfor-
mance by �nishing all threads as quickly as possible — in other words, we want to minimize the
makespan. In sequential caching, we generally use minimizing cache misses as a performance
objective since it is a good proxy for makespan. We might be tempted to use HBM misses as the
performance objective here. Surprisingly, it turns out that minimizing HBM misses correlates
poorly with makespan for HBM for two reasons (formally proved in Section 3.7). First, unlike
caches, HBM has the same access latency as DRAM. Second, multiple processors are accessing
the HBM and potentially contending for the channel between HBM and DRAM and the amount
of contention can have an impact on the makespan, not just the sheer number of HBM misses.
Therefore, we focus directly on minimizing makespan. We establish the following:

• Minimizing page faults does not correlate well with minimizing makespan. An algorithm that
optimizes the total number of HBM misses may have bad makespan (the time the last thread
completes)— up to a Θ(p)-factor worse than optimal. This is not true for the standard cache-
replacement problem where the total number of cache misses is the surrogate objective for
makespan [127, 70, 44].

• Minimizing makespan is strongly NP-hard.

• Sharing the HBM-to-DRAM channel fairly does not work. We consider how to design block-
replacement policies for the HBM coupled with the First-Come-First-Serve (FCFS) algo-
rithm for determining the order of accesses from HBM to DRAM. We show that even though
LRU is a very good block-replacement policy, if we use FCFS in the HBM-to-DRAM channel,
LRU performs poorly. In particular, with any constant amount of resource augmentation
the makespan of using FCFS with LRU is Ω(p) away from the optimal policy in the worst
case. This negative result establishes that more sophisticated management of the channel
between HBM and DRAM is central to the designing a good algorithm for the problem.
The seemingly fair FCFS policy is bad.

Our main positive results are simple online and o�ine algorithms for automatically manag-
ing HBM. What is interesting about HBM management is how starkly it di�ers from traditional
caching policies, which are well understood in a serial setting but are challenging in multicore
settings [103, 80].

42

• Priority-based mechanism for managing the HBM-to-DRAM channel. We give a priority-
based policy for managing the channel between HBM and DRAM. We impose a pecking
order on the cores, so that a high-priority core never has a request to DRAM blocked by a
request from a lower-priority core. Our algorithms for HBM management are built around
this priority-based mechanism.

• O(1)-competitive algorithm for HBM management. As a �rst step towards our online algo-
rithm, we give an o�ine approximation algorithm for the makespan objective. We build
upon the o�ine algorithm to obtain a simple online algorithm (with a more complicated
analysis) that is O(1)-competitive, even without resource augmentation. The online algo-
rithm is non-intuitive —it often preferentially allocates the HBM-to-DRAM channel to a
single core while depriving other cores — but guarantees nearly optimal makespan. (The
algorithm can treat cores fairly over time by periodically changing the pecking order among
the cores.)

• Approximation algorithms for objective functionsmeasuring progress. In addition to makespan,
we consider another objective, total completion time, to measure progress towards com-
pletion. We show that this problem reduces to a particular resource-constrained scheduling
problem. We then leverage techniques from scheduling theory to give aO(1)-approximation
algorithm (o�ine) based on linear-program rounding.

3.1.2 Related Work

HBM-tuning and cachemode. Intel’s Knights Landing (KNL) processor [92] features an imple-
mentation of HBM. Several recent papers have documented runtime improvements of 3-4x using
this HBM in “cache mode” compared to using DRAM alone, when problem instances �t entirely in
the HBM. For example, Li et al. studied eight kernels from scienti�c computing [98] on KNL and
found 3-4x speedups on some instances of sparse matrix-vector multiplication, Cholesky decom-
position, and dense matrix-matrix multiplication. They observed more modest 1-2x speedups for
sparse matrix transpose and sparse triangular solve. Byun, et al. corroborate the KNL speedup for
dense matrix-matrix multiplication [46]. Slota and Rajamanickam [128] observed 2-5x speedups
in graph algorithms on instances far larger than HBM. Butcher et al. [45] also studied problems
that are too large to �t into HBM. They optimized sorting on KNL and concluded that GNU
parallel sort run in cache mode is not nearly as fast as a custom sorting algorithm (based upon
concurrent calls to GNU serial sort), also run in cache mode [45].

This result is in keeping with the predictions made by Bender et al. [28, 26, 29]. Before KNL
existed, they gave HBM-optimized sorting algorithms and obtained simulation results that pre-
dicted good speedups for these algorithms. However, this does not settle the question of auto-
matic management of HBM. KNL’s arbitration of HBM misses is handled by the DRAM controller.
Although the actual protocol is proprietary, it is likely a solution based on [118]. Such arbitration
is commonly called “�rst-ready �rst-come-�rst-served (FR-FCFS).” As the name implies, this is a
variant of FCFS. We show in Section 3.5 that FCFS is not a good arbitration policy for HBM misses,
and we conjecture that a future cache mode informed by this chapter may perform signi�cantly
better.
Multi-thread/multi-core paging. There exists a rich literature on multi-threaded and multi-
core paging models. Feuerstein and Strejilevich de Loma [67] consider a paging model where

43

there are multiple threads but only a single core. They optimize the number of cache misses.
Loma [60] and Seiden [123] give randomized algorithms for the same setting.

Hassidim [80] considers a paging model where there are multiple threads and multiple cores.
He minimizes the makespan. López-Ortiz and Salinger [103] consider a similar model but mini-
mize cache misses. They give lower bounds and an o�ine algorithm with a runtime exponential
in the size of cache. Katti and Ramachandran [89] give a competitive algorithm for multi-core
paging assuming that the interleaving of the request sequences of the cores are �xed. These clas-
sic paging results di�er from our HBM model because in these prior results access times of near
and far levels are di�erent but there are still p channels between the cores and shared cache and
between cache and DRAM. Therefore, these prior parallel caching results do not carry over to
our setting, and vice versa.

When multiple threads access the same shared cache, the fraction of cache dedicated to any
given thread can vary [21, 34, 25, 8]. Peserico [113] and Bender et al. [34, 32] formulated mod-
els for page replacement in a �uctuating cache, with the latter model serving as an algorithmic
foundation for cache-adaptive analysis [34, 32, 100].

There are several analysis frameworks based upon assuming an underlying optimal paging
algorithm. These include the seminal ideal cache-model of Frigo et al. [73, 74] and Prokop [74],
which was based on Sleator and Tarjan’s [127]’s classic paging results; cache-adaptive analy-
sis [34, 32, 100]; and parallel caching models based on work stealing [52]. We can view this
chapter as proposing an alternative setting for HBM, where the programmer can assume optimal
paging for HBM, and then let the system make all decisions.

Finally, we note that there are many sequential and parallel models of the memory hier-
archy [30, 57, 15, 16, 7, 6, 5, 37, 49, 86]. These include models where there are private caches
associated with each core [19]. In contrast, our HBM model explicitly does not need to consider a
private cache. Whatever happens in the private caches of each individual core is independent of
the optimization problem in this chapter. As mentioned in [27], the performance characteristics
of HBM set it apart from most other memory-hierarchy models, so that in some ways, HBM and
DRAM are like siblings on the same level of the hierarchy, and in other ways they are stacked.
This helps explain why the present optimization problem is so surprisingly di�erent from prior
work, and also why prior work provides little insight into how to deal with HBM.

3.2 HBMModel

Our model of HBM comprises a multi-core machine with p parallel channels connecting p cores
to the HBM. The HBM has size M , and the DRAM (main memory) has no space limitation.

The increased bandwidth of HBM comes from multiple channels between it and the cores.
There is only one channel between HBM and DRAM. Data is transferred along any of these
channels in blocks of size B; see Figure 3.1. HBM can hold k = M/B blocks. There can be up to
p parallel block transfers from the HBM to the cores, but only one block at a time is transferred
between DRAM and HBM. The roughly comparable access costs are captured by setting all block-
transfer cost to 1. That is, it takes one time step to transfer a block from HBM to a core or from
DRAM to HBM.

Unlike the Ideal Cache model [73, 74], our HBM model has two resources to manage: the
HBM itself and the far channel between HBM and DRAM. The HBM is managed by a block-

44

Figure 3.1: The HBM model with p cores and two levels of memory.

replacement policy, and the DRAM channel is managed by a far-channel arbitration policy.
For example, we might consider LRU block replacement and FCFS far-channel arbitration.
Parallel program execution in HBM model. Each core runs its own stream of instructions,
which for the purposes of the model, is a sequence of block requests. Thus, we denote Ri =
ri0, r

i
1, r

i
2, . . . as the sequence of the blocks requested by core pi on its dedicated channel to the

HBM. We omit the core number when it is understood. We analyze the disjoint case in which the
cores access disjoint sets of blocks, that is, for i 6= j and ∀q, s riq 6= rjs , as in prior work on parallel
caching [80, 103]. This case emphasizes the computational issues that arise when the p programs
compete for their own share of the HBM. Furthermore, the most common case when executing
multithreaded programs is that the threads are disjoint or nearly disjoint [45, 27].

We say that a request rij is served at time step t, if the previous request to be served was rij−1

and the requested block rij is transferred to core pi at time step t. Request rij is served as follows.
If rij is in HBM, then core pi receives that block exactly one tick after the request. Otherwise, the
block must be retrieved from DRAM via the far channel which takes at least one additional tick
and may take many more depending on the request streams of other cores and the far-channel
arbitration policy. Note that HBM hits have nonzero cost in our HBM model (since HBM latency
is no better then DRAM latency) and are thus in�nitely more expensive than the zero-cost cache
hits of traditional caching models.
Primary objective: minimizing makespan. Given an HBM of size M and p disjoint request
sequences of p cores, the objective is to �nd a contention-resolution policy for the HBM-DRAM
channel and a block-replacement policy for the HBM so that the makespan is minimized.

3.3 Technical Overview

In the rest of the work, we propose methods to automatically manage HBM and we analyze them
with our new HBM model. Our contributions, per section, are as follows:

• In this section, we explain how to navigate the algorithmic issues that distinguish HBM man-
agement from traditional cache management and we informally justify the makespan metric
for HBM. We add a formal justi�cation in Section 3.7.

45

• We give online algorithms for managing HBM asymptotically optimally with respect to the
makespan objective (Section 3.4).

• We analyze the natural strategies for managing the two resources of the HBM model (variants
of which are canonical results of computer architecture cited more than 1000 times [118]) and
prove that they are not asymptotically good at managing HBM (Section 3.5).

• We prove the strong NP-hardness of the makespan minimization problem for HBM (Section 3.6)

Metrics for HBM management. HBM management must comprise policies for (1) dividing
HBM’s storage capacity among cores or DRAM regions, (2) evicting blocks from HBM, and (3)
deciding which DRAM block requests to satisfy �rst, which we call “far-channel arbitration.” In
this work, we do not constrain (1). However, we note that KNL’s cache mode employs direct-
mapped caching (each block in DRAM has a �xed and unique destination in HBM), constraining
both (1) and (2). Crucially, we will show that e�ective far-channel arbitration is the key to reduc-
ing the running time of a program in the HBM model.

We know that in single-core and multi-core paging models, minimizing the number of cache
misses leads to a good approximation of the running time of a program [127, 70, 44]. The inter-
esting di�erence in our HBM model is that the number of HBM misses no longer gives a good
approximation to the running time. In particular, in Section 3.7, we show that there exist request
sequences from p cores such that any policy that minimizes the number of HBM misses has a
running time that is a factor of Θ(p) larger than the optimal running time. Moreover, unlike in
traditional caching, resource augmentation in the form of larger HBM sizes is not necessary.

Hence, we turn directly to the makespan metric. We show that the problem of minimizing the
makespan in HBM model is strongly NP-hard. The limited bandwidth between HBM and DRAM
plays a pivotal role in the hardness proof.

So how should we deal with contending requests for the HBM-DRAM channel?
Natural far-channel arbitration policies do not work in the HBM model. One intuitive
(but doomed) far-channel arbitration policy is to queue DRAM requests in First-Come-First-Serve
(FCFS) order. Fairness would seem to dictate some sort of FCFS queue, and a canonical variant of
this from [118] has been in�uential with vendors of DRAM controllers. However, we prove that
FCFS is not a good far-channel arbitration policy for HBM. Even if we have a good eviction policy,
such as LRU, a far-channel arbitration policy of FCFS queueing is provably non-optimal. In par-
ticular we show that even with dmemory augmentation and s far-channel bandwidth augmenta-
tion, there exist p request sequences in which the makespan of FCFS with LRU is a Θ(p

ds
)-factor

away from that of the optimal policy.
A better strategy is to assign priorities to the cores. That is, there is a pecking order among

the cores so that a high-priority core always beats a lower-priority core when one of its requests
needs access to the HBM-DRAM channel. In Section 3.4 we analyze an online HBM-management
strategy where the eviction policy is LRU but the far-channel arbitration policy is based on the
pecking order. We prove that this simple scheme, which we call priority, is constant competitive
with the optimal policy for minimizing makespan (without needing resource augmentation of
either the HBM size or the far-channel bandwidth).

The theoretical wedge that this work drives between FCFS and priority-based HBM-DRAM
channel arbitration is an important contribution of this work. Given that it is natural to have
FCFS bu�ers queue up requests for the HBM-DRAM channel (and that FCFS variants are widely
implemented in today’s hardware), we believe that this negative queuing result could be quite

46

useful to hardware designers. A priority-based scheme is straightforward to implement in real
hardware and leads to provably good algorithms for HBM management under our assumption of
disjoint reference streams. Furthermore, we note that priority-based schemes are not inherently
unfair. Our analysis still works if we change the priorities periodically over time.
Analysis of online competitive algorithm for the makespan. While the priority-based
mechanism seems algorithmically simple, its analysis is more complicated. Thus, we explain the
online analysis through an intermediary, an o�ine algorithm with a more complicated mecha-
nism but a somewhat simpler analysis. We show that this algorithm, which we call k-packing,
is an O(1) approximation algorithm to makespan.

The o�ine algorithm k-packing divides the execution into phases of Θ(k) steps, where k is
the size of the HBM. In each phase, each core makes an all-or-nothing decision about whether to
execute its thread: either the thread makes Θ(k) progress or it does not run. If a thread runs, it
grabs all of the resources from HBM that it needs by allocating space in the HBM and a channel
bandwidth equal to the number of blocks that it accesses in that phase. Thus, in a phase, some
threads make essentially full progress and others make none. k-packing performs a maximal
packing of the threads into the phase. k-packing is a “very” o�ine policy because it requires
Θ(k) look-ahead for each core, and k is very large.

The online algorithm priority does not have any lookahead, in contrast to k-packing. Hence,
some cores may progress Θ(k) steps in a Θ(k)-length phase, while others do not. If a core does
not progress a full Θ(k) steps, we say that it wastes HBM capacity and bandwidth. We prove
that the priority scheme guarantees at most a constant factor of these resources are wasted. This
delivers the same performance guarantees as k-packing.
Approximation algorithm for o�line total completion time. In addition to makespan, we
also consider a di�erent metric, namely the sum of completion times of the p cores. This metric
encourages all of the threads to complete quickly, rather than just the last one. For this prob-
lem, we give an o�ine O(1)-approximation algorithm by reducing the HBM total completion
time problem to a resource constrained scheduling problem. In particular, we divide each re-
quest sequence into chunks of size Θ(k). We denote a chunk as a task that takes Θ(k) time and
an amount of resources equal to the number of blocks the chunk requests. We show that this
simple reduction costs at most a constant factor more than the optimal total completion time.
We then leverage techniques from scheduling theory to give an O(1)-approximation based on
linear-program rounding. It remains an intriguing open problem whether there can exist an on-
line algorithm that is constant competitive for the sum-of-completion-times objective.

3.4 O(1)-CompetitiveOnlineAlgorithm forHBMBlockMan-

agement

In this section we present an O(1)-competitive online algorithm for the makespan-minimization
problem. We �rst give an o�ineO(1)-approximation algorithm. Then we show how to transform
the o�ine strategy into an online strategy while retaining constant competitiveness.

One of the exciting aspects of our makespan-minimization problem is that proving constant
competitiveness does not require resource augmentation. This result stands in stark contrast
to most online caching problems, where resource augmentation is necessary to achieve good

47

competitive ratios. Nonetheless, the optimization problem is delicate. In Section 3.5 we show
that some seemingly natural HBM caching policies achieve a competitive ratio as large as Θ(p).

In the rest of this section we prove the following theorem:

Theorem 9. There exists an O(1)-competitive online algorithm for the makespan-minimization

problem (without resource augmentation).

3.4.1 Constant-approximation o�line algorithm

This section gives an o�ineO(1)-approximation algorithm for the makespan-minimization prob-
lem, which we call the k-packing algorithm. We show the following:

Lemma3. There exists an o�ine constant-approximation algorithm for themakespan-minimization

problem (without resource augmentation).

We divide the request sequence Ri = r1, r2, r3, . . . for each thread i into chunks, where each
chunk Cij (except possibly the last) contains exactly k/4 requests3. Speci�cally,

Ri =

Ci1︷ ︸︸ ︷
r1, r2, · · · , rk/4,

Ci2︷ ︸︸ ︷
r1 + k/4, r2 + k/4, · · · , r2k/4 · · ·

Executing a chunk Cij means servicing each request in Cij . A chunk Cij is ready to run as soon
as Ci,j−1 is executed. We associate a request with the block of memory needed to service the
request.
Algorithm k-packing. The k-packing algorithm proceeds in phases. In each Phase φ, k-
packing executes at most one chunk from each thread. No chunks are partially executed. Let C
be a set of chunks. De�ne the working set of C, denoted B(C), to be the set of blocks requested
in set C. It is the union of the set of blocks over all the chunks in C.

In Phase φ, k-packing executes a set Cφ of ready-to-run chunks such that
1. |B(Cφ)| ≤ k,
2. Each thread executes either zero or one chunk in Phase φ, and
3. Cφ is maximal. That is, no additional chunk can be added while satisfying Constraints 1

and 2.
Although chunks can be chosen greedily within a phase, k-packing itself is not greedy. That is,
it may be possible for a thread to make forward progress in a phase without hindering any other
thread—but k-packing does not execute any thread unless it can complete an entire chunk for
that thread in the phase.

Because a phase φ is de�ned by the chunks Cφ that it runs, we will overload notation, letting
B(φ) denote the set of blocks served in Phase φ. For generic input I , let k-packing(I) denote
running k-packing on instance I .

De�nition 8. Each Phase φ in k-packing(I) has one of the following types.

Contested: 3k/4 ≤ |B(φ)| ≤ k

3Our proofs assume that k is a multiple of 4, fairly common for memory size, but we can adjust the proofs for
general k.

48

Uncontested: |B(φ)| < 3k/4.

Lemma 4. If |B(φ)| < 3k/4, then all un�nished threads execute a chunk in Phase φ.

Proof. We prove this by contradiction. Let φ be a phase such that |B(φ)| < 3k/4. Assume that
there is an un�nished thread pi that does not execute a chunk in φ. However, a chunk of pi
has at most k/4 blocks. So we can add the ready-to-run chunk of pi to Phase φ without violating
Constraints 1 or 2 for phases. Therefore phase φ is not maximal, a violation of the third constraint.

Lemma 5. Suppose that k-packing(I) has X1 contested phases and X2 uncontested phases. Then

the makespan of k-packing(I) is at most
5k
4
X1 + kX2.

Proof. In every contested phase, at most k blocks are transferred from DRAM to HBM, requiring
at most k time steps. Once the blocks are in HBM, they are served to the cores in at most k/4 time
steps. So a contested phase �nishes in 5k/4 time units. Similarly, in every uncontested phase,
at most 3k/4 blocks are fetched from DRAM to HBM using at most 3k/4 time steps. Once all
the blocks are in the HBM, they are served to the cores in at most k/4 more time steps. So a
uncontested phase �nishes in k time units.

For a set of phases Φ for an algorithm A we de�ne ηA(Φ) ≡ ∑φ∈Φ |B(φ)|. When the set of
distinct blocks in any phase �ts in HBM (i.e. total at most k), ηA(Φ) gives an upper bound on
the total time to bring blocks in from DRAM over all phases in Φ. This is the cost of running the
algorithm normally, but arti�cially emptying HBM at phase boundaries. The system may need
to bring in a block once for each phase it participates in. It can be served to its core from HBM
multiple times within a single phase. For any instance k-packing(I), let Φ1 be the set of contested
phases.

Observation 1. Suppose k-packing(I) hasX1 contested phases. Then η k-packing(Φ1) ≥ (3k/4)X1.

Analysis of opt. Let opt denote the optimal algorithm for the makespan-minimization problem.
As with k-packing, we divide the execution opt(I) on instance I into phases. Each phase has a
�xed length of exactly k/4 time steps (except possibly the last phase). Thus, Phase 1 contains the
requests serviced in the �rst k/4 time steps, Phase 2 contains the requests serviced in the next
k/4 time steps, and so on.

Observation 2. Suppose opt(I) runs in Y phases. Then its makespan is at most (k/4)Y and at

least (k/4)(Y − 1) + 1.

We now compare the number of phases in opt(I) versus k-packing(I).

Lemma 6. Suppose k-packing(I) has X2 uncontested phases and opt(I) has Y phases. Then

Y ≥ X2.

Proof. From Lemma 4, in a uncontested phase, all the un�nished threads execute a chunk, which
contains k/4 block requests. Let pi be a thread that executes during the last uncontested phase.
This implies that in all X2 phases, pi executes a chunk. As opt can execute at most k/4 requests
of pi in each phase (length of each phase in opt is k/4), opt needs at least X2 phases to serve
thread pi.

49

Let ΦOPT be the set of phases for the optimal algorithm for some instance I . opt has only
one kind of phase. Since the algorithm is clear from context, use the shorthand η(ΦOPT) instead
of ηOPT (ΦOPT).

Lemma 7. η k-packing(Φ1) ≤ 2η(ΦOPT).

Proof. Consider an arbitrary phase φ of opt. Let B be a block that is requested by thread p at
least once during phase φ. Let the �rst and last requests of block B in phase φ be the f th and
jth reference to B respectively in thread p’s request sequence. All j − f + 1 references to Block
B in phase φ together contribute exactly 1 to η(ΦOPT). Let r′f and r′j be the references in thread
p’s request stream corresponding to the f th and jth reference to block B respectively. Because
each phase of opt has k/4 time steps, there are at most k/4 requests between r′f and r′j in thread
p. Let φf be the phase in k-packing that contains reference r′f and let φg be the next phase of
k-packing that contains a reference to BlockB. Both phase φf and phase φg execute k/4 requests
for thread p (unless phase φg is the last phase for thread p.). Thus reference r′j , is either in phase
φf or phase φg. Thus all references to block B in phase φ of opt are in at most two phases (of
any type) in k-packing. They contribute at most 2 to η k-packing(Φ1). Summing over all phases in
ΦOPT proves the lemma.

Lemma 8. Suppose that opt has Y phases. Then η(ΦOPT) ≤ (5k/4)Y .

Proof. Because a Phase φ of opt has length k/4 (except a truncated last phase), at most k/4 blocks
can be transferred from DRAM to HBM. In addition, there are at most k distinct blocks already
present in HBM at the start of Phase φ. These can be accessed in parallel by the threads. Thus,
altogether, in the phase, at most 5k/4 distinct blocks can be accessed. Summing over all Y phases
proves the lemma.

Lemma 9. Suppose that k-packing has X1 contested phases and opt has Y phases. Then X1 ≤
(10/3)Y .

Proof. From Lemma 7, we know η k-packing(Φ1) ≤ 2η(ΦOPT). From Observation 1, (3k/4)X1 ≤
η k-packing(Φ1) and from Lemma 8, η(ΦOPT) ≤ (5k/4)Y . Combining these, we getX1 ≤ (10/3)Y .

Proof of Lemma 3: Suppose that k-packing has X1 contested and X2 uncontested phases. Let
T (A) denote the makespan of an algorithm A. Then from Lemma 5,

T (k-packing) ≤ 5k

4
X1 + kX2.

Suppose opt has Y phases. Then from Lemma 9,X1 ≤ (10/3)Y and from Lemma 6,X2 ≤ Y .
Combining these, we get the following.

T (k-packing) ≤ 5k

4

10

3
Y + kY.

However, from Observation 2, T (opt) ≥ (k/4)(Y − 1). Thus,

T (k-packing) ≤ 5k

4

10

3
(Y − 1) +

50k

12
+ 4

k

4
(X2 − 1) + k

≤ 50

3
T (opt) + 4T (opt) +

62k

12
.

50

Hence, the lemma follows as T (k-packing) = O(T (opt)).

3.4.2 Online algorithm

In this section we introduce an online algorithm priority, which automatically guarantees that
its execution on an instance I , priority(I), has some of the structural properties that k-packing(I)
does. Unlike k-packing, priority does not need to know the HBM size k or any future requests
from the request sequences.

Speci�cally, the k-packing algorithm guarantees that in a phase (1) there are Θ(k) steps, (2)
either the working set size is Θ(k) or every un�nished thread makes Θ(k) progress, (3) any thread
that makes progress (without �nishing) completes Θ(k) requests.

What makes the HBM model algorithmically interesting is the bandwidth bottleneck between
HBM and DRAM. Given this bottleneck, the algorithmic concern/challenge is how to break ties
when multiple block requests compete for the limited bandwidth. In the o�ine setting, we man-
aged the tie-breaking issue by using size-Θ(k) chunks, but priority does not know k.

FCFS (First-Come-First-Serve) is a naturally fair policy for managing DRAM accesses. As we
show in the next section, FCFS works poorly, at least when paired with an LRU page-replacement
policy —see Section 3.5.

A better idea, at least when using LRU page replacement, is to assign priorities to threads, so
that a high priority thread can never be blocked by a low-priority thread. This leads to constant
competitiveness. Speci�cally, we prioritize block requests based on which thread made the re-
quest, with the highest-priority thread granted access to the DRAM. The speci�c priority order
does not matter. With this far-channel arbitration policy, priority naturally does what we explic-
itly designed k-packing to do. Moreover, unlike most caching problems, resource augmentation
is not necessary for constant competitiveness.

Let Ri = ri1, r
i
2, r

i
3, . . . be thread pi’s request sequence. Suppose that at time step t of some

algorithm execution, thread pi has served all requests through rij−1. Let ui(t) = rij denote thread
pi’s �rst unserviced request at time t. We partition the threads into two sets, P (t) and P (t) as
follows. If rij is in the HBM at the start of time step t, then pi ∈ P (t), and otherwise pi ∈ P (t).
At time 0, the HBM is empty, and hence for all i, pi ∈ P (0).
Algorithm priority. We assign a �xed priority for each thread. Without loss of generality, say
that thread pi has priority i, where priority 1 is the highest.

In each time step t and for each thread pi:

1. If pi ∈ P (t), then block ui(t) is transferred to pi’s core.
2. Otherwise, pi ∈ P (t).

(a) If pi is the highest priority thread among the threads in P (t), then ui(t) is transferred
from DRAM to HBM. If the HBM is full, then the least-recently-used block among all
the cores (breaking ties arbitrarily) in HBM is replaced.

(b) Otherwise, pi stalls (i.e., waits, since only one block can be fetched from DRAM to
HBM in each step).

It takes one time step to transfer a block from HBM to a core or from DRAM to HBM. Thus, if

51

pi ∈ P (t) (conditional in Step 1 holds), then after Step 1 in priority, ui(t+1) = rij+1. Otherwise,
after priority executes Step 2, ui(t+ 1) = rij .
Analysis of priority. For the analysis (only), we divide priority’s execution on instance I ,
denoted priority(I), into phases of length k. Phase φ (for φ ≥ 1) begins at the start of time step
(φ− 1)k+ 1 and �nishes at the end of step φk. We say thread pi is productive in Phase φ if and
only if pi serves at least k/4 requests in Phase φ or �nishes the thread’s execution. Otherwise, pi
is unproductive in Phase φ.

De�nition 9. Let B(φ) denote the set of distinct blocks that priority(I) serves in Phase φ. There
are two types of phases:

Contested: k/2 ≤ |B(φ)| ≤ k or

Uncontested: |B(φ)| < k/2.

The following lemma shows uncontested phases are productive.

Lemma 10. For any uncontested phase in priority(I), all un�nished threads serve at least k/4
requests.

Proof. Since there are fewer than k/2 distinct blocks accessed in Phase φ, then there are at most
k/2 steps when any block is brought in from DRAM. Thus, since a phase has k time steps, there
are at least k/2 steps when no thread needs a block that is not in HBM. During each of these
steps, any active thread serves a page request from its sequence or �nishes.

The next two lemmas show that for every Phase φ, priority(I) satis�es the following two
conditions:

• Each phase in priority(I) has at least one productive thread.
• In every contested phase, the productive threads alone serve at least k/2 distinct blocks.

Lemma 11. Every phase of priority(I) has at least one productive thread.

Proof. Let thread pi have the highest priority among the threads that run in Phase φ. If pi �nishes
its execution in Phase φ, then by de�nition, it is a productive thread. Otherwise, in each time
step, a block of pi is transferred from DRAM to HBM or from HBM to pi’s core. Being the highest
priority thread, pi never stalls. Since the phase has length k, thread pi services at least k/2 block
requests or �nishes, making it a productive thread.

Lemma 12. For every contested phase φ, the productive threads access g(φ) distinct blocks, where
|B(φ)| ≥ g(φ) ≥ k/2.

Proof. For ease of presentation, rename the threads that have not completed executing, so that
p1 is the highest priority thread, p2 is the next highest priority thread, and so on.

We say that a thread pi is active in step t if it is not stalled during the step. Thus, a block for
pi is transferred either from DRAM to HBM or from HBM to pi’s core. Say that thread pi accesses
hi distinct blocks in Phase φ.

Thread p1 is never stalled. Thus, it is active for k steps unless it �nishes executing before the
phase ends.

52

Thread p2 can be stalled for at most h1 time steps. This is because p1 grabs the DRAM-to-
HBM channel at most h1 times during the phase. (Thread p1 might grab the channel fewer than
h1 times, since the requested blocks might already be in HBM from a previous phase.) Thus, p2

is active for at least k − h1 steps unless it �nishes executing before the phase ends.
Similarly, p3 can be stalled for at most h1 + h2 time steps. This is because p3 is only stalled

when either p1 or p2 grabs the DRAM-to-HBM channel. In general, pi can be stalled for at most∑i−1
j=1 hj steps, and thus is active for k −∑i−1

j=1 hj steps unless it �nishes before the phase ends.
Let ` be the lowest priority thread in Phase φ such that

∑`
j=1 hj ≥ k/2.

We show that for all i = 1 . . . `, thread pi is productive. For i = 1 . . . `, thread pi is active
for at least k −∑`−1

j=1 hj ≥ k/2 steps unless it �nishes earlier. If a thread �nishes earlier, then
by de�nition, it is productive. Otherwise, if a thread is active for k/2 steps, then it must serve at
least k/4 block requests in its sequence, since it takes two steps to bring a block from DRAM to
a thread’s core. Hence, all ` threads are productive threads.

Thus, together all the productive threads access
∑`

j=1 hj ≥ k/2 distinct blocks, establishing
the lemma.

For a phase φ, let B∗(φ) denote the set of distinct blocks requested by all the productive
threads in phase φ. Let Φ1 denote the set of contested phases. Similar to our previous notation,
let η∗priority(Φ1) ≡∑φ∈Φ1

|B∗(φ)|.
Corollary 1. Let priority have Z1 contested phases. Then η

∗priority(Φ1) ≥ (k/2)Z1.

Analysis of opt. We divide opt’s execution on instance I into phases. Each phase has a �xed
length of exactly k/4 time steps (except possibly the last phase).

We now compare the number of phases in opt versus priority. Our proof of the following
lemma is similar to that of Lemma 7. However, since priority can not pack and execute chunks
the way the o�ine algorithm k-packing does in a phase, we base the proof on the productive
threads in a �xed-length phase. Later we show that considering only productive threads is enough
to establish the constant-competitiveness of priority.

Lemma 13. η∗priority(Φ1) ≤ 2η(ΦOPT).

Proof. Consider an arbitrary phase φ of opt. Let B be a block that is requested by thread p at
least once during phase φ. Let the �rst and last requests of block B in phase φ be the f th and jth
reference to B respectively in thread p’s request sequence. All j − f + 1 references to Block B
in phase φ together contribute exactly 1 to η(ΦOPT). Let r′f and r′j be the references in thread p’s
request stream corresponding to the f th and jth reference to block B respectively. Because each
phase of opt has k/4 time steps, there are at most k/4 requests between r′f and r′j in thread p. Let
φf be the phase in priority that serves reference r′f . Let φ∗f be phase φf if thread p is productive
in φf . Otherwise, let φ∗f be the �rst phase after φf in priority where thread p is productive
and it serves a reference to block B in [r′f , . . . , r′j]. Let φg be the next phase of priority after
phase φ∗f that serves a reference to block B where thread p is productive. Both phase φ∗f and
phase φg execute k/4 requests for thread p (unless phase φg is the last phase for thread p.). Thus
all the f th through jth request to block B are served by priority in phase φ∗f or in phase φg,
or in phases where thread p is not productive. Only phases φ∗f and φg might contribute counts
to η∗priority(Φ1), and together they contribute at most 2 to η∗priority(Φ1). Summing over all
phases in ΦOPT proves the lemma.

53

Lemma 14. Suppose priority has Z1 contested phases and opt has Y phases. Then Z1 ≤ 5Y .

Proof. From Lemma 13, η∗priority(Φ1) ≤ 2η(ΦOPT). Also, from Corollary 1, η∗priority(Φ1)
≥ (k/2)Z1 and from Lemma 8, η(ΦOPT) ≤ (5k/4)Y . Combining these, we get Z1 ≤ 5Y .

Lemma 15. Suppose priority has Z2 uncontested phases and opt has Y phases. Then Z2 ≤ Y .

Proof. The proof is essentially the same as that for Lemma 6.

Proof of Theorem 9: Suppose that priority has Z1 contested and Z2 uncontested phases. Then
priority’s makespan T (priority) satis�es the following:

T (priority) ≤ k(Z1 + Z2).

Suppose opt has Y phases. Using the results from Lemma 14 and Lemma 15, we get the following:

T (priority) ≤ 6kY.

However, from Observation 2, T (opt) ≥ (k/4)(Y − 1). The theorem follows, since

T (priority) ≤ 24T (opt) + 6k = O(T (opt)).

Why do we use LRU for block replacement? Many arguments in proofs above assume that
all references to a block within the same phase cost at most one access to DRAM. This assumes
that once a block is brought in during a phase, it will stay in HBM for the rest of the phase. Thus
future accesses to that block in the same phase are HBM hits. LRU is one way to ensure that
new blocks coming in do not knock out very-recently-fetched blocks. Our phases have at most k
distinct blocks. Thus the blocks brought in during the phase can all �t into HBM without evicting
each other when using LRU.

3.5 FCFS with LRU is not a Good Policy in the HBMModel

In this section we consider a very natural contention-resolution policy FCFS for the DRAM-HBM
channel with a widely used natural block replacement policy LRU. We show that the contention-
resolution policy FCFS with the block replacement policy LRU (let us call it FCFS+LRU) works
very poorly in the HBM model. We prove the following theorem.

Theorem 10. There exists request sequences such that even with d memory augmentation and s
bandwidth augmentation, the makespan of FCFS+LRU is Θ(p

ds
)-factor away from that of the optimal

policy.

We give FCFS+LRU d-memory augmentation, that is, FCFS+LRU has an HBM of size k, whereas
OPT has an HBM of size k/d. We assume that d divides k. Given the memory augmentation d,
we set k = 2pd where p is the number of cores. We could have chosen any larger value of k.
Larger values of k capture reasonable HBM sizes and we would obtain the same lower bound.
The request sequences would need to be updated accordingly.

54

Figure 3.2: The execution of FCFS+LRU. Boxes with grey color represent light phases and boxes
with black color represents heavy phases.

Figure 3.3: The execution of OPT. The sequences are shifted to align such that at most one set of
cores run their heavy phases simultaneously.

Proof.

Ri =
(`+i︷ ︸︸ ︷

x
i
1, x

i
1, . . . , x

i
1, . . . ,

`+i︷ ︸︸ ︷
x
i
p−1, x

i
p−1, . . . , x

i
p−1︸ ︷︷ ︸

2d−1 light phases

,
`+i︷ ︸︸ ︷

x
i
1, x

i
2, . . . , x

i
k/p+1, x

i
1, x

i
2, . . . , x

i
k/p+1, . . .︸ ︷︷ ︸

1 heavy phase

)λ
.

The request sequence of core pi is divided into phases of length `+ i. There are two types of
phases: light phases and heavy phases. In a light phase a single block is requested for `+ i times.
In a heavy phase k/p+ 1 blocks are requested in round-robin fashion until length ` and then the
last requested block is repeated for i times. The additive term i in the length of a phase ensures
synchronization among the cores in the execution of FCFS+LRU. If all p cores start executing
their corresponding light phases at the same time, then all �nish at the same time. Similarly, if
all p threads start executing their corresponding heavy phases, then all �nish at the same time.
There are 2d − 1 light phases followed by a heavy phase. Together these 2d phases are called a
superphase. Request sequence Ri is the concatenation of such a super phase for λ times.

We divide the cores into 2d sets each containing p
2d

cores. We assume that 2d divides p. Let
P1 = {pj|1 ≤ j ≤ p

2d
} denote the �rst set of p

2d
cores, and Pi = {Pj|i p2d ≤ j ≤ (i+ 1) p

2d
} denote

the i-th set of p
2d

cores.
OPT has enough space in its HBM to hold a block of a light phase from each core in (2d− 1)

sets and k/p+ 1 blocks of a heavy phase from each core in one set. Recall that each set has p/2d
cores. (

k

p
+ 1

)
p

2d
+ (2d− 1)

p

2d
=

k

2d
+ p.

= k/d putting k = 2pd.

The execution of FCFS+LRU. As FCFS+LRU cannot see the future, it starts executing all the
cores simultaneously. All p cores start and �nish their corresponding light phases at the same

55

time. Similarly, all the p cores start and �nish their corresponding heavy phases at the same time.
See Figure 3.2. As the total number of blocks of p heavy phases is larger than than size of HBM,
every request in the heavy phase incurs an HBM miss. Hence, all the heavy phases run serially,
thus taking at least p` time steps. As there are λ superphases and each superphase has one heavy
phase, FCFS+LRU takes at least T (FCFS+LRU) = p`λ time steps to execute the whole program.
The execution of OPT. The optimal policy OPT aligns the request sequences such that no two
cores run their heavy phases simultaneously. OPT does so by shifting the starting time of cores.
It starts executing cores in set P2 when cores in set P1 start their 2-nd phase. Similarly, OPT
starts executing cores in set P3 when cores in set P2 start their 2-nd phase. Note that cores in set
P1 start their 3-rd phase at the same time. In general, cores in set Pi+1 start when cores in set Pi
start their 2-nd phase for 1 ≤ i ≤ 2d− 1. After this initial alignment, only p/2d cores from one
set run their heavy phase and all other cores run their corresponding light phases. As the HBM
of OPT has enough space to hold all the blocks of a heavy phases from p/2d cores each and a
light phase from each of the rest of the cores, all the cores can progress simultaneously in every
phase. See Figure 3.3.

OPT runs heavy phases from at most one set of p/2d cores and rest of the cores runs light
phases. Together, k/d blocks are fetched in k/d time steps and once all the blocks are in HBM, all
p cores can run their phases in parallel, taking l+ p time at most. Hence, OPT �nishes a phase in
(k/d+ `+ p) = `+ 3p time steps as k = 2pd. Recall that a superphase has 2d phases and there
are λ such superphases in each request sequence. As OPT shifts the starting time of the request
sequences, OPT e�ectively runs λ+ 1 superphases. OPT �nishes a superphase in (`+ 3p)2d time
steps. Choosing an appropriate value of ` with respect to p, we get (`+ 3p)2d ≤ 3`d. The whole
program �nishes in T (OPT) = 3`d(λ+ 1) ≤ 4`dλ time steps.
Competitive ratio of FCFS+LRU. Applying the makespan of FCFS+LRU and OPT, we get the
following competitive ratio of FCFS+LRU.

T (FCFS+LRU)

T (OPT)
≥ p`λ

4`dλ
=

p

4d

If FCFS+LRU gets s bandwidth augmentation, then its running time is reduced by at most a
factor of s as between HBM and DRAM s blocks can be transferred in one time step. Hence, the
competitive ratio of FCFS+LRU becomes Θ

(
p
sd

)
and the theorem is proved.

3.6 NP-hardness of the Makespan-minimization Problem

In this section we show that the o�ine makespan-minimization problem is strongly NP-hard. Our
proof is based on a polynomial-time reduction from the strongly NP-hard problem 3-partition.
3-partition. Given a set A = {a1, a2, · · · , a3n} of 3n integers such that

∑3n
i=1 ai = nB and

B/4 < ai < B/2 for each 1 ≤ i ≤ 3n, can I = {1, 2, · · · , 3n} be partitioned into disjoint sets
I1, I2, · · · , In, such that

∑
i∈Ij ai = B for each 1 ≤ j ≤ n?

Reduction. Given an instance of the 3-partition problem with 3n integers {a1, a2, · · · , a3n} and
target sum B for each subset, we create an instance of the makespan-minimization problem as

56

follows. For each integer ai, we create a request sequenceRi =
(
ri1, r

i
2, . . . , r

i
ai

)b4B/aic
, that isRi

is formed by repeating
(
ri1, r

i
2, . . . , r

i
ai

)
for b4B/aic times. Recall that rij denotes the j-th request

in core pi’s request sequence. Therefore, all the 3n request sequences together have nB distinct
blocks. We also create two auxiliary request sequences T1 and T2 as follows.

Sequence T1 has length (3nB + n + 1) where the �rst 3nB + n requests are all distinct, but
then the last request is a repeat of the penultimate request.

T1 = b1, b2, b3, . . . , b3nB+n−1, b3nB+n, b3nB+n.

Sequence T2 is a concatenation of n rounds. Each round consists of two consecutive phases.
In the �rst phase of a round, T2 requests the same block for (2B + 1) times. In second phase, it
requests 2B distinct blocks. Thus, each round is of length (4B+1) and requests (2B+1) distinct
blocks. Let xi = (2B + 1)i where 0 ≤ i < n. Then,

T2 =

2B+1︷ ︸︸ ︷
d1, d1, . . . , d1,

2B︷ ︸︸ ︷
d2, d3, . . . d2B+1︸ ︷︷ ︸

Round 1

, . . . ,

2B+1︷ ︸︸ ︷
dxi+1, dxi+1, . . . , dxi+1,

2B︷ ︸︸ ︷
dxi+2, dxi+3, . . . , dxi+2B+1︸ ︷︷ ︸

Round i

, . . .

There are (3n + 2) cores and the HBM size is (B + 2). Sequence T1 and T2 have (3nB + n)
and (2nB + n) distinct block requests respectively. Sequence R1, R2, . . . , R3n together have nB
distinct block requests. The total number of distinct blocks is (6nB + 2n).

Theorem11. An instance of 3-partition has a solution if and only if the derivedmakespan-minimization

problem has a makespan of (6nB + 2n+ 1).

Before proving Theorem 11, we �rst show some properties of any schedule of the derived
makespan-minimization problem instance that has a makespan of 6nB + 2n+ 1.

Figure 3.4: Each box represents a time step. Boxes with labels T1 and T2 denote that cores T1

and T2 fetch a block from DRAM respectively. A box without any label denotes that one of the
3n cores fetches a block from DRAM. The �rst phase has B boxes without labels. Each box in
the second phase is labelled by either T1 or T2.

Lemma 16. Suppose that there is a schedule S with makespan 6nB + 2n + 1. Then S fetches a

block from DRAM to HBM in every time step except the last one.

57

Proof. There are a total of (6nB + 2n) distinct blocks. Hence, there must be at least (6nB + 2n)
HBM misses by any cache-replacement policy. If the target makespan is (6nB + 2n + 1), the
channel between the HBM and DRAM must always be busy except for the last time step (used
for transferring the last block from HBM to a core).

Observation 3. Suppose that there is a schedule S of the derived makespan-minimization problem

instance with makespan (6nB + 2n + 1). Then S cannot evict a block from HBM unless the block

is not requested in the future.

Lemma 17. The schedules of the auxiliary cores T1 and T2 are �xed in every solution of the derived

makespan-minimization problem instance that has a makespan of (6nB + 2n+ 1).

Proof. The target makespan is (6nB + 2n + 1) and the last time step is used to serve a block
from HBM. Hence, the �rst (6nB + 2n) time steps can be used to fetch blocks from DRAM to
HBM. Since T1 requests (3nB+n) distinct blocks, at every alternative time slot, T1 must use the
HBM-DRAM channel. In particular, T1 must fetch a block in the �rst time step. Otherwise, it can
not �nish within the target makespan while fetching (3nB + n) distinct blocks and serving the
last distinct block twice. Hence, the schedule of T1 is �xed: it fetches every odd timestep.

Similarly, the schedule of T2 is �xed. In the �rst time step, thread T1 brings in a block from
DRAM. We show that in each of the remaining (6nB+ 2n) time steps, thread T2 either brings in
a block from DRAM or serves a block from HBM to its core. Recall that T2 has n rounds. The �rst
phase of each round takes (2B + 2) steps because in the �rst step it brings a block from DRAM
and serves the same block for (2B + 1) steps. In the second phase, T2 fetches 2B distinct blocks
in every alternating step of 4B time steps. Hence, each round takes 6B+2 steps. All n rounds are
�nished in 6nB+2n steps. Since T2 starts executing at the second time step, it �nishes execution
in time 6nB + 2n+ 1 (Figure 3.4).

Let S be a schedule that has makespan (6nB + 2n+ 1). The schedule of T1 and T2 are �xed.
Except for the �rst time step, core T2 is either fetching a block from DRAM or serving a block
from HBM to the core. We say that when T2 �nishes round i, schedule S �nishes round i. When
T2 �nishes the �rst phase of round i, schedule S �nishes the �rst phase of round i and similarly
for phase 2 of round i.

Observation 4. The auxiliary cores T1 and T2 always occupy one block each in HBM.

Observation 5. Let S be a schedule that has makespan (6nB + 2n + 1). Then the �rst phase of

each round of S has B time steps when the DRAM-HBM channel is used by neither T1 nor T2.

Lemma 18. Let S be a schedule that has makespan (6nB + 2n+ 1). Then no core besides T1 and

T2 runs in two rounds of S .

Proof. We prove this by contradiction. Let core p run in rounds i and j. Core p can fetch blocks
only during the �rst phase of round i. Since it continues to round j, it could not fetch all its blocks
in the �rst phase. Otherwise, it could have �nished its round-robin phase in the second phase of
round i. That means some of the blocks that are fetched in round i, will be used in round j in
the round-robin phase. From Observation 3, we know that once a block is fetched, it can not be
kicked out unless it is not requested later. This implies that some blocks in HBM must be held
for core p in round j.

58

There are B free time slots in round j and the HBM has B blocks left for cores other than
T1 and T2. If some block is already occupied by some core at round j, then at least one time slot
cannot bring in a block during the �rst phase of round j. This contradicts Lemma 16.

Lemma 19. Let S be a schedule that has makespan (6nB+2n+1). Then exactly three cores besides
T1 and T2 can run in a round of S .

Proof. No core besides T1 and T2 runs in two rounds. The core associated with integer ai accesses
ai distinct blocks, so during the round where that core runs, it must read in ai blocks during theB
time slots when neither thread T1 nor thread T2 are accessing the DRAM. SinceB/4 < ai < B/2
for all ai, at most three cores can share a round. Since there are 3n cores associated with integers
ai and only n blocks, then at least three blocks must run in any round.

Proof of Theorem 11. Suppose that there is a solution to the 3-partition instance. The solution
is a partition of 3n integers into n disjoint sets such that the sum of the integers in each set is B.
We create a schedule of the derived makespan-minimization problem instance using the solution
of the 3-partition instance. We schedule T1 and T2 as shown in Figure 3.4. There are n rounds
in the schedule. The �rst phase in each round has B time-steps when neither T1 nor T2 use the
HBM-DRAM channel. If the �rst set in the solution of 3-partition has integers ai, aj and ak, we
schedule core pi, pj and pk in the �rst round. Recall that pi has ai distinct blocks. These three
cores fetch a total of B blocks in the �rst phase of the �rst round and they execute the remaining
round-robin accesses to these blocks by the end of the second phase of the round. The second
phase has length 4B and the length of the request sequence of each core representing ai is at
most 4B. Hence, pi, pj and pk �nish their execution in the second phase. Similarly, for each set
in the 3-partition solution, we schedule the cores accordingly. As the n rounds �nish in time
6nB + 2n+ 1, we have the target makespan.

Now suppose that there is a makespan of (6nB+ 2n+ 1). Then from lemma 19, exactly three
cores can run in a round. This gives a mapping from 3n cores to n rounds. As three cores are
running in a round and total free slots (also total number of distinct blocks in these three cores)
are B, this gives a 3-partition solution. Hence, minimize-makespan is strongly NP-hard.

3.7 Performance Metric in HBMModel

In this section we show that minimizing a traditional scheduling performance metric like makespan
is better for the HBM model than minimizing the number of HBM misses. In particular we show
there exist request sequences where any policy that minimizes the number of HBM misses can
have arbitrarily bad running time. We prove the following theorem.

Theorem 12. There exist p request sequences such that any policy that minimizes the number of

HBMmisses when serving the sequences has a makespan that is aΘ(p) factor larger than the optimal

makespan.

Proof. There are p cores and the HBM has size k. The request sequence Ri for core pi has length
n + 2k and uses k distinct blocks. The �rst n requests are np/k round-robin repetitions of k/p
blocks. Then there are two round-robin repetitions of all k blocks. We call the last two length-k
subsequences large passes.

59

Ri =

n︷ ︸︸ ︷
xi1, x

i
2, . . . x

i
k/p︸ ︷︷ ︸

k/p

, . . . xi1, x
i
2, . . . x

i
k/p︸ ︷︷ ︸

k/p

,

2k︷ ︸︸ ︷
xi1, x

i
2, . . . x

i
k︸ ︷︷ ︸

k

, xi1, x
i
2, . . . x

i
k︸ ︷︷ ︸

k

.

Because each core requests exactly k blocks in total, which exactly �lls the size-k HBM, the
fewest possible HBM misses is kp. This is achievable, for example, by running the request se-
quence for each core serially. Thus any policy that minimizes the HBM misses cannot evict a
block once it is fetched from DRAM to HBM until its last reference is executed. Otherwise, there
are at least kp+ 1 HBM misses, which is not optimal.

The makespan of a single thread (i.e. when p = 1) is n + 3k. Serving the �rst k/p requests
requires two time steps per element: one to bring the block in from DRAM and another to serve
it from HBM to the core. The next n requests are HBM hits, so require one step each. These are
the last n − k/p requests in the �rst part of the sequence and the �rst k/p requests in the �rst
large pass. Serving the remaining k − k/p blocks in the �rst large pass requires two ticks each,
and the �nal large pass requires k time steps. In all that is 2k/p+ n+ 2(k − k/p) + k = n+ 3k.

The last time each block is accessed by its core is during the last large pass. For a minimum-
miss execution, if the threads execute in order, cores pi and pi+1 can overlap for at most k time
steps. Core pi+1 can bring in its �rst block when xi1 is accessed for the last time at the start of
the last large pass for Ri. In general the execution of Ri can overlap at most k with both Ri−1

and Ri+1. So each sequence overlaps for 2k timeslots, except the �rst and last, which overlap for
only k time slots. Let MinimumMisses represent any policy that minimizes the number of HBM
misses. Then we have.

T (MinimizeMisses) ≥ p(n+ k) + 2k.

There is a feasible policy that runs faster for su�ciently large n. It brings the �rst k/p blocks
for each thread into the HBM. Because threads can interleave, this requires time at most k. Then
it can execute all p threads in parallel for their �rst n block requests with no HBM misses. The
last two rounds for each core are almost serialized. Each core requires 2k time to bring in its k
blocks, interleaved with reading the blocks the �rst time. There is one more time step to reread
the �rst block before the next core can start bringing in its blocks. Thus each core controls the
DRAM channel for 2k + 1 time steps, and there are k steps at the end for the last sequence to
�nish. This is a loose analysis, since threads can start executing the �rst round robins as soon as
their blocks are in and the �rst core can start bringing in the rest of its �rst large pass as other
threads are �nishing their �rst round robins. Still we have an upper bound on the time to execute
this strategy:

T (OPT) ≤ 2k + n+ p(2k + 1).

Setting n = p(2k + 1) su�ces to show

T (MinimizeMisses) ≥ p

2
T (OPT).

Hence, the makespan of MinimizeMisses is a Θ(p)-factor larger than the optimal makespan.

60

3.7.1 How does uneven bandwidth a�ect makespan?

In this subsection, we show that how di�erence in bandwidth between HBM and DRAM makes
the problem more interesting. In particular, we show that if the bandwidth of HBM and DRAM are
the same, then by partitioning the HBM evenly among the cores, any reasonable policy achieves
a makespan within a constant factor of optimal. However, when the bandwidth of DRAM and
HBM are not the same, then there exists request sequences such that when the HBM is partitioned
evenly, no block replacement policy can achieve a makespan within a constant factor of optimal.

Lemma 20. Suppose that the bandwidths of HBM and DRAM are the same. Then any block replace-

ment policy can achieve a 2-competitive makespan by partitioning the HBM evenly among the cores.

Proof. We prove a much stronger claim that allocates a single block per core in the HBM and still
have a 2-competitive makespan.

As the bandwidth of near and far memory is the same, we can model it as follows. From each
core pi (1 ≤ i ≤ p) there is a channel to the near memory and from the near memory there are
p channels to the far memory. Let Ri denote the request sequence of core Pi and `i denote the
length of Ri, that is `i = |Ri|. Then the OPT’s makespan TOPT would be at least max1≤i≤p(`i).

TOPT ≥ max
1≤i≤p

(`i)

Now, let the strategy allocate one block for each core pi in the near memory. This is always
possible because the size of the near memory is at least p blocks. Now for each block request r(i)

j

from core Pi, the cache replacement policy fetch the block from far memory and evict current
block r(i)

j−1 if present in the HBM. Hence, in one time step, the block is fetched from far memory
and in the next time step, it is transferred to pi. Thus, Ri will be executed by time 2`i. This gives
a 2−competitive makespan. As other cache replacement policies cannot be worse than this (it
gets a HBM miss at every request), they are also at least 2-competitive.

Lemma 21. Suppose that the bandwidths of HBM and DRAM are not the same. Then there exists

request sequences where by partitioning the HBM evenly among the cores, no block replacement

policy, even in the o�ine setting, can achieve a makespan that is within a constant factor of optimal.

Proof. Let the request sequence of core pi be as follows.

Ri = (xi1, x
i
2)n/2.

Let the size of HBM is p and the HBM is evenly shared by p cores, that is, every core has a
single block to hold in HBM. While fetching a block for core pi from DRAM, if the alloted place
for pi in HBM is full, a block from the alloted place is evicted to make room for the new block.
As core pi requests two blocks in round-robin fashion and pi can hold a single block in HBM at
any time, every request incurs a HBM miss irrespective to the block replacement policy. Hence,
total HBM misses for p cores is np for any arbitrary block replacement policy.

However, instead of dividing the HBM evenly, a block replacement policy executes the �rst
p/2 cores in parallel and allocates 2 blocks per core. As each core pi has only two distinct blocks,
p/2 cores will �nish their execution in time (p+ n). This is because there are p HBM misses for

61

p distinct blocks and once they �t in HBM they do not incur any HBM-misses, thus making the
makespan at most (p+ n). Similarly, after the �rst p/2 cores �nish execution, the last p/2 cores
also �nish execution in another (p+ n) time steps. This makes the total makespan of 2(p+ n).

This shows that when the HBM is partitioned evenly among the cores, no block-replacement
policy can achieve a makespan that is constant factor from optimal.

3.8 Minimizing Total Completion Time O�line

In this section, we consider the problem of minimizing total (average) completion time o�ine. To
do so, we �rst show a reduction to a resource constrained scheduling problem. Then, we show
that the new scheduling problem admits a O(1) approximation via a linear program rounding.
The goal of this section is to show the following theorem.

Theorem13. There is a polynomial time deterministic algorithm that computes aO(1)-approximate

solution for the HBM problem for the total completion time objective.

This theorem will follow from the following. We create a resource constrained scheduling
problem and show in Lemma 22 that the total completion time of this new problem is bounded
by at most a O(1) of that of the best solution for the HBM problem. Then in Lemma 23, we show
how any algorithm for the resource constrained scheduling problem can be converted back to
the HBM problem while increasing the completion time by an O(1) factor. Thus, we only need
to show a O(1)-approximation for the new problem for the theorem to follow. This is shown in
Theorem 14.

3.8.1 Reduction to a resource constrained scheduling problem

We reduce the problem into a resource constrained scheduling problem. Recall that in Section 3.4,
each sequence Ri = r1, r2, r3, . . . for each core pi is divided into chunks, where each chunk Cj
(except possibly the last) contains exactly k/4 requests. We perform the same chunking of the
requests.

Ri =

C1︷ ︸︸ ︷
r1, r2, · · · , rk/4,

C2︷ ︸︸ ︷
r1 + k/4, r2 + k/4, · · · , r2k/4 · · ·

In the reduction, request sequences will always be completed in chunks of length k/4.

The reduction. We reduce a request sequence Ri to a job Ji as follows. If sequence Ri has wi
chunks, then we say that job Ji consists of wi tasks. If the jth chunk of the sequence serves ri,j
distinct blocks then the corresponding j-th task for job Ji has a resource requirement of ri,j . The
j-th task can only be processed after all 1, 2, . . . j− 1 prior tasks for job Ji have completed. Each
task takes k/4 time steps. A job is completed when all of its tasks are completed.

Reduced problem de�nition. Suppose that there is a set of p jobs that can be scheduled
using k resources. At each point in time, a job can be allocated any number of resources, so long
as at most k are assigned to all of the jobs. Job Ji consists of wi tasks. The jth task for job Ji has
a resource requirement ri,j and can only be processed after all 1, 2, . . . j− 1 prior tasks for job Ji

62

have completed. All of the tasks are assumed to take unit time to �nish. A job is completed when
all of its tasks are completed. The goal is to minimize the total completion time of the jobs. We
call this problem the resource constrained scheduling problem (RCSP).

Subsequently we show that the optimal solution to this reduced resource constrained schedul-
ing problem is within a constant factor of the optimal solution of the original problem in the HBM
model.

Lemma 22. Given any request sequence in the HBM problem, the total completion time for the RCSP

is within a constant factor of the optimal total completion time of the original p request sequences in
the HBM model.

Proof. Let OPT be the optimal solution that minimizes the total completion time of the scheduling
instance. Let Si be all the jobs that complete between times [2i, 2i+1) in OPT. Consider using the
makespan algorihtm k-packing to schedule only the jobs in Si. This will result is a schedule of
makespan at most c·2i+1 where c is a constant. Consider taking these schedules and concatenating
them so S1 is �rst then S2 and so on. Notice that Si completes at latest c2i+2 after concatenating.
Let O also denote the optimal solution’s objective function and let A denote the total completion
time of this schedule. We see that,

A ≤
∑
i

c|Si|2i+2 = 4c
∑
i

|Si|2i = 2cO

Finally, consider any instance scheduled. The chunks scheduled by k-packing correspond to
tasks in the RCSP instance. That is k-packing always schedules threads in request sequences of
length k/4. When such a sequence is scheduled, schedule the corresponding task in the RCSP at
the same time. The de�nition of the problem and k-packing ensures that at any time at most k
resources are scheduled. Thus, we can use this schedule to give a solution to the RCSP problem
with the same total completion time. Thus, the total completion time of the optimal solution for
the RCSP instance is at most 2c = O(1) greater than the HBM problem.

Next we show that any schedule for RCSP can be converted to a schedule for the HBM problem
with the same total completion time.

Lemma 23. Consider any HBM instance and the corresponding RCSP instance. Given any schedule

for RCSP, one can construct in polynomial time a schedule for the HBM instance where the objective

only increases by a factor 5.

Proof. Each task in the RCSP instance has the same ‘unit’ length of k/4. Consider a set of tasks
Xt scheduled during one time step in RCSP instance. Each of these tasks corresponds to a chunk
of requests of length k/4. By de�nition of the resource requirement, all of the tasks inXt request
at most k unique pages. We can complete all of these tasks in the HBM instance in k + k/4 time
steps. k to load the HBM and k/4 to service all requests. Thus, each unit interval in RCSP can be
completed in k + k/4 time in HBM instance.

63

3.8.2 Solving the Scheduling Problem

In this section, we focus on the following problem we call the resource constrained scheduling
problem. There is a set of n jobs that can be scheduled using k resources. At each point in time,
a job can be allocated any number of resources, so long as at most k are assigned to all of the
jobs. Each job i consists of wi tasks. The jth task for job i has a resource requirement ri,j and
can only be processed after all 1, 2, . . . j − 1 prior tasks for job i have completed. All of the tasks
are assumed to be unit time. A job is completed when all of its tasks are completed. The goal is
to minimize the total completion time of the jobs. We show the following theorem.

Theorem 14. There is a polynomial time 20 approximation algorithm for the resource constrained

scheduling problem.

We begin by showing that by loosing a factor 4 in the approximation ratio, we may assume
that the algorithm is given 2k resources. In particular, we show that if we have a schedule using
2k resources then we can construct a schedule using k resources with at most a factor 4 larger
objective.

Lemma 24. Consider any algorithm A that has a total completion time of T using 2k resources. In
polynomial time given A, there is an algorithm B that uses k resources with total completion time

4T . This assumes ri,j ≤ k for all i and j.

Proof. Fix any time step t in the scheduleA. We show that we can complete the work done during
this time step in A in 4 steps in the schedule B. This ensures we can replicate the schedule of A,
one time step at a time.

Let a1, a2, . . . a` be the tasks assigned to time step t in A and let r1, r2, . . . r` be their corre-
sponding resource requirements. Assume that r1 ≥ r2 ≥ . . . r`. Let S1, S2, S3 and S4 be sets
corresponding to the four time steps for t in B. From i = 1 to ` assign task ai to any Sj such that
ri +

∑
i′∈Sj

ri′ ≤ k.
Now we just need to show that ri +

∑
i′∈Sj

ri′ ≤ k for some j ∈ [4] when assigning any
task. Say this is not the case when assigning a task i for the sake of contradiction. Then we
know that 4ri +

∑
i′∈S1∪S2∪S3∪S4

ri′ > 3k. Further, we know that ri ≤ k by de�nition of the
problem and therefore each set contains at least one item. The sets each include a task requiring
greater resources than i by the ordering of how tasks are assigned. If ri ≤ k

2
then each set

contains items of aggregate size greater than k
2

since i cannot �t in any set. However then the total
resource requirement of the already assigned tasks exceeds 2k, a contradiction to the scheduleA.
Otherwise, ri ≥ k

2
. In this case there are at least �ve items of size at least k

2
, again a contradiction.

Leveraging the prior lemma, we give an algorithm. The algorithm uses 2k resources. The
algorithm leverages rounding a linear program (LP). Let xi,j,t denote whether the jth task for job
i is processed at time t. The linear programming formulation is the following. Notice that the LP
using k resources and is a lower bound on the optimal solution.

64

min
n∑
i=1

∑
t

t · xi,wi,t (3.1)

s.t.
∑
t

xi,j,t = 1 ∀i ∈ [n], j ∈ [wi] (3.2)

n∑
i=1

wi∑
j=1

rixi,j,t ≤ k ∀t (3.3)

xi,j,t ≤
∑
t′≤t

xi,j−1,t′ ∀i, j, t

0 ≤ xi,j,t ≤ 1 ∀i, j, t

The objective states that a job pays t for the completion time when its last task is processed.
The �rst set of constraints ensures all tasks are scheduled. The second ensures that at most k
resources are used at any point in time. The third ensures that the jth task for job i is completed
after task (j − 1) for job i is completed. The last constraint ensures all tasks are scheduled.

Consider solving the LP to get a solution x. Let Ci be the �rst time that
∑

t′≤t xi,wi,t ≥ 1
2
.

Re-index the jobs such that C1 ≤ C2 ≤ . . . ≤ Cn. The jobs are scheduled in this priority order.
Every task of job i is scheduled before we consider scheduling job i + 1 . Depending on how
resources are packed, it could be the case that job i+ 1 is scheduled at times before i completes.

Consider the ith job. For the jth task of the job, schedule this is the �rst available time step
with ri,j resources available after task j− 1 for job i is completed . A time slot is available when
the task is assigned if at most 2k resources are used. We remark that all tasks for i are scheduled
before job i+ 1 is considered.

We now show that this algorithm schedules the tasks by time 2Ci + wi.

Lemma 25. Every job i is completed by time 2Ci + wi in the algorithm.

Proof. Fix any job i. Consider the last task ai,wi
for job i. Say that this task is completed at

some time t. There are two reasons this task is not completed before time t. For any time step
t′ ≤ t either (1) a task for i is being scheduled or (2) this time step does not have enough free
resources to schedule the available task for job i at that time. Notice that if (2) occurs, then at
least k resources are being used. This is because each task for i has size at most k, there are 2k
resources available, and a task for i is available and not scheduled. We know that there are at
most wi time steps where (1) occurs. There cannot be more than 2Ci time steps when (2) because
of the following. At any time t that is a (2) timestep, the LP must be using k resources to schedule
tasks for some job i′ < i. Every task for such a job i′ is processed fractionally to at least a 1

2

amount by time Ci′ ≤ Ci. Given that the LP can process at most kt work up to any time t, there
must be at most 2Ci such timesteps. Thus, job i is completed at time 2Ci + wi.

We can leverage the prior lemma to prove the theorem.

Proof of Theorem 14. LetO∗ be the objective of the optimal solution using k resources. Lemma 25
ensures that the algorithm completes a job by time 2Ci +wi. The LP objective is at least 1

2

∑
iCi

since each job pays at least 1
2
Ci in the objective. We also know that

∑
iwi is a lower bound on the

65

optimal solution. Thus the algorithm has an objective value of 5O∗. Lemma 24 can transform the
algorithm’s solution into a valid solution using k resources at a cost of increasing the objective
by a factor 4. This gives a total approximation ratio of 20.

66

Chapter 4

Avoiding Races with Extra Memory

A determinacy race occurs if two or more logically parallel instructions access the same memory
location and at least one of them tries to modify its content. Races are often undesirable as they
can lead to nondeterministic and incorrect program behavior. A data race is a special case of
a determinacy race which can be eliminated by associating a mutual-exclusion lock with the
memory location in question or allowing atomic accesses to it. However, such solutions can
reduce parallelism by serializing all accesses to that location. For associative and commutative
updates to a memory cell, one can instead use a reducer, which allows parallel race-free updates
at the expense of using some extra space. More extra space usually leads to more parallel updates,
which in turn contributes to potentially lowering the overall execution time of the program.

We start by asking the following question. Given a �xed budget of extra space for mitigating
the cost of races in a parallel program, which memory locations should be assigned reducers and
how should the space be distributed among those reducers in order to minimize the overall run-
ning time? We argue that under reasonable conditions the races of a program can be captured by a
directed acyclic graph (DAG), with nodes representing memory cells and arcs representing read-
write dependencies between cells. We then formulate our original question as an optimization
problem on this DAG. We concentrate on a variation of this problem where space reuse among
reducers is allowed by routing every unit of extra space along a (possibly di�erent) source to sink
path of the DAG and using it in the construction of multiple (possibly zero) reducers along the
path. We consider two di�erent ways of constructing a reducer and the corresponding duration
functions (i.e., reduction time as a function of space budget).

We generalize our race-avoiding space-time tradeo� problem to a discrete resource-time trade-
o� problem with general non-increasing duration functions and resource reuse over paths of the
given DAG.

For general DAGs, we show that even if the entire DAG is available to us o�ine the problem
is strongly NP-hard under all three duration functions, and we give approximation algorithms
for solving the corresponding optimization problems. We also prove hardness of approximation
for the general resource-time tradeo� problem and give a pseudo-polynomial time algorithm for
series-parallel DAGs.

This work is published in the proceedings of SPAA 2019 [57].

67

4.1 Introduction

A determinacy race (or a general race) [108, 66] occurs if two or more logically parallel instruc-
tions access the same memory location and at least one of them modi�es its content. Races are
often undesirable as they can lead to nondeterministic and incorrect program behavior. A data
race is a special case of a determinacy race which can be eliminated by associating a mutual-
exclusion lock with the memory location in question or allowing only atomic accesses to it. Such
a solution, however, makes all accesses to that location serial and thus destroys all parallelism.
Figure 4.1 shows an example.

Figure 4.1: This �gure shows a race on global variable x caused by two parallel threads trying
to increment x, where r1 and r2 are local registers. The value printed by the ‘print’ statement
depends on how the two threads are scheduled. Unless the two threads are executed sequen-
tially, the print statement will print an incorrect result (either 1 or 2 depending on which thread
updated x last).

One can use a reducer [72, 41, 117] to eliminate data races on a shared variable without de-
stroying parallelism, provided the update operation is associative and commutative. Figure 4.2
shows the construction of a simple recursive binary reducer. For any integer h > 0 such a re-
ducer is a full binary tree of height h and size 2h+1− 1 with the shared variable at the root. Each
nonroot node is associated with a unit of extra space initialized to zero. All updates to the shared
variable are equally distributed among the leaves of the tree. Each node has a lock and a waiting
queue to avoid races by serializing the updates it receives, but updates to di�erent nodes can be
applied in parallel. As soon as a node undergoes its last update, it updates its parent using its �nal
value. In fact, such a reducer can be constructed using only 2h units of extra space because if a
node completes before its sibling it can become its own parent (with ties broken arbitrarily) and
the sibling then updates the new parent. Assume that the time needed to apply an update sig-
ni�cantly dominates the execution time of every other operation the reducer performs and each
update takes one unit of time to apply. Then a reducer of height h can correctly apply n parallel
updates on a shared variable in d n

2h
e + h + 1 time provided at least 2h processors are available.

Hence, for large n, the speedup achieved by a reducer (w.r.t. serially and directly updating the
shared variable) is almost linear in the amount of extra space used.

To see how extra space can speed up real parallel programs consider the iterative matrix
multiplication code Parallel-MM shown in Figure 4.3 which multiplies two n × n matrices
X[1..n][1..n] and Y [1..n][1..n] and puts the results in another n × n matrix Z[1..n][1..n]; that
is, it sets Z[i][j] =

∑
1≤k≤nX[i][k]× Y [k][j] for 1 ≤ i, j ≤ n. Since every Z[i][j] value can be

68

Figure 4.2: [Left] A memory location a with
eight updates using an associative and commu-
tative operator. [Right] The same location a
with a recursive binary reducer of height two on
top of it.

Parallel-MM(Z,X, Y, n)

1. parallel for i← 1 to n do

2. parallel for j ← 1 to n do

3. Z[i][j]← 0

4. for k ← 1 to n do

5. Z[i][j] ← Z[i][j] + X[i][k] ×
Y [k][j]

Figure 4.3: Parallel code that multi-
plies two n × n matrices X[1..n][1..n]
and Y [1..n][1..n], and puts the result in
Z[1..n][1..n].

Figure 4.4: A DAG in which each node’s work
value is set to its in-degree. The makespan of
this DAG is 11, and path s → a → b → c →
d→ t achieves it.

Figure 4.5: Node c from the DAG in Figure 4.4
has been replaced with a supernode c′ in this
�gure which is nothing but node c with a re-
ducer of height 1 on top. The makespan of this
reduced DAG is 10, and path s → a → b →
c1 → c→ d→ t achieves it.

computed independently of others, all iterations of the loops in Lines 1 and 2 can be executed in
parallel without compromising correctness of the computation. However, the same is not true for
the loop in Line 4 because if parallelized, for �xed values of i and j, all iterations of that loop will
update the same memory location Z[i][j] giving rise to data races and thus producing potentially
incorrect results. Use of a mutual-exclusion lock or atomic updates for each Z[i][j] will ensure
correctness but in that case even with an unbounded number of processors, the code will take
Θ (n) time to multiply the two n × n matrices. Now if we put a reducer of height h (integer
h ∈ [1, log2 n]) at the top of each Z[i][j] the time to fully update each Z[i][j] and thus the overall
running time of the code will drop to Θ

(
n
2h

+ h
)

at the cost of using n2× 2h units of extra space.
Observe that when h = 1, the running time of the code almost halves using 2n2 units of extra
space, and when h = blog2 nc, the running time drops to Θ (log n) using Θ (n3) extra space.

In order to analyze a program P with data races, we capture those races in a directed acyclic
graph (DAG) D(P), assuming that there are no cyclic read-write dependencies among the mem-
ory locations accessed by P . Figure 4.4 shows an example. We restrict P to the set of pro-

69

grams that perform O (1) other operations between two successive writes to the memory, e.g.,
Parallel-MM in Figure 4.3. We assume that an update operation is signi�cantly more expensive
than any other single operation performed by P and hence the costs of those operations can be
safely ignored. Each node x of D(P) represents a memory location, and a directed edge from
node x to node y means that y is updated using the value stored at x. The in-degree d(in)

x of
node x gives the number of times x is updated. With x we also associate a work value wx and set
wx = d

(in)
x . Assuming that each update operation requires unit time to execute and each node has

a lock and a wait queue to serialize the updates, the wx value represents the time spent updating
x (excluding all idle times). The wx value also represents an upper bound on the time elapsed
between the trigger time of any incoming edge of x and the time the edge completes updating
x. We assume that updates along all outgoing edges of x trigger as soon as all incoming edges
complete updating x. One can then make the following observation.

Observation 6. The running time of P with an unbounded number of processors is upper bounded

by the makespan of D(P)1
.

Then one natural question to ask is the following.

Question 4.1.1. Given a �xed budget of units of extra space to mitigate the cost of data races in P ,
which memory locations should be assigned reducers and how should the space be distributed among

those reducers in order to minimize the makespan of D(P)?

Figure 4.5 shows how to minimize the makespan of the DAG in Figure 4.4 using two units of
extra space.

The question above ignores the possibility that space can be reused among reducers inD(P).
Indeed, after node x reaches its �nal value (i.e., updated wx = d

(in)
x times) it can release all (if

any) space it used for its reducer which can then be reused by some other node y. A global mem-
ory manager can be used by the nodes to allocate/deallocate space for reducers. The following
modi�ed version of Question 4.1.1 now allows space reuse.

Question 4.1.2. Repeat Question 4.1.1 but allow for space reuse among nodes of D(P) by putting

all extra space under the control of a global memory manager that each node calls to allocate space

for its reducer right before its �rst update and to deallocate that space right after its last update.

The problem with a single global memory manager is that it can easily become a performance
bottleneck for highly parallel programs. Though better memory allocators have been developed
for multi-core or multi-threaded systems [12, 35, 3, 121, 2], we can instead use an approach often
used by recursive fork-join programs which avoids repeated calls to an external memory manager
altogether along with the overhead of repeated memory allocations/deallocations. A single large
segment of memory is allocated before the initial recursive call is made and a pointer to that
segment is passed to the recursive call. Each recursive call splits and distributes its segment
among its child recursive calls and reclaims the space when the children complete execution. So,
we will assume that all the given extra space initially reside at the source node (i.e., node with

1To see why this is true start from the sink node and move backward toward the source by always moving to
that predecessor y of the current node x that performed the last update on x and noting that after edge (y, x) was
triggered it did not have to wait for more than d(in)x time units to complete applying y’s update to x.

70

in-degree zero). Then they �ow along the edges toward the sink node (i.e., node with outdegree
zero) possibly splitting along outgoing edges and merging at the tip of incoming edges as they
�ow. Each unit of space reaching node x moves out of x along some outgoing edge as soon
as x becomes fully updated and those edges trigger. Every unit of space may participate in the
construction of multiple reducers (possibly zero) along the path it takes.

Question 4.1.3. Repeat Question 4.1.1 but now allow for space reuse among nodes of D(P) by

�owing each unit of space along a source to sink path and using it in the construction of zero or more

reducers along that path.

While several existing results [59, 64, 125, 85] can be extended to answer Questions 4.1.1 and
4.1.2, to the best of our knowledge, Question 4.1.3 had not been raised before. In this chapter we
investigate answers to Question 4.1.3 by extending it to a more general resource-time tradeo�
question posed on a DAG in which nodes represent jobs (not necessarily of updating memory
locations), resources (not necessarily space) �ow along source to sink paths, and an general du-
ration function (i.e., time needed to complete a job as a function of the amount of resources used)
is speci�ed for each node. We consider the following three duration functions: general non-
increasing function for the general resource-time question, and recursive binary reduction and
multiway (k-way) splitting for the space-time case.

For general DAGs, we show that even if the entire DAG is available to us o�ine the problem
is strongly NP-hard under all three duration functions, and we give approximation algorithms
for solving the corresponding optimization problems. We also prove hardness of approximation
for the general resource-time tradeo� problem and give a pseudo-polynomial time algorithm for
series-parallel DAGs. Our main results are summarized in Table 4.1.

Duration function Hardness Hardness of Approximation

General non-increasing strongly NP-hard
• makespan < 2 OPT with resources �xed
• resource < 3

2 OPT with makespan �xed
Recursive binary strongly NP-hard –
Multiway splitting strongly NP-hard –

Duration function Approximation Results

General non-increasing

(
1
α ,

1
1−α

)
bi-criteria (resource, makespan),

0 < α < 1

Recursive binary • makespan ≤ 4 OPT with resources �xed
•
(

4
3 ,

14
5

)
bi-criteria (resource, makespan)

Multiway splitting makespan ≤ 5 OPT with resources �xed

Table 4.1: Our main results on resource-time tradeo� problems in which resources are routed
along source to sink paths (i.e., related to Question 4.1.3 and its generalization).

Related Work

While several prior works either directly or indirectly address Questions 4.1.1 (nonreusable re-
sources) and 4.1.2 (globally reusable resources), to the best of our knowledge, Question 4.1.3
(reusable along �ow paths) has not been considered before.

71

The well-known time-cost tradeo� problem (TCTP) is closely related to our nonreusable re-
sources question. In TCTP, some activities are expediated at additional cost so that the makespan
can be shortened. Deadline and budget problems are two TCTP variants with di�erent objec-
tives. While the deadline problem seeks to minimize the total cost to satisfy a given deadline, the
budget problem aims to minimize the project duration to meet the given budget constraint [13].
Most researchers consider the tradeo� functions to be either linear continuous or discrete giving
rise to linear TCTP and discrete TCTP, respectively.

Linear TCTP was formulated by Kelley and Walker in 1959 [91]. They assumed a�ne linear
and decreasing tradeo� functions. In 1961, linear TCTP was solved in polynomial time using
network �ow approaches independently by Fulkerson [76] and Kelley [90]. Phillips and Dessouky
[115] later improved that result.

In 1997, De et al. [59] proved that discrete TCTP is NP-hard. For this problem, Skutella
[125] proposed the �rst approximation algorithm under budget constraints which achieves an
approximation ratio of O (log r), where r is the ratio of the maximum duration of any activity
to the minimum one. Discrete TCTP can also be used to approximate the TCTP with general
time-cost tradeo� functions, see, e.g., Panagiotakopoulos [111] and Robinson [119]. For details
on discrete TCTP see De et al. [58].

Our problem with globally reusable resources (Question 4.1.2) is very similar to the problem
of scheduling precedence-constrained malleable tasks [137]. In 1978, Lenstra and Rinnooy Kan
[95] showed that no polynomial time algorithm exists with approximation ratio less than 4

3
unless

P = NP. About 20 years later, Du and Leung [64] showed that the problem is strongly NP-hard
even for two units of resources. In 2002, under the monotonous penalty assumptions of Blayo et al
[36], Lepère et al. [96] �rst proposed the idea of two-step algorithms – computing an allocation
�rst, and then scheduling tasks, and used this idea [97] to design a algorithm that achieve an
approximation ratio of≈ 5.236. In the �rst phase, they approximate an allocation using Skutella’s
algorithm [125]. Similarly, based on Skutella’s approximation algorithm, Jansen and Zhang [85]
devised a two-phase approximation algorithm with the best-known ratio of ≈ 4.730598 and
showed that the ratio is tight when the problem size is large. For more details on the problems of
scheduling malleable tasks with precedence constraints, please check Dutot et al. [65].

There are memory allocators based on global memory manager for multi-core or multi-threaded
systems such as scalloc [12], Hoard [35], llalloc [3], Stream�ow [121], and TCMalloc [2]. They use
thread-local space for memory allocation and a global manager for memory deallocation/reuse.
For the global manager, they use concurrent data structures. However, these data structures can
not completely avoid the need for synchronization [12, 81, 124] without compromising correct-
ness.

4.2 Preliminaries, Problem Formulation

In general, the option to use reducers to trade o� between extra space and the time to complete
race-free writing operations leads to a discrete resource-time tradeo� problem, where, here, the
valuable “resource” is the space that is added, in order to reduce the time necessary for the write
operations. By investing in additional space, we can reduce the time it takes to do con�ict-free
write operations.

We formalize the discrete resource-time tradeo� problem. Consider a DAG, D = (V,E),

72

whose vertices V correspond to jobs, and whose edges represent precedence relations among
jobs. Without loss of generality, we assume that the DAG has a single source and a single sink
vertex. The duration of a job depends on how much resource it receives. For each job v ∈ V ,
there is a non-increasing duration function tv(r) that denotes the time required to complete job
v using r units of resources. We call 〈r, tv(r)〉 a resource-time tuple associated with job (vertex) v.
We consider three classes of duration functions – general non-increasing step functions, k-way
splitting functions, and recursive binary splitting functions.
General non-increasing step function. Let lv be the number of resource-time tuples associated
with job v. The i-th resource-time tuple is 〈rv,i, tv(rv,i)〉 where 1 ≤ i ≤ lv. Then, the duration
function tv(r) is a step function with lv steps described as follows:

tv(r) =

{
tv(rv,i), if rv,i ≤ r < rv,i+1, 1 ≤ i < lv,

tv(rv,lv). if rv,lv ≤ r,
(4.1)

where rv,1 = 0, rv,j < rv,j+1 and tv(rv,j) ≥ tv(rv,j+1) for 1 ≤ j < lv.
k-way splitting. A k-way split reducer utilizes k units of extra space, Sv = {s1, s2, .., sk}, associ-
ated with a vertex v, with 2 ≤ k ≤ d

(in)
v , such that the write operations associated with incoming

edges at v are distributed among the vertices Sv, which then have edges linking each si to v. The
duration function that results from k-way split reducers is given by

tv(r) =


tv(0), if k ∈ {0, 1}
dtv(0)/ke+ k, if 2 ≤ k ≤ b

√
tv(0)c

tv(b
√
tv(0)c). if b

√
tv(0)c < k.

(4.2)

Recursive binary splitting. The duration function that results from a recursive binary split
reducer is given by a step function, as follows. The resource-time tuples are de�ned for r = 0
and 2i where 0 ≤ i ≤ k and k = blog2 tv(0) − log2 log2 ec. The duration function tv(2

k) =
dtv(0)/2ke + k + 1 is minimized when k = blog2 tv(0) − log2 log2 ec (by di�erentiating tv(2k)
w.r.t. k).

tv(r) =


tv(0), if r = 0, 1

dtv(0)/2ie+ i+ 1, if r = 2i, 2 ≤ i ≤ k

tv(2
i), if 2i ≤ r < 2i+1, 2 ≤ i ≤ k

tv(2
k), if i > k

(4.3)

When utilizing a reducer, extra space serves as the limited resource and the time taken for
race-free writing at a vertex v is the duration of the job corresponding to v. Both the k-way
splitting duration function and the recursive binary splitting duration function are special cases
of general non-increasing function.

We consider jobs whose duration functions are of the types described above, and we distin-
guish between two optimization problems, depending on the objective function:
Minimum-Makespan Problem. Given a resource budget of B, assign the resources to the
vertices V such that the makespan of the project is minimized. Resources can be reused over a
path.

73

Minimum-Resource Problem. Given a makespan target of T , minimize the amount of re-
sources to achieve target makespan. Resources can be reused over a path.

Finally, we remark that instead of jobs corresponding to vertices of the DAG, we can transform
the DAG D into another DAG D′ in which jobs correspond to edges of D′, and the precedence
relations among jobs are enforced by introducing dummy edges, as follows: For each node v inD,
we introduce an edge ev = (av, bv) in D′ (which then has the corresponding duration function,
speci�ed, e.g., by resource-time tuples). For each edge (u, v) of D, we introduce a dummy edge,
e = (bu, av) inD′, from the endpoint bu of edge eu = (au, bu) to the origin av of edge ev = (av, bv),
with resource-time function te(r) = 0 for all valid resource levels r.

4.3 Approximation Algorithms

4.3.1 Bi-criteria Approximation for Non-increasing Duration Functions

We use linear programming in our approximation algorithms. First, we relax the discrete duration
function to a linear one. We transform the DAG so that a relaxed linear non-increasing duration
function can be used. The transformation happens in two steps.
Activity on arc reduction. We reduce the input DAG D into an equivalent DAG D

′ with activ-
ities on arcs instead of nodes. This is a simple transformation described earlier in Section 4.2.
Activity with two tuples. Following [125], we create a DAG D

′′ from D
′ such that all activities

in D
′′ are still on arcs and each such activity has at most 2 resource-time tuples as shown in

Figure 4.6(b). Let j be a job with lj ≥ 2 resource-time tuples 〈rj,i, tj(rj,i)〉, 1 ≤ i ≤ lj with
0 = rj,1 < rj,2 < · · · < rj,lj and tj(rj,1) ≥ tj(rj,2) ≥ · · · ≥ tj(rj,lj) (following Equation 4.1). Let
edge (u, v) of D′ represent job j. We add lj parallel chains, each consisting of two edges in D′′

(Figure 4.6). For 1 ≤ i ≤ lj , we create a chain of two edges (u, ui) and (ui, v). We create a job ji
for arc (u, ui) and associate two resource-time tuples with it. For 1 ≤ i < lj , job ji can be �nished
either using 0 resource in tj(rj,i) units of time or using (rj,i+1 − rj,i) units of resource in 0 unit
of time. The logic is that job j’s duration can be reduced from tj(rj,i) to tj(rj,i+1) provided the
resource di�erence (rj,i+1 − rj,i) is allocated to ji. Thus the duration function is tji(0) = tj(rj,i)
and tji(rj,i+1 − rj,i) = 0. Job jlj ’s (bottom most edge in the lj parallel edges for job j) duration
cannot be further improved from tj(rj,lj) units of time by using extra resources. The resource-
time tuple at edge (ui, v) is 〈0, 0〉 where 1 ≤ i ≤ lj .

There is a canonical mapping of resource usages and durations for jobs ji to that of job j. Let
xi be the units of resource used for job ji, then for job j,

∑lj
i=1 xi units of resource are used. The

time taken to �nish job j is max{tji(xi)|1 ≤ i ≤ lj}. Without loss of generality, if we use 0 unit
of resource for job ji if tj,i(0) ≤ max{tj,1(x1), tj,2(x2), · · · , tj,i−1(xi−1)}, then this mapping is
bijective. Thus we get the following lemma.

Lemma 26. Any approximation algorithm A on DAG D
′′
(activity on edge and each edge has at

most two resource-time tuples) with an approximation ratio α implies an approximation algorithm

with the same approximation ratio α on general DAG D (activity on vertex and each job can have

more than two resource-time tuples).

From now on, we will only consider DAGs whose edges represent jobs, with each edge having
at most two resource-time tuples.

74

Figure 4.6: Transforming (a) a DAG with lj ≥ 2 resource-time tuples on each arc into (b) one
with at most two resource-time tuples on each arc (Section 4.3.1)

.

Figure 4.7: Transforming (a) a DAG with (k + 1) resource-time tuples on each arc based on the
recursive binary splitting function into (b) one with at most two resource-time tuples on each
arc (Section 4.3.3)

.

75

Linear relaxation. In D′′ , any edge (u, v) can have either two resource-time tuples
{〈0, t(u,v)(0)〉, 〈r(u,v), 0〉} or a single resource-time tuple {〈0, t(u,v)(0)〉}. With linear relaxation,
r ∈ [0, r(u,v)] units of resource can be used to reduce the completion time of the job corresponding
to edge (u, v) that has two resource-time tuples. The corresponding duration function t(u,v)(r) is
as follows:

t(u,v)(r) =
t(u,v)(0)

r(u,v)

r for r ∈ [0, r(u,v)] (4.4)

The linear duration function t(u,v)(r) for the job (u, v) with single resource-time tuple is as
follows:

t(u,v)(r) = t(u,v)(0) for all r ≥ 0 (4.5)

Linear programming formulation. Since we are allowed to reuse resources over a path we
can model the problem as a network �ow problem where resources are allowed to �ow from the
source to the sink in the DAGD

′′ . LetE be the set of edges inD′′ . Let f(u,v) denote the amount of
resources that �ow through the edge (u, v). Using linear relaxation on edge (u, v), the time taken
to �nish the activity is t(u,v)(f(u,v)). Let the vertices in D′′ denote events. From now onwards, we
use a vertex and its corresponding event synonymously. Let Ev = {(x, v)} be the set of edges
that are incident on vertex v. Event v occurs if and only if all the jobs corresponding to the edges
in set Ev are �nished. Let Tv denote the time when event v occurs. Let s and t denote the source
vertex and the sink vertex, respectively. For source vertex s, we assume Ts = 0. All variables are
non-negative.

Constraints:

f(u,v) ≤ r(u,v) , ∀(u, v) with two resource-time tuples. (4.6)

Tu + tu,v(f(u,v)) ≤ Tv , ∀(u, v) ∈ E (4.7)

∑
w

f(v,w) +
∑
u

f(u,v) = 0 , ∀v /∈ {s, t} (4.8)

∑
k

f(s,k) ≤ B (4.9)

Objective function:

minTt (4.10)

Inequality 4.6 upper bounds the resource �ow variable f(u,v) for edges with two tuples. This
ensures that these variables remain in the range [0, r(u,v)] and the duration function is linear in
this range. Note that there is no such upper bound on the edges with single resource-time tuple
(except the trivial total resource budget B upper bound). This allows the �ow of more resources
over an edge that can be used later on a path. Equation 4.8 is a �ow conservation constraint for
all the vertices v /∈ {s, t}. Inequality 4.9 constrains the �ow of resources from source s to be
upper bounded by the resource budget.

76

Solving the LP and rounding. We �rst solve the LP described above. This might give solution
as fractional �ow f ∗e and duration te(f

∗
e) at edge e = (u, v). Let the resource-time tuples at

edge e be {〈0, te(0)〉, 〈re, 0〉}. The range of feasible duration of activity e is [0, te(0)]. We divide
this range into two parts [0, αte(0)), [αte(0), te(0)] where 0 < α < 1. If te(f ∗e) ∈ [0, αte(0))
we round it down to 0, otherwise, we round it up to te(0). Observe that in the �rst case, the
resource requirement at e can be increased by at most a factor of 1/(1− α). In the second case,
the completion time can be increased at most by a factor of 1/α. Let f ′e denote the rounded integer
resource requirement at edge e.
Computing min-�ow. After rounding the LP solution, we get an integral resource requirement
f
′
e ∈ {0, re} for every edge e. We now compute a min-�ow through this DAG where f ′e serves as

the lower bound on the �ow through (or resource requirement at) edge e.
Constraints:

f(u,v) ≥ f
′

(u,v) , ∀(u, v) ∈ E (4.11)∑
w

f(v,w) +
∑
u

f(u,v) = 0 , ∀v /∈ {s, t} (4.12)

Objective function:

min
∑
k

f(s,k) (4.13)

Let, f and f ∗ be the optimal solutions of LP 4.11–4.13 and LP 4.6–4.10, respectively.

Lemma 27. f ∗/(1− α) is a feasible solution of min-�ow LP 4.11–4.13.

Proof. Let f ∗e be the optimal solution of LP 4.6–4.10. We know that f ′e ≤ f ∗e /(1 − α). Hence,
f ∗/(1− α) is a feasible solution of that LP as it meets the resource requirement f ′e at every edge
e.

Lemma 28. f is an integral �ow and f ≤ f ∗/(1− α), where 0 < α < 1.

Proof. The min�ow problem has integral optimality. If f is the optimal solution then it is an
integral �ow. From lemma 27 we know that f ∗/(1 − α) is a feasible solution of LP 4.11–4.13.
Since f is optimal and f ∗/(1− α) is a feasible �ow, we have, f ≤ f ∗/(1− α).

Bi-criteria approximation. We now summarize our bi-criteria approximation result for general
non-increasing duration functions:

Theorem15. For anyα ∈ (0, 1), there is a (1/α, 1/(1−α)) bi-criteria approximation algorithm for

the discrete resource-time tradeo� problem with an general non-increasing duration function which

allows resource reuse over paths.

Proof. First, we know from lemma 28 that f is an integral �ow and f ≤ f ∗/(1 − α), where
0 < α < 1.

Second, we claim that the makespan of the DAG used in the min�ow LP 4.11–4.13 is at most
a factor of 1/α away from that of the LP 4.6–4.10 solution. Let us consider any s − t path MP .
The makespan is at least the sum of completion times of the edges in MP . Now, after rounding
the LP 4.6–4.10 solution, the completion time of an edge may increase at most by a factor of α.
Hence, the sum of duration of edges along any path is increased at most by a factor of α, thus the
makespan will be increased by at most a factor of α.

77

4.3.2 Single-criteriaApproximation for k-Way andRecursiveBinary Split-

ting

First, observe the prior section gives us a bi-criterian approximation for both k-way and recursive
binary splitting. Setting α = 1/2 in Theorem 15, we obtain a (2, 2) bi-criteria approximation.
Now, after LP rounding, say a job j uses rj units of resource and takes tj units of time. Then
the optimal solution uses r∗j ≥ rj/2 units of resource and takes t∗j ≥ tj/2 units of time for job
j. Recall that job j consists of lj parallel jobs ji where 1 ≤ i ≤ lj . Hence, rj is the sum of the
resource (after rounding) used by lj parallel jobs and tj is the maximum time (after rounding)
taken by lj parallel jobs.
Approximation algorithm for k-way splitting. To obtain a single-criteria approximation, in
the case of k-way splitting, we use at most r∗j units of resource for job j. If rj > r∗j , we reduce rj
to k (a nonnegative integer) units of resource such that k ≤ r∗j . Using k units of resource, job j
takes tj(k) units of time to complete.

Lemma 29. dd/ke+ k ≤ 2.5tj for rj > 3 where d = tj(0) and k = brj/2c.

Proof. Since k = brj/2c ≥ rj/2.5 for rj > 3, we have dd/ke ≤ d/k + 1 ≤ 2.5d/rj + 1 ≤
2.5dd/rje + 1. Also since k = brj/2c ≤ rj + 1 and 2.5rj ≥ rj + 2 for rj > 3, we have
dd/ke+ k ≤ 2.5dd/rje+ 1 + rj + 1 ≤ 2.5 (dd/rje+ rj). Hence, tj(k) ≤ 2.5tj .

Lemma 30. If rj > 3 then tj(k) ≤ 5t∗j .

Proof. We know tj(k) = dd/ke+k as k ≥ 4. Also in lemma 29, we prove tj(k) ≤ 2.5tj . However,
we show that tj ≤ 2t∗j . Hence, combining these two results we get tj(k) ≤ 5t∗j .

Lemma 31. If t∗j = d/4 then r∗j ≥ 2.

Proof. Recall that inD′′ , job j is represented as lj parallel jobs ji where 1 ≤ i ≤ lj . The resource-
time tuples of jobs j1 and j2 are {〈0, d〉, 〈2, 0〉} and {〈0, dd/2e + 2〉, 〈1, 0〉}, respectively. To
attain d/4 duration, j1 requires at least 3/2 units of resource and job j2 requires 1/2 unit of
resource (applying linear relaxation). Hence, r∗j ≥ (3/2 + 1/2) = 2 units of resource to achieve
t∗j = d/4.

Lemma 32. If rj ≤ 3 then tj(k) ≤ 4t∗j .

Proof. If rj ≤ 3 and r∗j < 2, then we round down rj to k = 0. So, from Lemma 31 it follows that
after rounding down to 0 unit of resource, job j takes d ≤ 4t∗ units of time.

If rj ≤ 3 and r∗j ≥ 2, then we round rj to k = 2. It is true that tj(2) ≤ 2tj(3) because
(dd/2e + 2) ≤ 2(dd/3e + 3). Also, tj(3) ≤ tj(rj) ≤ 2t∗j . Combining this two results we get
tj(2) ≤ 4t∗.

So, now we have the following result.

Theorem 16. There is a 5-approximation algorithm for the minimum-makespan problem with k-
way splitting duration function.

78

Proof. Combining Lemmas 32 and 30 we get tj(k) ≤ 5t∗j for all valid rj . This proves that the
makespan is at most 5 times the optimal solution. We now calculate the total amount of resource
required to �ow from the source of D′ . We compute a min-�ow in D′ where k is the resource
requirement for job j. Note that we are now working on D′ that does not have lj parallel chains
for job j. Let f be the min �ow from the source of D′ such that all the resource requirements
are met. The �ow f ∗ from the LP solution before rounding is also a valid �ow for the resource
requirement k for job j as k ≤ r∗j . We know that min-�ow gives an optimal integral solution.
Hence, f ≤ f ∗.

Approximation algorithm for recursive binary splitting. We have the following result.

Theorem 17. There is a 4-approximation algorithm for the minimum-makespan problem with

recursive binary splitting function.

Proof. As in the case of k-way splitter, to get a single-criteria approximation, we use no more
than r∗j units of resource for job j. If rj > r∗j , we reduce rj to rj/2. We know that tj(rj/2) ≤
2tj(rj) from the properties of the recursive binary splitting function. Thus, tj(rj/2) ≤ 2tj(rj) ≤
4tj(r

∗
j) = 4t∗j .

4.3.3 Improved Bi-criteria Approximation for Recursive Binary Split-

ting Functions

Putting α = 3/4 in Theorem 15 we obtain a (4/3, 4) bi-criteria approximation algorithm for
general non-increasing duration functions. Hence, if we use 4/3 times more resources than OPT
(i.e., the optimal solution), we are guaranteed to get a makespan within factor of 4 of OPT. In
this section we show that the bound can be improved to (4/3, 14/5) for recursive binary splitting
functions.

For a node with in-degree x, the resource-time tuples based on the recursive binary split-
ting function are as follows: {〈0, x〉, 〈1, x〉, 〈2, t1〉, ..., 〈2i, ti〉, 〈2i+1, ti+1〉 ..., 〈2k, tk〉} where tj =
dx/2je + j + 1 for j ≥ 2 and k = blog2 x − log2 log2 ec is the largest value of j for which tj
decreases with the increase of j. See Figure 4.7.

After solving LP 4.6–4.10 from Section 4.3.1, we sum up the (possibly fractional) resources
allocated to all the lj parallel edges corresponding to job j. Let r be that sum. Let t be the
maximum among the time values given by the LP solution for the lj parallel edges. Thus, the LP
takes t units of time for job j.

We round r to an integer r based on the following criteria.

r =


0, if r < 1

2i if 2i ≤ r < (2i + 2i+1)/2, 0 ≤ i ≤ k

2i+1, if (2i + 2i+1)/2 ≤ r < 2i+1, 0 ≤ i ≤ k

We want to �nd a constant ρ, such that if t = ti/ρ, then the LP must use at least (2i+2i+1)/2 =
3(2i−1) units of resources. We compute r as follows. In Figure 4.7(b), each of the top two edges
(u, u1) and (u, u2) requires (1− (1/x)t) units of resource to �nish in time t. Each edge (u, uj+2)

79

for 1 ≤ j ≤ i+ 1 requires
(

2j − (2j/tj)t
)

units of resource to �nish in time t. Summing over all
these edges, we get the expression of r

r = 2

(
1− 1

x
t

)
+

i+1∑
j=1

(
2j − 2j

tj
t

)
= 8 · (2i−1)− ti

ρ

(
2/x+

i+1∑
j=1

2j

tj

)

Since we want to have r ≥ 3(2i−1), we want to �nd the smallest value of ρ such that

ti
ρ

(
2/x+

i+1∑
j=1

2j

tj

)
≤ 5 · (2i−1)⇒ ρ ≥ 1/5

(
ti

2i−2x
+

i+1∑
j=1

ti
2i−j−1tj

)
.

Now,

ti
2i−2x

+
i+1∑
j=1

ti
2i−j−1tj

=
d x

2i
e+ i+ 1

x(2i−2)
+

i+1∑
j=1

d x
2i
e+ i+ 1

(d x
2j
e+ j + 1)2i−j−1

<
x
2i

+ i+ 2

x(2i−2)
+

i+1∑
j=1

x
2i

+ i+ 2

(x
2j

+ j + 1)2i−j−1

=
1

2i
1

2i−2
+

i+ 2

x(2i−2)
+

i+1∑
j=1

1
2i−j (x

2j
+ j + 1) + i+ 2− j

2i−j − 1
2i−j

(x
2j

+ j + 1)2i−j−1

≤
(
i+ 2

x

1

2i−2
+

i+1∑
j=1

i+ 2

(x
2j

+ j + 1)2i−j−1

)
+

(
1

2i
1

2i−2
+

i+1∑
j=1

1

2i−j
1

2i−j−1

)

=

(
i+ 2

x

1

2i−2

)
+

(
i+1∑
j=1

i+ 2

(x
2j

+ j + 1)2i−j−1

)
+

(
32

3
+

1

3

1

4i−1

)
Let, A = i+2

x
1

2i−2 , B =
∑i+1

j=1
i+2

(x

2j
+j+1)2i−j−1 and C = 32/3 + 1

3
1

4i−1 .
Note that i+ 2 = (i+ 1) + 1 ≤ (log2 x− log2 log2 e) + 1, since i+ 1 ≤ k. Hence,

A ≤ (log2 x− log2 log2 e) + 1

x

1

2i−2
≤ 2

e

1

2i−2
.

Now, x/2j + j + 1 ≥ (log2 x− log2 log2 e+ 1
ln 2

) and hence,

B ≤
i+1∑
j=1

(log2 x− log2 log2 e) + 1

(log2 x− log2 log2 e+ 1
ln 2

+ 1)

1

2i−j−1

<
i+1∑
j=1

1

2i−j−1
= 2− 1

2i−2
.

Thus, A+B + C < 2
e

1
2i−2 + 2− 1

2i−2 + 32/3 + 1
3

1
4i−1 ≤ 14.

Therefore, (ti/x) 1
2i−2 +

∑i+1
j=1

ti
tj

1
2i−j−1 < 14.

80

So, by setting ρ = 14/5, we get ρ > 1/5
(

(ti/x) 1
2i−2 +

∑i+1
j=1

ti
tj

1
2i−j−1

)
.

Summarizing, we get the following lemmas from the computation above.

Lemma 33. To achieve a duration of t = ti/(14/5) for any job j, the LP solution uses at least

3(2i−1) units of resources for 0 ≤ i ≤ k.

Lemma 33 implies the following.

Lemma 34. If the LP uses 2i ≤ r < 3(2i−1) units of resources and we round r down to r = 2i where
0 ≤ i ≤ k, then ti ≤ (14/5)t where t is the duration from the LP solution.

Lemma 35. With r < 1 units of resource, the LP cannot achieve a duration of t < x/2 for job j.

Proof. The �rst edge has resource-time tuples {〈0, x〉, 〈1, 0〉}. To achieve a duration of x/2, the
LP has to use 1/2 unit of resource on the �rst edge. The second edge also has the same resource-
time tuples {〈0, x〉, 〈1, 0〉}, and it also takes 1/2 unit of resource. Thus, the �rst two edges alone
need 1 unit of resource to achieve a duration of x/2 for all lj parallel edges of job j.

Lemma 35 implies the following.

Lemma 36. If the LP uses r < 1 unit of resource and we round r down to 0, then ti ≤ 2t, where t
is the duration from the LP solution.

Lemma 37. If r rounded to r then r ≤ (4/3)r

Proof. When we use r = 2i+1 units of resource after rounding, the LP uses at least 3(2i−1) ≤ r ≤
2i+1 units. Thus, r ≤ (4/3)r.

From Lemma 34 and Lemma 37, we get the following theorem.

Theorem 18. There is a (4/3, 14/5) bi-criteria approximation algorithm for the discrete resource-

time tradeo� problem with resource reuse along paths when the recursive binary duration function

is used.

4.3.4 Exact Algorithm for Series-Parallel Graphs

We consider now the special case in which the underlying DAG D is a series-parallel graph.
A series-parallel graph G can be transformed into (and represented as) a rooted binary tree TG
in polynomial time by decomposing it into its atomic parts according to its series and parallel
compositions (see, e.g., [107]). In TG, the leaves correspond to the vertices of G. Internal nodes
of TG are labeled as “s" or “p" based on series or parallel composition. We associate each internal
node v of TG with the series-parallel graph Gv, induced by the leaves of the subtree rooted at v.

Let T (v, λ) denote the makespan of Gv using 0 ≤ λ ≤ B units of resources where B is the
resource budget. We want to solve for T (s, B), where s is the root of TG. This can be done using
dynamic programming, solving for the leaves �rst, and then progressing upward to the root of
TG. We compute T (v, λ) as follows which assumes that node v corresponds to job j if it is a leaf,
otherwise it has two children v1 and v2.

If v is a leaf, T (v, λ) = tj(λ). If v is an internal node with left child v1 and right child v2, then
we compute T (v, λ) as follows. If v is an internal node with label “s", then T (v, λ) = T (v1, λ) +

81

T (v2, λ). If v is an internal node with label “p", then T (v, λ) = min0≤i≤λ[max(T (v1, i), T (v2, λ−
i))].

There are O (m) nodes in TG if G has m edges. For each node v we compute T (v, λ) for
0 ≤ λ ≤ B. Computing T (v, λ) for any particular value of λ takes O (λ) time, since, if the node
is a “p" node, then for 0 ≤ i ≤ λ we need to look up values T (v1, i). Thus, for any internal node
v, it takes

∑B
λ=0O (λ) = O (B2) time. As there areO (m) nodes in TG, the (pseudo-polynomial)

time complexity of the algorithm is O (mB2).

4.4 NP-Hardness

In this section we give a variety of NP-hardness and inapproximability results related to the dis-
crete time-resource tradeo� problem in the o�ine setting (i.e., when the entire DAG is available
o�ine). All problems consider the version where there is resource reuse over paths, but they vary
the cost-function, graph structure, and minimization goal. Section 4.4.1 gives several reductions
from 1-in-3SAT. Theorem 19 gives a base reduction for the problem with general non-increasing
duration function which will provide the ideas and structure for later more complex proofs. The-
orems 20 and 21 adapt this proof to give constant factor inapproximability for the minimum-
resource and minimum-makespan problems. Section 4.4.2 adapts the NP-hardness proof to apply
when the cost function is restricted to be the recursive binary splitting and the k-way splitting.

Section 4.4.3 considers the problem in bounded treewidth graphs. We show weak NP-hardness
by a reduction from Partition.

4.4.1 Reuse Over a Path with General Non-increasing Duration Func-

tion

Theorem 19. It is (strongly) NP-hard to decide if there exists a solution to the (o�ine) discrete

resource-time tradeo� problem, with resource reuse over paths and a non-increasing duration func-

tion, satisfying a resource bound B and a makespan bound T .

Our proof is based on a polynomial-time reduction from the strongly NP-hard problem 1-in-
3SAT [120]: Given n variables (Vi, 1 ≤ i ≤ n) and m clauses (Cj, 1 ≤ j ≤ m),with each clause a
disjunction of three literals, is there a truth assignment to the variables such that each clause has
exactly one true literal?
Variable gadget. The gadget for variable V consists of nodes V (1), V (2), V (3), V (4), V (5), and V (6)

as shown in Figure 4.8(a). We show in the hardness proof that a variable gadget will get exactly
one unit of extra resource, otherwise the makespan will be greater than the target makespan of
1. Sending one unit of resource to node V (2) (Figure 4.8(a)) corresponds to setting the variable
V to TRUE and sending the unit of resource to V (3) corresponds to setting V to FALSE. The
remaining vertices ensure the extra resource is used in the variable and not transferred into one
of the clauses.
Clause gadget. The gadget corresponding to clauseC has 10 verticesC(i) (1 ≤ i ≤ 10) as shown
in Figure 4.8(b). Arcs (C(1), C(2)), (C(2), C(4)), (C(1), C(3)) and (C(3), C(4)) have resource-time
pairs as {〈0, 1〉, 〈1, 0〉}. If clauseC has three literals Vi, Vj and Vk, then vertexC(5) is connected to
the vertices V (3)

i , V
(3)
j and V (2)

k . These vertices correspond to¬Vi,¬Vj and Vk respectively. Vertex

82

(a) (b)

Figure 4.8: (a) Gadget for variable V, and (b) gadget for clause C = (Vi∨Vj ∨Vk) (Section 4.4.1).

Figure 4.9: The complete construction for (V1 ∨ ¬V2 ∨ V3) ∧ (¬V1 ∨ V2 ∨ V3) is satis�able with
the truth assignment: V1 = TRUE, V2 = TRUE, V3 = FALSE (Section 4.4.1).

C(6) is connected to V (3)
i , V

(2)
j and V (3)

k . These vertices correspond to ¬Vi, Vj and ¬Vk. Vertex

83

C(7) is connected to V (2)
i , V

(3)
j and V (3)

k . These vertices correspond to Vi,¬Vj and ¬Vk. Arcs
(C(5), C(8)), (C(6), C(9)), and (C(7), C(10)) have resource-time pairs as {〈0, 1〉, 〈1, 0〉}. The part
of the clause gadget consisting of C(1), C(2), C(3) and C(4) demand at least two units of memory
be allocated there and then these units of resource go to satisfy two of C(5), C(6) and C(7). There
is still one of these lines that has no allocated resource so it’s cost is 1. Thus the corresponding
variable must have had it’s path length reduced (by setting it true).

Figure 4.9 shows the complete construction of (V1∨¬V2∨V3)∧(¬V1∨V2∨V3) as an example.

Lemma 38. There exists a solution to the input instance of 1-in-3SAT i� there exists a valid �ow of

resources through the DAG achieving a makespan of 1 under a resource bound of B = n+ 2m.

Proof. Forward direction. We prove that if there is a solution to the 1-in-3SAT instance with n
variables andm clauses, then the reduced DAG has a solution of makespan 1 with (n+2m) units
of resource. If a variable V ’s truth assignment is TRUE, then we allow one unit of resource to
�ow through vertex V (2) along the path 〈S, V (1), V (2), V (4), V (5), V (6), T 〉, otherwise we allow
one unit of resource to �ow through vertex V (3) along the path 〈S, V (1), V (3), V (4), V (5), V (6), T 〉.
For every clause C , we allow one unit of resource to �ow through the path 〈S,C(1), C(2), C(4)〉
and another unit of resource through the path 〈S,C(1), C(3), C(4)〉. Thus, 2 units of resource can
be �owed from vertexC4. In a valid assignment of 1-in-3SAT, for each clauseC , exactly 2 vertices
of C(5), C(6) and C(7) will have the earliest start time of 1 and the other one will have 0 (Table
4.2).

Also, if only one literal is true in a clause, exactly two vertices among C(5), C(6) and C(7)

need one unit of extra resource each to meet the makespan requirement (from Table 4.2). We
are allowed to �ow 2 units of resource from vertex C(4). Thus the project makespan is 1 using
(n+ 2m) units of resource.
Backward direction. Now, we prove that if there exists a solution of makespan 1 using (n+2m)
units of resource in the reduced DAG, then there also exists a solution to the 1-in-3SAT instance.
To achieve a makespan of 1, every variable gadget needs 1 unit of resource and each clause gadget
needs 2 units of resource, otherwise the makespan would be greater than 1. Also, any resource
that is used in a variable gadget cannot be used further in any other variable or clause gadget
because the resource can be reused over a path only. Similarly, any resource that is used in any
clause gadget, cannot be reused in any other gadget. Only one vertex that is either V (2) or V (3),
will have the earliest start time 0. Both cannot be 0, as there is only 1 unit of resource per variable
gadget. Both cannot be 1 as in a clause C where the literal V or ¬V is present, each of C(5), C(6)

and C(7) would have earliest starting time of 1. This requires use of 3 units of resource in the
clause gadget C to achieve a makespan of 1. However, each clause gadget can have exactly 2
units of resource. Thus, for every variable, it has to be a valid assignment (V is set to either
TRUE or FALSE). From Table 4.2, if a clause has exactly one TRUE literal, then the clause gadget
requires 2 units of resource to achieve a makespan of 1. Otherwise, the clause gadget would have
a makespan of 2 with the same amount of resource or would require more resource to achieve the
target makespan of 1. Thus, each clause has exactly one TRUE literal. This satis�es the 1-in-3SAT
instance.

We also prove hardness of approximation, both for the minimum-makespan problem and for
the minimum-resource problem. We begin with the minimum-makespan problem.

84

Vi Vj Vk C(5) C(6) C(7)

True True True max(1, 1, 0) = 1 max(1, 0, 1) = 1 max(0, 1, 1) = 1

False True True max(0, 1, 0) = 1 max(0, 0, 1) = 1 max(1, 1, 1) = 1

True False True max(1, 0, 0) = 1 max(1, 1, 1) = 1 max(0, 0, 1) = 1

True True False max(1, 1, 1) = 1 max(1, 0, 0) = 1 max(0, 1, 0) = 1

False False True max(0, 0, 0) = 0 max(0, 1, 1) = 1 max(1, 0, 1) = 1

False True False max(0, 1, 1) = 1 max(0, 0, 0) = 0 max(1, 1, 0) = 1

True False False max(1, 0, 1) = 1 max(1, 1, 0) = 1 max(0, 0, 0) = 0

False False False max(0, 0, 1) = 1 max(0, 1, 0) = 1 max(1, 0, 0) = 1

Table 4.2: Makespan at vertices C(5), C(6) and C(7) for di�erent truth value assignments to Vi, Vj
and Vk in Figure 4.8(b).

Theorem20. Theminimum-makespan discrete resource-time tradeo� problem that allows resources

to be reused only over paths cannot have a polynomial-time approximation algorithm with approx-

imation factor less than 2 unless P = NP .

Proof. We prove the theorem by contradiction. Let’s assume that there is a polynomial time
approximation algorithm with factor less than 2. Given a formula with n variables andm clauses,
we construct the reduced DAG as described in the proof of Lemma 38. If the formula is a valid
1-in-3SAT instance, then OPT (i.e., the optimal solution) has a makespan of 1 using (n + 2m)
units of resource in the reduced DAG. The approximation algorithm will return a schedule with
makespan less than 2 using (n + 2m) units of resource. If the formula is not a valid 1-in-3SAT
instance, then OPT’s makespan is greater than or equal to 2. So, the approximation algorithm
will have a schedule with makespan greater than or equal to 2. Thus, using a polynomial time
algorithm one can solve a strongly NP-hard problem. This is a contradiction. Hence, there exists
no polynomial time approximation algorithm for resource-time-reuse-path problem with factor
less than 2 unless P = NP .

Now, we turn attention to the minimum-resource problem:

Theorem 21. The minimum-resource discrete resource-time tradeo� problem that allows resources

to be reused only over paths cannot have a polynomial-time approximation algorithm with approx-

imation factor less than 3/2 unless P = NP .

Proof. (Sketch) The proof uses a reduction from 1-in-3SAT; the construction is similar to that in
the proof of Theorem 19, but has several key di�erences that make it considerably more intricate.

First, for each variable xi we have a gadget similar to before (Figure 4.8(a)), with the option
to send one unit of resource on one of two two-edge paths via a vertex, with the choice of which
path indicating whether the variable is set to true or to false. Unlike the previous construction,
we chain the variable gadgets together into a path of gadgets, from a source s to a sink t. Refer
to Figure 4.10. A single unit of resource will be moved along the path, using one of each pair of
two-edge paths, according to the truth assignments of the variables. A single directed edge, with
options 〈1, 0〉 and 〈0,M〉, links variable xi gadget to variable xi+1 gadget. Node s is connected to
the variable x1 gadget with an edge with 〈0, 0〉. A property of this construction is that the entry
node of the xi gadget is reached by the unit of resource at exactly time i − 1, and the exit node
of this gadget is reached at time exactly i. At time n the one unit of resource that traverses the

85

path of variable gadgets emerges at time n. Finally, there is also an edge directly from s to t with
options 〈1, n〉 and 〈0,M〉. In total, two units of resource will be moved through this part of the
DAG: one will follow a path through the variable gadgets, according to the truth assignments
of the variables, and the other will go directly along the edge (s, t). Both units of resource will
arrive at t at time n.

The clause gadget consists of three vertices, each representing a literal. Each clause has an
entry vertex and an exit vertex, and they are chained into a path of gadgets, with clauses ordered
in a speci�c way, as described below. Refer to Figure 4.11. The exit vertex of one clause has an edge
connecting it to the next clause in the order; these edges have specially chosen duration values
in order to serve as “bu�ers”, as described below. The variable portion of the DAG feeds into the
path of clause gadgets, with the 2 units of resource that arrive at t at time nmoving along an edge
that feeds into the �rst of the sequence of clause gadgets. Each of the three vertices of a clause
gadget corresponds to a literal; each has an input edge coming from one of the two vertices of the
variable gadget corresponding to the literal, according to whether the variable appears positively
or negatively in the clause. These incoming edges have durations that are carefully chosen, so
that the timing is as follows: For a clause with variables xi, xj , and xk, the two units of resource
(which came through the variable portion of the DAG before entering the path of clause gadgets)
will arrive at the entry to the clause at exactly time n + i + j + k. The incoming edges from
variables to the clause literals have durations chosen just so that the precedence constraints are
satis�ed “just in time”, for the two units of resource to pass through the clause gadget literals
that are not true (using edges with duration 0, based on the resource of 1), while the one true
literal vertex (who was reached within the clause gadget via an edge of duration 1, instead of 0,
since there was no resource associated with it) is reached 1 unit of time sooner (from the variable
gadget), to compensate. The net result is that both units of resource emerge out of a clause at
time n+ 1 + i+ j + k, ready to pass into the bu�er and the next clause gadget. The bu�ers are
selected carefully.

Then, we claim that we can achieve makespan A using just the 2 units of resource if and only
if the variables are assigned to satisfy the 1-in-3SAT. If the variables are assigned in a way that
does not yield all clauses to be true, then we will need at least 3 units of resource to achieve the
target makespan. Thus, it is NP-hard to distinguish between needing 2 units and needing 3 units
of resource. This implies that it is NP-hard to achieve an approximation ratio better than factor
3/2.

4.4.2 ReuseOver a PathwithRecursiveBinary Splitting and k-Way Split-

ting

We have seen a (strong) NP-hardness proof (Theorem 19) for the discrete resource-time tradeo�
problem with general non-increasing duration functions. In this subsection we strengthen this
result by showing that the problem remains hard even when the duration functions arise from
recursive binary split reducers and k-way split reducers. The proof uses the same general tech-
nique as in Section 4.4.1, but requires more complex gadgets to deal with the restricted duration
functions.
Composite node. A composite node v of order k is a gadget of (k + 2) nodes as shown in
Figure 4.12. A composite node can have only one incoming edge and only one outgoing edge.

86

Without using any extra resource, a composite node of order k takes (k+2) units of time to �nish
its activities. This is because there is one write operation on vertex v1, one write operation on
vertex vi (2 ≤ i ≤ k + 1) and k write operations on vertex vk+2. Using 2 units of resource with
the k-way splitting function, all activities can be completed in (2 + k/2 + 2) = (k/2 + 4) time.
Similarly using 2 units of resource with recursive binary splitting function, all activities will be
completed in (2 + k/2 + log 2 + 1) = (k/2 + 4) time. Thus using 2 units of resource, composite
node v takes (k/2 + 4) units of time using either function.
Variable gadget. The gadget for variable V consists of 3 composite nodes and other nodes as
shown in Figure 4.13. Composite nodes V (2) and V (2) are of order 2x. Composite node V (4) is of
order 8x. There is a chain of 4x nodes from V (2) to V (5) inclusive. Similarly there is a chain of 4x
nodes from V (3) to V (6) inclusive. We will see that unless a variable gadget gets exactly 2 units
of resource, its makespan will be greater than (7x + 2y + 12) which we will use as the target
makespan later in our hardness proof. The values of x and y will be described shortly. Sending
2 units of resource to node V (2) (Figure 4.13) corresponds to setting the variable V to TRUE and
sending 2 units of resources to V (3) corresponds to setting V to FALSE. We will see that sending
one unit of resource to V (2) and one unit of resource to V (3) will make the makespan greater than
the target makespan.
Clause gadget. The gadget corresponding to clause C has 13 vertices C(i) (1 ≤ i ≤ 13) as
shown in Figure 4.14. Vertices C(2) and C(3) are composite nodes each of order 8x. If clause
C has three literals Vi, Vj and Vk, then vertex C(5) is connected to the vertices V (6)

i , V
(6)
j and

V
(5)
k . These vertices correspond to ¬Vi,¬Vj and Vk respectively. Vertex C(6) is connected to
V

(6)
i , V

(5)
j and V (6)

k . These vertices correspond to ¬Vi, Vj and ¬Vk. Vertex C(7) is connected to
V

(5)
i , V

(6)
j and V (6)

k . These vertices correspond to Vi,¬Vj and ¬Vk. There are 3 composite nodes
C(8), C(9) and C(10) each of order 2x. There is a chain of 7x + 11 vertices from s to each vertex
in
{
C(11), C(12), C(13)

}
. We de�ne the “earliest �nish time” of a node v as the time when all the

write operations at v are �nished.
In a valid assignment of 1-in-3SAT, we show that for each clause C , exactly 2 vertices of

C(5), C(6) and C(7) will have earliest �nish time of (6x + 5) and the other one will have earliest
�nish time of (5x+ 8). (Table 4.3)
Value of x. There is only one vertex (V (7)) with out-degree zero in every variable gadget V .
Also, in every clause gadget C , there are three vertices C(11), C(12) and C(13), each with zero
out-degree. So, if we connect all such vertices to the sink vertex t, then in-degree at t will be
(n + 3m). Let k be the smallest power of 2 such that k ≥ (n + 3m). We perform a recursive
binary splitting at vertex t. Let y be the height of the binary splitting at t where y = log k. To
make 8x > (7x+ 2y + 12), we de�ne x = max

(
(2y + 13), 8

)
. Hence, the path from any vertex

from
{
V (7), C(11), C(12), C(13)

}
to sink t will take time 2y.

Truth value assignment. Setting variable V to TRUE implies sending 2 units of resource
through composite vertex V (2). The corresponding earliest �nish time at vertex V (5) is 1 + (x+
4) + 4x = 5x+ 5 and at vertex V (6) is 1 + (2x+ 2) + 4x = 6x+ 3. Similarly, setting variable V to
FALSE implies sending 2 units of resource through vertex V (3). The corresponding earliest �nish
time at vertex V (5) is 1 + (2x+ 2) + 4x = 6x+ 3 and at vertex V (6) is 1 + (x+ 4) + 4x = 5x+ 5.
Lemma 39. There exists a solution to the input instance of 1-in-3SAT i� there exists a valid �ow

of resource through the reduced DAG achieving a makespan of at most 7x+ 2y + 12 using at most

87

2n+ 4m units of resource.

Proof. Forward direction. We now prove that if there is a solution to the 1-in-3SAT instance with
n variables and m clauses, then the reduced DAG has a makespan of 7x+ 2y+ 12 with 2n+ 4m
units of resource.

If a variable V is set to TRUE, then we allow 2 units of resource to �ow through vertex V (2)

along the path 〈S, V (1), V (2), V (4)〉, otherwise, we allow 2 units of resource to �ow through vertex
V 3 along the path 〈S, V (1), V (3), V (4)〉. Assigning TRUE to variable V implies that the earliest
�nish times at vertex V (5) and V (6) are 5x + 5 and 6x + 3, respectively. Also, the earliest �nish
time at vertex V (7) is 1 + (2 + 2x) + 1 + 2 + (4x + 4) + x + 2 = 7x + 12. In Figure 4.14,
there are 3 writers from variable gadgets that write on each of the nodes in

{
C(5), C(6), C(7)

}
.

If there are multiple writers ready to write to the same vertex at the same time, we serialize the
write operations. For example, if Vi = TRUE,Cj = FALSE and Vk = FALSE, then the
writer from variable gadget Vi is ready to write at time 5x + 5. The writers from Vj and Vk
are ready to write at time 6x + 3. Hence, all three write operations can be completed at time
max {5x+ 6, 6x+ 4, 6x+ 5} = 6x+ 5. From Table 4.3, it is evident that in clause C , if only one
literal is TRUE and the other two are FALSE, then among C(5), C(6) and C(7) only one vertex has
an earliest �nish time of 5x + 8 and the other two have 6x + 5. The vertex with starting time
5x + 8, can �nish the activity corresponding to composite node (one of C(8), C(9) and C(10)) of
order 2x, in another 2x+ 2 units of time without using any resource. Hence, it will �nish at time
5x+ 8 + 2x+ 2 = 7x+ 10. Each of the other two vertices with earliest �nish time of 6x+ 5 takes
2 units of resource �owing from vertex C(4) and �nishes the composite node’s activity at time
(6x+ 5) + (x+ 4) = 7x+ 9. There is a chain of 7x+ 11 nodes from the source vertex to each of
the vertices in

{
C(11), C(12), C(13)

}
. Thus, the earliest �nish time at each of those three vertices

is 7x+ 12. Together, with 2y units of time to sink vertex t, the total makespan is 7x+ 2y + 12.
Backward direction. To achieve a makespan of 7x + 2y + 12, every variable gadget requires
2 units of resource and each clause gadget requires 4, otherwise the makespan will be 8x which
is larger than 7x + 2y + 12 because x > 2y + 12. Also, any resource used in a variable gadget
cannot be used further in any other variable or clause gadget because the resource can be reused
over a path only. Similarly, any resource used in any clause gadget cannot be reused in any other
gadget. Only one vertex that is either V (5) or V (6), will have the earliest �nish time of 5x + 5.
Both cannot be 5x + 5, as there is only 2 units of resource per variable gadget. Both cannot be
6x + 3 as in a clause C where the literal V or ¬V is present, there is an edge from either V (5)

or V (6) to each of C(5), C(6) and C(7). This requires clause gadget C to get 6 units of resource to
achieve a makespan≤ 7x+ 2y+ 12. But each clause gadget can have exactly 4 units of resource.
Thus, for every variable V , for it to be a valid assignment, V is set to either TRUE or FALSE.
From Table 4.3, if a clause has exactly one TRUE literal, then one of the vertices from C(5), C(6)

and C(7) has the earliest �nish time of 5x + 8 and the other two have 6x + 5. This requires to
have 4 units of resource to achieve the earliest �nish time ≤ 7x+ 10 at each of the vertices from{
C(8), C(9), C(10)

}
. This can be achieved by assigning 2 units of resource to those two composite

nodes (fromC(8), C(9) andC(10)) that start executing at time 6x+5. The composite node that can
start at time 5x+8 does not use any extra resource. If the clause does not have exactly one TRUE
literal, then the clause gadget would require 6 units of resource to achieve the target makespan.
However, we just argued that each clause gadget can have exactly 4 units of resource. Thus, each
clause has exactly one TRUE literal and the 1-in-3SAT instance is also satis�ed.

88

Vi Vj Vk C(5) C(6) C(7)

T T T max(a, a+ 1, b) = a+ 1 max(a, b, a+ 1) = a+ 1 max(b, a, a+ 1) = a+ 1

F T T max(b, a, b+ 1) = a max(b, b+ 1, a) = a max(a, a+ 1, a+ 2) = a+ 2

T F T max(a, b, b+ 1) = a max(a, a+ 1, a+ 2) = a+ 2 max(b, b+ 1, a) = a

T T F max(a, a+ 1, a+ 2) = a+ 2 max(a, b, b+ 1) = a max(b, a, b+ 1) = a

F F T max(b, b+ 1, b+ 2) = b+ 2 max(b, a, a+ 1) = a+ 1 max(a, b, a+ 1) = a+ 1

F T F max(b, a, a+ 1) = a+ 1 max(b, b+ 1, b+ 2) = b+ 2 max(a, a+ 1, b) = a+ 1

T F F max(a, b, a+ 1) = a+ 1 max(a, a+ 1, b) = a+ 1 max(b, b+ 1, b+ 2) = b+ 2

F F F max(b, b+ 1, a) = a max(b, a, b+ 1) = a max(a, b, b+ 1) = a

Table 4.3: Earliest start time at verticesC(5), C(6) andC(7) for di�erent assignment of truth values
of variable Vi, Vj and Vk in Figure 4.14, where a = (6x+ 4) and b = (5x+ 6).

4.4.3 Underlying Bounded Treewidth Graph

Let G(D) be the undirected graph obtained by ignoring the directedness of the edges of a given
DAG D. In the case that G(D) is a graph of bounded treewidth,2 we show that the o�ine
minimum-makespan and minimum-resource problems on D are (weakly) NP-hard. (Note that
Theorem 19 proving the strong NP-hardness of the problems does not assume that the underly-
ing undirected graph is of bounded treewidth.)

Theorem22. It is weakly NP-hard to decide if there exists a solution to the (o�ine) discrete resource-

time tradeo� problem, with resource reuse over paths and a non-increasing duration function, sat-

isfying a resource bound B and a makespan bound T , provided the undirected graph obtained by

ignoring the directedness of the edges of the input DAG is of bounded treewidth.

The proof of this theorem is based on a reduction from Partition[77]. The construction is
shown in Figure 4.15. The input instance is a set S = {s1, s2, . . . , sn} of n positive integers;
let B =

∑n
i=1 si. The Partition problem asks if there is a partition of S into subsets S1 and

S2 such that the sums of the values in the two subsets are the same (i.e., exactly B/2). In this
construction we have a total ofB resources to allocate in our program. The valueM is chosen to
be greater than B/2, the target makespan, ensuring that memory resources must be allocated to
these nodes. This ensures that at least si units of resource pass through each v(1)

i , constructing
our numbers. From each v(1)

i there are two choices of nodes, v(2)
i and v(3)

i , to pass the resources
onto each of which will either utilize si resources or increase the makespan on that path by si.
The pair also funnel the resources into a sink vertex v0 with a potential makespan cost of M
which ensures that their resources cannot be passed along to nodes v(2)

j and v(3)
j to the right (i.e.,

j > i). Thus the top and bottom paths represent our two sets and for each vi we must allocate
si makespan to either the top or the bottom path. Thus a total makespan of B/2 can only be
achieved i� there is a partition of the si’s into two sets such that each set sums to B/2.

To see that the constructed graph has bounded treewidth, let Vi = {v(j)
i }, where 1 ≤ j ≤ 7.

Vertices v(7)
i for 1 ≤ i ≤ n are connected to the sink vertex v0. ThenG has a tree decomposition T

with nodes Si, 1 ≤ i ≤ n, as shown in Figure 4.16, with Si de�ned as follows: S1 = {v0, v0}∪V1;
Si = {v0, v0} ∪ Vi−1 ∪ Vi, for 2 ≤ i ≤ n. We claim that T is a valid tree decomposition. It is

2Recall that a tree decomposition of a graph G = (V,E) is a tree T with nodes X1, X2, . . . , Xn, Xi ⊆ V ,
satisfying: (1)

⋃
iXi = V ; (2) For edge (u, v) ∈ E there exists a Xi with u, v ∈ Xi; (3) For any two nodes, Xi and

Xj , in T , if node Xk is in the (unique) path between Xi and Xj in T , then Xi ∩ Xj ⊆ Xk . The width of the tree
decomposition is maxi |Xi| − 1, and the treewidth of G is the minimum width over all tree decompositions of G.

89

evident that ∪1≤i≤nSi = V . From the construction of Sj (1 ≤ j ≤ n), it is clear that, for each
edge (u, v) of the graphG, there exists a node Sj with u, v ∈ Sj . For any Si and Sj , with j > i+1
and 1 ≤ i ≤ (n− 2), we have Si ∩ Sj = {v0, v0}, and, for any node Sk (i < k < j), on the path
between Si and Sj , we have v0 ∈ Sk and v0 ∈ Sk, so that Si ∩ Sj ⊆ Sk. Thus, T is a valid tree
decomposition, and it has width 15 (maxi |Si| − 1 = 15), so the treewidth of G is at most 15.

4.5 Alternate hardness proof from numerical 3D matching

We give a polynomial-time reduction from the numerical 3-dimensional matching problem to
the discrete resource-time tradeo� problem (with resource reuse over paths and a non-increasing
duration function).

Numerical 3-dimensional matching problem: Given A =
{a1, a2, · · · an}, B = {b1, b2, · · · bn}, and C = {c1, c2, · · · cn}, partition A ∪ B ∪ C into n triples
Si ∈ A×B × C of equal sum T = (

∑
A+

∑
B +

∑
C)/n.

Given an instance of the numerical 3D matching problem, we create a DAG D with source
s and sink t as shown in Figure 4.18. For each ai ∈ A, there is an edge (s, ai) in D. The space-
time tradeo� function at edge (s, ai) is {〈0,∞〉, 〈n, ai〉}. Recall that, this means that with zero
resource, it takes in�nite time to �nish the activity (s, ai) and with n units of resource it �nishes
in time ai. We create a gadget that has n incoming edges and n outgoing edges. We call the
gadget a bipartite matcher (Figure 4.17) as it matches (a 1 : 1 mapping) the incoming edges to the
outgoing edges. We describe the bipartite matcher in the next paragraph. For each bi ∈ B, there
is an edge (bi, b

′
i) in D. The tradeo� function at edge (bi, b

′
i) is {〈0,∞〉, 〈n, bi〉}. We put all the n

edges (bi, b
′
i) to a bipartite matcher as its incoming edges. For each ci ∈ C , there is an edge (ci, t)

in D. The tradeo� function at edge (ci, t) is {〈0,∞〉, 〈n, ci〉}.
The bipartite matcher gadget. The gadget has n incoming edges at vertices {x1, x2, · · ·xn}
and n outgoing edges from {z1, z2, · · · zn}. It maps the vertices from {x1, x2, · · ·xn} to those in
{z1, z2, · · · zn}. The mapping is one to one. This works as follows. There are n units of incoming
resource at each vertices xi. Every outgoing edge (xi, y

j
i) from xi (1 ≤ j ≤ n) has a tradeo�

function {〈0,∞〉, 〈1, 0〉}. Hence, each of the outgoing edges (xi, y
j
i) from xi gets one unit of

resource. The tradeo� function at edge (yi, zi) is {〈0,∞〉, 〈1, 0〉} which forces yji to send one
unit of resource to yi. The tradeo� function at edge (yji , z

′
j) is {〈0,M〉, 〈1, 0〉}. Thus, if yji sends

one unit of resource to yi, it cannot send any resource to z′j forcing the activity (yji , z
′
j) to takeM

units of time to �nish. Here, M > max1≤i≤n(ai) + max1≤i≤n(bi) + max1≤i≤n(ci). The tradeo�
function at edge (z

′
j, zj) is {〈0,∞〉, 〈n− 1, 0〉}. There are n incoming edges (yji , z

′
j) to z′j . Out of

these n incoming edges, (n− 1) edges �ow n− 1 units of resource to z′j which are then used for
the activity at (z

′
j, zj).

We now show the mapping through an example. Suppose x1 is mapped to z3. Then the cor-
responding �ow is as follows: one unit of resource �ows from y3

1 to y1. As the total incoming
�ow of resource at vertex y3

1 is one, no resource �ows from y3
1 to z′3. However, one unit of re-

source �ows from each y3
i except y3

1 to z′3. The earliest start time (EST) along path 〈x1, y
3
1, z

′
3〉

is EST (x1) +M while that along path 〈xi, y3
i , z

′
3〉 for i 6= 1 is EST (xi). This makes the earliest

start time at z′3, EST (z
′
3) = max{EST (x1) + M,EST (xi)} = EST (x1) + M . This holds true

because M > max1≤i≤n(ai) + max1≤i≤n(bi) + max1≤i≤n(ci). Also, n− 1 units of resource �ow

90

to z′3 and they are used for the activity (z
′
3, z3) to �nish in time 0. Observe that no yi1 except y3

1

can send resource to y1. The gadget has a total resource-in�ow of n2. Each of (z
′
i, zi) requires

n − 1 units of resource that sums up to n2 − n units of resource. Each of (yi, zi) requires one
unit of resource, that sum up to n units of resource. If two of yi1 sends a unit of resource each to
y1, then the total resource left to be used by all (z

′
i, zi) is at most n2 − n − 1. Thus at least one

of (z
′
i, zi) won’t get n − 1 units of resource and will take in�nite time. Hence, mapping xi to yj

corresponds to �owing one unit of resource from yji to yi and vice-versa; this makes a one-to-one
mapping from {x1, x2, · · ·xn} to {z1, z2, · · · zn}.

Lemma 40. There exists a solution to a input instance of numerical 3D matching if and only if there

exists a valid �ow of resource in the DAG such that the makespan is 2M + T with resource bound

B = n2
.

Proof. If there is a solution in the input instance of numerical 3D matching, then there are n sets,
each of type {ai, bj, ck} such that ai + bj + ck = T . We use �rst bipartite matcher gadgets to map
ai to bj and the second bipartite matcher to map b′j to ck. Each bipartite matcher contributesM in
the makespan. (s, ai), (bj, b

′
j) and (ck, t) adds T to the makespan. Thus the makespan is eaxctly

2M + T .
If the reduced DAG admits a makespan of 2M + T using n2 units of resource, then there is

also a solution to the input instance of numerical 3D matching. From the construction of bipartite
3D matching, there is a one-to-one mapping from ai to bj and from b

′
j to ck. As the makespan

is 2M + T and each bipartite matcher contributes M to the makespan, this gives a solution to
numerical 3D matching.

91

Figure 4.10: The variable gadgets chained together for the hardness of approximation of the
minimum-resource problem (Theorem 21).

Figure 4.11: The clause gadgets chained together for the hardness of approximation of minimum-
resource problem.

92

Figure 4.12: Composite node (Section 4.4.2).

Figure 4.13: Gadget for variable V (Section 4.4.2).

Figure 4.14: Gadget for clause C = (Vi ∨ Vj ∨ Vk) (Section 4.4.2).

93

Figure 4.15: Construction for (weak) NP-hardness proof for graphs with bounded treewidth (Sec-
tion 4.4.3).

Figure 4.16: Tree decomposition of graph G (Section 4.4.3).

94

Figure 4.17: Bipartite matcher gadget (Section 4.5).

Figure 4.18: Reduced DAG from a numerical 3D matching instance (Section 4.5).

95

Chapter 5

Reducing Synchronization Cost with

Extra Memory

The binary-forking model is a parallel computation model, formally de�ned by Blelloch et al.,
in which a thread can fork a concurrent child thread, recursively and asynchronously. The
model incurs a cost of Θ(log n) to spawn or synchronize n tasks or threads. The binary-forking
model realistically captures the performance of parallel algorithms implemented using modern
multithreaded programming languages on multicore shared-memory machines. In contrast, the
widely studied theoretical PRAM model does not consider the cost of spawning and synchro-
nizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM
model may not be optimal in the binary-forking model. Often, algorithms need to be redesigned
to achieve optimal performance bounds in the binary-forking model and the non-constant syn-
chronization cost makes the task challenging.

We design e�cient parallel algorithms in the binary-forking model without atomics for three
fundamental problems: Strassen’s (and Strassen-like) matrix multiplication (MM).

This work can also be found in Arxiv [11].

5.1 Introduction

We present e�cient algorithms with optimal/near-optimal span1 for several fundamental prob-
lems in the binary-forking model without locks and atomic instructions. The binary-forking
model was introduced in Blelloch et al. [40] (see also [4, 24, 38, 39, 57]) to accurately capture the
performance of algorithms designed for modern multi-core shared-memory machines. In this
model, the computation starts with a single thread, and as the computation progresses, threads
are created dynamically and asynchronously; the computation �nishes when all threads end. A
thread can spawn/fork a concurrent asynchronous child thread while it progresses simultane-
ously and such forking of threads can happen recursively; hence the model is called the binary-
forking model. The model also includes a “join" operation to synchronize the threads. Though
the model introduced in [40] allows the use of atomic instructions, we do not use them in this
work.

1Span/depth is the running time of an algorithm with an unbounded number of processors.

96

The binary-forking model is closely related to the well-studied PRAM model [84]. The PRAM
model is strictly more powerful than the binary-forking model; however, it does not correlate
well with modern architectures. In the PRAM model, computation progresses in synchronous
steps. Modern architectures employ new techniques such as use of multiple caches, processor
pipelining, branch prediction, hyper-threading, and many more, which give rise to many asyn-
chronous events such as cache misses, varying clock speed, interrupts, etc., thus demanding the
development of a parallel computation model where computation can proceed asynchronously.
Asynchronous thread creation in the binary-forking model makes it an ideal candidate for mod-
eling parallel computation in modern architectures. As pointed out in [40], this is the model
underlying many widely used parallel programming languages/environments such as Cilk [75],
the Java fork-join framework [71], Intel TBB [136], and the Microsoft Task Parallel Library [133].

One can trivially reduce any algorithm designed for the PRAM model to an algorithm for
the binary-forking model, incurring an O(log n)-factor blow-up in the span while keeping the
work2 asymptotically the same as in the PRAM model. Spawning n threads takes Θ (1) time
and Θ (n) work in the PRAM model—making the synchronization cost (span) constant. This
synchronization can be simulated by using a binary tree of log n depth and Θ (n) nodes in the
binary-forking model. Each internal node in the binary tree corresponds to a binary-forking
operation, and the n leaves correspond to the n spawned threads.

A direct simulation of an optimal-span PRAM algorithm may not produce an algorithm with
optimal span in the binary-forking model. For example, Cole’s parallel merge sort [51] achieves
optimal Θ (log n) span and Θ (n log n) work in the PRAM model. The binary-tree reduction
increases the span to Θ

(
log2 n

)
while keeping the work asymptotically the same. On the other

hand, by increasing work to Θ (n2), it becomes trivial to get a Θ (log n) span sorting algorithm —
each item independently computes its rank in the �nal sorted list in Θ (log n) time and Θ (n) work
by comparing itself with all n elements. However, neither algorithm is optimal in the binary-
forking model — the former has non-optimal span while the latter performs non-optimal work.
Cole and Ramachandran [53] presented a deterministic sorting algorithm withO (log n log log n)
span and optimal Θ (n log n) work in the binary-forking model. Recently, Ramachandran and
Shi [116] gave a data-oblivious sorting algorithm in the binary-forking model with optimal work
andO (log n log log n) span. Very recently, Blelloch et al. [40] used atomic test-and-set operations
to design a randomized sorting algorithm with Θ (log n) span w.h.p.3 in n and Θ (n log n) work in
expectation. Hence, �nding an optimal (both in span and work) sorting algorithm without using
atomic instructions remains an interesting and non-trivial open problem in the binary-forking
model. We encounter the span blow-up problem when running other fundamental low-span
PRAM algorithms, such as those for Strassen’s matrix multiplication and Fast Fourier Transform
(FFT), in the binary-forking model. Both algorithms have Θ (log n) span in the PRAM model,
which blow up by a factor of log n and log log n, respectively, in the binary-forking model.

Algorithms for the binary-forking model face a major challenge: how to avoid the blow-up in
span (synchronization cost) without blowing up work? Surprisingly, it turns out that using extra
space, we can tackle this challenge. By extra space, we mean the space allocated from RAM (from
shared heap memory), not from processors private registers or stack memory.

2Work is the number of operations performed by a parallel algorithm on a serial computer.
3An event ξ occurs with high probability (w.h.p.) in n provided it occurs with probability at least 1 − c

nα for
constants α ≥ 1 and c > 0.

97

An important speci�cation of any parallel computation model is how the model resolves con-
tentions when multiple processors try to read/write the same memory location. The two extremes
of such contention rules are (1) exclusive: at most, one processor can read/write a memory lo-
cation in each time step; (2) concurrent: any number of processors can read/write a memory
location in each time step. Gibbons, Matias, and Ramachandran [78] proposed a more realistic
contention rule, called concurrent-read-queued-write (CRQW), that re�ects well modern parallel
machines. In this rule, concurrent reads to a memory location take unit time, and concurrent
writes to a memory location take time equal to the total number of concurrent writes to the
location. As exclusive writes are too strict and concurrent writes are too relaxed (ignores high-
contention cost), most of the modern parallel machines’ contention properties re�ect well the
queued write rule instead of the exclusive or concurrent rules. In this work, we consider CRQW
as the contention rule for the binary-forking model.

Our Contributions. We present an optimal O(log n) span algorithm for Strassen’s Matrix
Multiplication (MM) with only a Θ (log log n)-factor blow-up in work as well as a near-optimal
O(log n log log n) span algorithm with no asymptotic blow-up in work.

A remarkable feature of our algorithms is that we avoid the use of atomic instructions except
possibly inside the join operations which are implemented by the runtime system.

MajorTechniques. The extra log n factor in the span of the standard parallelization of Strassen’s
MM algorithm in the binary-forking model arises from the fact that it spends Θ

(
log n

2i

)
time

(synchronization cost) computing intermediate results at recursion level i for each i ∈ [0, log2 n]
which requires onlyO (1) time in the PRAM model. We observe that none of those intermediate
matrices need to be explicitly computed or stored to compute the �nal output. Indeed, each cell
in the �nal output matrix can be computed directly inO (log n) time from the two original input
matrices of the algorithm. This single-point computation method can be used to compute all
the cells in the output matrix simultaneously in Θ (log n) span. However, this approach blows
up the work performed by the algorithm by up to a Θ (n2) factor because the approach does not
reuse intermediate results. We avoid this work blow-up by computing and temporarily storing the
intermediate results at Θ (log log n) carefully ‘chosen levels’ of recursion, which eliminates the
need for implicitly recomputing the intermediate results over and over again. So, all single-point
computations proceed in stages where a stage includes all levels of recursion between two con-
secutive ‘chosen levels,’ and synchronizations happen only at stage boundaries with all threads
executing asynchronously within every stage. We show that this stage-based approach reduces
the work blow-up from Θ (n2) factor to only Θ (log log n) factor while achieving the optimal
Θ (log2 n) span.

The technique described above works for all Strassen-like algorithms, including Victor Pan’s
O (n2.795) work algorithm [110]. We remark that while we use additional techniques speci�c
to the problems to achieve better work and span bounds, the main contribution is devising the
general technique to enable limited work-sharing among the single-point computations using
extra space.

Binary-ForkingModel. Binary-forking model captures the current multi-core shared-memory
systems. Many parallel algorithms are based on binary-forking model [4, 24, 38, 39, 57]. Com-

98

putations in the binary-forking model can be viewed as a series-parallel DAG where each node
represents a thread’s instruction. The root of the tree is the �rst instruction of the starting thread.
Each node has at most two children. If node u denotes the i-th instruction of thread t and u has
only one child v, then v denotes the (i + 1)-th instruction of thread t. If node u has two chil-
dren v and w, then v represents the (i + 1)-th instruction of thread t and w represents the �rst
instruction of the new forked thread t′ . The binary-forking model includes “join” instructions to
join the forking threads. They are modeled as a node with two incoming edges. The work of the
computation is the number of nodes in the series-parallel DAG and the span of the computation
is the length of the longest path in the DAG assuming unbounded resources such as processors
and space.

Performance Metrics of a Parallel Program. We use the work-span model [54] to analyze
the performance of parallel programs executed on shared-memory multicore machines. The work
of a multithreaded program, denoted by T1(n), where n is the input parameter, is de�ned as the
total number of CPU operations it performs when executed on a single processor. The span T∞(n)
of a program which is also known as its critical-path length or depth, is the maximum number of
operations performed on any single processor when the program is run on an unbounded number
of processors. The parallel running time Tp(n) of a program when run on p processors under a
greedy scheduler is given by Tp(n) = O (T1(n)/p+ T∞(n)). The parallelism, computed by the
ratio of T1(n) and T∞(n), is the average amount of work performed by the program in each step
of its critical path.

5.2 Strassen’s Matrix Multiplication

Suppose w = log2 7. Strassen’s matrix multiplication (MM) algorithm [131] performs O (nw)
work (i.e., multiplications and additions), unlike the classic MM algorithm that performs O (n3)
work. A straightforward parallelization of Strassen’s MM leads to Θ

(
log2 n

)
span. Our goal is

to design a parallel Strassen’s MM in the binary-forking model without using locks and atomic
instructions to achieve an optimal span ofO (log n) without a�ecting the work bound of Θ (nw).

In this chapter, we present parallel Strassen MM algorithms (i) having optimalO (log n) span
and O (nw log log n) work, i.e., work very close to that of the standard Strassen’s MM; and (ii)
having O (nw) work and O (log n log log log n) span, i.e., very close to optimal span.

The core ideas and techniques used in our algorithms are as follows. We �rst perform single-

point computation, i.e., computation of a single cell of the output matrix independently from that
of other cells/entries. This implies that all cells of the output matrix are computed independently
in O (log n) span. However, as there is no work-sharing across multiple threads, the total work
blows up to O (nw+2). We enable partial work-sharing across threads by saving intermediate
computations at carefully selected levels of recursion. By splitting the recursion tree into stages

and allowing work-sharing across stages, we are able to reduce the work to very close toO (nw).
Hence, by using single-point computations in stages, we are able to obtain good work and span
bounds. We use this algorithm to design other parallel Strassen’s MM algorithms with di�erent
advantages.

99

5.2.1 k-way Strassen’s MM.

The k-way Strassen’s MM [131, 54], for k ∈ [1, 7], executes the child nodes in exactly d7/ke
parallel steps without executing more than k child nodes at a time.

Lemma 41 ([131, 54]). The k-way Strassen’s MM has a complexity of O (nw) work, O
(
log2 n

)
span if k = 7,O

(
nlog2d7/ke

)
span if k 6= 7,O (n2 log n) space if k = 4, andO

(
nmax (2,log2 k)

)
space

if k 6= 4.

Proof. The work, span, and extra space recurrences for the k-way Strassen’s MM are as follows.
If n = 1, then T1(n) = O (1) and T∞(n) = O (1). If n > 1, then

T1(n) = 7T1(n/2) +O
(
n2
)
, T∞(n) = d7/keT∞(n/2) +O (log n) ,

S∞(n) = kS∞(n/2) +O
(
n2
)
.

Solving these recurrences, we have the lemma.

The work of the k-way Strassen’s MM for any value of k is O
(
nlog2 7

)
. The k-way algorithm

gives a trade-o� between span and space. When k = 1, we get the standard Strassen’s algorithm
[131]. When k = 7, we get the standard parallel Strassen’s MM [54] that spawns all the child
nodes in parallel achieving O(log2 n) span and occupying O

(
nlog2 7

)
space.

5.2.2 Strassen-S MM.

In this section, we present a parallel Strassen’s MM algorithm, as shown in Figure 5.2, that
achieves the optimal span ofO (log n) with only aO (log log n) factor increase in the work com-
pared with the classical sequential Strassen’s MM algorithm. In this algorithm, we multiply two
matrices U and V and store the matrix product in X . We �rst construct the required data struc-
tures as shown in Figure 5.3. We then compute the input matrices (U and V) at all nodes in the
recursion tree in parallel inO (log n) span. Finally, we compute the output matrix (X) at all nodes
in the recursion tree in O (log n) span.
[Step 1. Compute the Input Matrices.] Consider the standard 7-way parallel Strassen’s MM.
The height of the recursion tree is O (log n) and in each level, the total cost of forking and syn-
chronizing threads to compute the input matrices is O (log n). Hence, the total span for com-
puting input matrices at all nodes in the recursion tree is O

(
log2 n

)
. We can reduce the span to

O (log n) using single-point computation.
A cell of an input matrix (U or V) at a node of the recursion depends on at most two cells of

the corresponding input matrix at its parent node. This implies that each cell in an input matrix
at a leaf node depends on at most 2logn = n cells in the corresponding input matrix at the root
node. If we were to compute all input cells of all input matrices at all nodes, the total work would
explode to O (nw × n) = O (nw+1). To keep the work very close to O (nw), we split the entire
recursion tree into stages. We then use single-point computation of input cells in stages.

For this algorithm, we have O (log log n) stages so that the work performed in each stage is
O (nw). Using single-point computation in each stage, we are able to achieve the desired optimal
span of O (log n) limiting the total work to O (nw log log n).

100

Strassen-S(X,U, V) BX ← U × V

1. (U, V ,X , Uquad, V quad, Xbranch)← Construct-Data-Structures(U, V)

2. Compute-Input-Matrices(U, 0, 0, Uquad); Compute-Input-Matrices(V , 0, 0, V quad)

3. Compute-Output-Matrices(X, 0, 0, Xbranch)

4. X ← X[0][0]

Compute-Input-Matrices(Z, stage_id, root_id, quad)

1. height← #levels in the stage; #leaves← 7height

2. parallel for node← 0 to #leaves −1 do

3. leaf_id← (root_id −1) × #leaves + node

4. parallel for i← 0 to n− 1 do

5. parallel for j ← 0 to n− 1 do

6. Z[stage_id][leaf_id][i, j]← Compute-Input-Cell(Z , stage_id, leaf_id, i, j, n, height, quad)

7. if not last stage then Compute-Input-Matrices(Z , stage_id + 1, leaf_id, quad)

Compute-Input-Cell(Z, stage_id, node_id, i, j, n, height, quad)

1. if height = 0 then return Z[stage_id][node_id][i, j]

2. parent_id← (node_id / 7), branch_id← node_id mod 7

3. parallel for k ← 0 to 1 do

4. t[k]← 0; coe�← quad[branch_id][k].coe�

5. if coe� 6= 0 then

6. new_i← n× quad[branch_id][k].shift_i+ i; new_j ← n× quad[branch_id][k].shift_j + j

7. t[k]← coe� × Compute-Input-Cell(Z , stage_id, parent_id, new_i, new_j, 2n, height −1, quad)

8. return t[0] + t[1]

Compute-Output-Matrices(Z, stage_id, root_id, branch)

1. height← #levels in the stage; #leaves← 7height

2. parallel for node← 0 to #leaves −1 do

3. leaf_id← (root_id −1) × #leaves + node

4. if last stage then Z[stage_id][leaf_id][0,0]← U[stage_id][leaf_id][0,0] × V [stage_id][leaf_id][0,0]

5. else Compute-Output-Matrices(Z, stage_id + 1, leaf_id, branch)

6. parallel for i← 0 to n− 1 do

7. parallel for j ← 0 to n− 1 do

8. Compute-Output-Cell(Z , stage_id, root_id, i, j, n, height, branch)

Figure 5.1: The Strassen-S MM algorithm (part 1).

In this step, we compute the input matrices of all nodes in the recursion tree. The step consists
of h + 1 sequential stages: 0, 1, . . . , h, as shown in Figure 5.4, such that the height of stage i is

101

Compute-Output-Cell(Z, stage_id, node_id, i, j, n, height, branch)

1. if height = 0 then return Z[stage_id + 1][node_id][i, j]

2. shift_i← [i > n/2]; shift_j ← [j > n/2] B [] is the Iversion bracket

3. quad_id← 2 shift_i+ shift_j; new_i← i− (n/2) shift_i; new_j ← j − (n/2) shift_j

4. parallel for k ← 0 to 6 do

5. t[k]← 0; coe�← branch[quad_id][k]

6. if coe� 6= 0 then

7. child_id← (node_id −1) ×7 + k

8. t[k]← coe� × Compute-Output-Cell(Z , stage_id, child_id, new_i, new_j, n/2, height −1, branch)

9. return

∑6
k=0 t[k]

Figure 5.2: The Strassen-S MM algorithm (part 2).

k = 0 k = 1

br
an

ch
_i

d

〈 sh
ift

_i

, sh
ift

_j

, co
e�

〉 〈 sh
ift

_i

, sh
ift

_j

, co
e�

〉
0 〈0, 0, 1〉 〈1, 1, 1〉
1 〈1, 0, 1〉 〈1, 1, 1〉
2 〈0, 0, 1〉 〈−,−, 0〉
3 〈1, 1, 1〉 〈−,−, 0〉
4 〈0, 0, 1〉 〈0, 1, 1〉
5 〈1, 0, 1〉 〈0, 0,−1〉
6 〈0, 1, 1〉 〈1, 1,−1〉

k = 0 k = 1

br
an

ch
_i

d

〈 sh
ift

_i

, sh
ift

_j

, co
e�

〉 〈 sh
ift

_i

, sh
ift

_j
, co

e�
〉

0 〈0, 0, 1〉 〈1, 1, 1〉
1 〈0, 0, 1〉 〈−,−, 0〉
2 〈0, 1, 1〉 〈1, 1,−1〉
3 〈1, 0, 1〉 〈0, 0,−1〉
4 〈1, 1, 1〉 〈−,−, 0〉
5 〈0, 0, 1〉 〈0, 1, 1〉
6 〈1, 0, 1〉 〈1, 1, 1〉

k

qu
ad

_i
d

0 1 2 3 4 5 6
0 1 0 0 1 −1 0 1

1 0 0 1 0 1 0 0

2 0 1 0 1 0 0 0

3 1 −1 1 0 0 1 0

Figure 5.3: Data structures required for the Strassen-S MM algorithm. Left: Uquad and V quad.
Right: Xbranch.

�xed at ci log n, where h and ci are given below:

ci =


0 if i = −1,

1− αi+1 if i ∈ [0, h− 1],

1 if i = h.

such that w = log2 7, α =
1

w − 1
, and h = logw−1

log n

log log log n
.

(5.1)

Please refer to Figure 5.2 (the Compute-Input-Matrices algorithm) for computing the input
matrices (U and V) for all the leaf nodes in all stages. We start from stage 0. For any given
stage, denoted by stage id, we can easily compute the topmost level, called the root level and the
bottommost level, called the leaf level. It is also easy to list out all indices of the leaf nodes in a
given stage. So, for all leaf nodes, for all cells in the input matrix in a particular leaf node, we
invoke the function Compute-Input-Cell. This function computes the value of a speci�c cell in
the input matrix of a leaf node.

The working of the Compute-Input-Cell algorithm is as shown in Figure 5.5 (left). The �gure
shows the way in which a highlighted cell in the U matrix at a leaf node with id 05 (in base-7
system, for simplicity) is computed. As the last digit of the index is 5, it means that the leaf node
is the 5th child of its parent. From the logic of the Strassen’s MM algorithm, we know that the U

102

Stage 0

Stage 1

Stage 2

Work = O(nw)
Height = c0 log n

Work = O(nw)
Height = (c1 − c0) log n

Work = O(nw)
Height = (c2 − c1) log n

Span = O(log n)
Space = O(nw)

Work = O(nw log log n)

Figure 5.4: Stages in the Strassen-S MM algorithm for computing the input matrices.

+

−

−

+

+

+

+

Digit Quadrants
0 {+11,+22}
1 {+21,+22}
2 {+11}
3 {+22}
4 {+11,+12}
5 {+21,−11}
6 {+12,−22}

root node

leaf node (index = 05)

−

Quadrant Child nodes
11 {+0,+3,−4,+6}
12 {+2,+4}
21 {+1,+3}
22 {+0,−1,+2,+5}

root node

leaf nodes

+ + +−

+ − ++

0 3 4 6

0 1 2 5

Figure 5.5: Left: Single-point computation of a cell in the input matrix U at a leaf node in a stage. Right:
Single-point computation of a cell in the output matrix X at a root node in a stage. (If there is an arrow
from cell a to cell b, it means that cell a depends on cell b.)

matrix in the 5th child node of a parent node is computed by subtracting the �rst quadrant (−11)
from the third quadrant (+21) of the U matrix of the parent node. Hence, we can exactly know
the two cells in the U matrix of the parent node on which the highlighted cell in the U matrix
of the leaf node depends. Also, we can compute the highlighted cell in O (1) time using the two
cells of the parent node. The �rst digit of the index of the lead node is 0. This means that the
parent node of the leaf node is the 0th child of its parent (i.e., the leaf node’s grandparent). From
the logic of the Strassen’s MM algorithm, we know that the U matrix in the 0th child node of a
parent node is computed by adding the �rst quadrant (+11) to the fourth quadrant (+22) of the
U matrix of the parent node. Using this approach, we can trace the path from the leaf node to
its ancestor at the root level. So, each cell in the leaf node depends on 2 cells in its parent node
which in turn depends on 4 cells in its parent node and so on until we reach a node at the root
level. In this way, we can spawn multiple threads that recursively compute each cell at the leaf
node using cells from its ancestor at the root level of the stage. The span for computing each cell
is simply the height of the stage i.e, the number of levels in that stage.

Once all the cells in a leaf node with id 05 are computed, the algorithm recursively and asyn-
chronously invokes Compute-Input-Matrices for the next stage with this leaf node as the new
root. The base case of the Compute-Input-Matrices algorithm is when the algorithm reaches
the last stage at which we compute the cells at the leaf nodes using the exact same idea.

103

Lemma 42. Compute-Input-Matrices has a complexity ofO (nw log log n) work,O (log n) span,
and O (nw) space.

Proof. [Work.] We compute the input matrices in h+ 1 stages S0, S1, . . . , Sh, where
h = logw−1(log n/ log log log n). Suppose Wi de�ne the work done at stage Si. We �rst come up
with a generic formula for Wi. We use a direct proof to show that Wi = O (nw), which implies
that the total work is

∑h
i=0Wi = O (nw log log n).

We compute Wi for i ∈ [0, h − 1]. #Nodes at the leaf level of stage Si is 7ci logn = nwci . The
#cells in a matrix at the leaf level is (n/2ci logn)2 = n2(1−ci). Each cell in a matrix at the leaf
level depends on O(2(ci−ci−1) logn) = O (nci−ci−1) cells in a matrix at the root level of the stage.
Hence, Wi = O

(
nwcin2(1−ci)nci−ci−1

)
= O

(
nci(w−1)−ci−1+2

)
. To show that Wi = O (nw) for all

i ∈ [0, h− 1], it is enough to prove that ci(w − 1)− ci−1 + 2 = w. We substitute the values of ci
and ci−1 from equation 5.1 to get: ci(w − 1) − ci−1 + 2 = (1 − (1/(w − 1))i+1)(w − 1) − (1 −
(1/(w − 1))i) + 2 = w.

We now compute Wh. The height of the �rst h stages is ch−1 log n. So, the height of the last
stage Sh is log n − ch−1 log n. Substituting the value of ch−1 from equation 5.1 and simplifying,
we get the height of stage Sh as log log log n. There are nw nodes at Sh. The size of a matrix at a
leaf node is 1 × 1. Each cell depends on 2log log logn = log log n cells in a matrix at the root level
of stage Sh. Hence, work done at the last stage is Wh = O (nw log log n).

Combining the work of the �rst h stages and the last stage, we get T1(n) =
∑h−1

i=0 Wi+Wh =
O (nw log log n).
[Span.] Let T∞(m, i) denote the span of the Compute-Input-Matrices algorithm starting from
stage i where a matrix at the root level is of size m×m. We give a recursive formula to compute
T∞(m, i). Then, the total span for the algorithm is T∞(n, 0).

Consider the Compute-Input-Matrices algorithm. Let ∆ci = ci − ci−1. #Nodes at the
leaf level of stage Si is 7∆ci logn. Launching these nodes in parallel (line 2) incurs a span of
O (∆ciw log n). A matrix at the leaf level will be of size m/(2∆ci logn)×m/(2∆ci logn). Spawning
Compute-Input-Cell function for all cells (lines 4, 5) incur a span of O (2 logm− 2∆ci log n).
Executing the Compute-Input-Cell algorithm incursO (∆ci log n) span. Adding all these spans
give us O (∆ci log n+ logm).

The span of stage Si recursively depends upon the span of stage Si+1 as the matrices at the
leaf level of stage Si+1 are constructed from the leaf level matrices of stage Si. Hence, T∞(m, i)
can be recursively de�ned using the previous analysis as: T∞(m, i) = O (log log log n) if i = h
and T∞(m, i) = O (∆ci log n+ logm) + T∞(m1−∆ci , i + 1) if i < h. Substituting the values of
ci from equation 5.1, we get ∆ci = 1− αi+1 − (1− αi) = αi(1− α) = O (αi). We know that m
starts with n and decreases by a factor of n∆ci for every stage. Hence, m = n1−ci−1 = nα

i , which
implies that logm = αi log n.

By unrolling the recursion and using the fact that αi is a geometric series and α < 1, we
compute the total span as T∞(n, 0) =

∑h−1
i=0 α

i log n+ T∞(n, h) = O (log n).
[Space.] The total space is dominated by the space used by the data structures. There are nw
matrices at the leaf level for each of the input matrices U and V . Each such matrix is of size 1×1.
Hence, space usage is O (nw).

[Step 2. Compute theOutputMatrices.] The logic used to compute the output matrices is very
similar to that used to compute the input matrices. A cell of the output matrix (X) at a node of the

104

recursion depends on at most four cells of the corresponding output matrices at its child nodes.
This implies that each cell in the output matrix at the root node depends on at most 4logn = n2

cells in the corresponding output matrices at the leaf nodes. If we were to compute all output cells
of all output matrices at all nodes, the total work would explode to O (nw × n2) = O (nw+2). To
keep the work very close to O (nw), we split the entire recursion tree into stages. We then use
single-point computation of output cells in stages.

In this step, we compute the output matrix of all nodes in the recursion tree. The phase
consists of h+1 sequential stages: 0, 1, . . . , h, as shown in Figure 5.4 (replace ci’s with di’s), such
that the height of stage i is �xed at di log n, where h and di are given below:

di =


0 if i = −1,

1− βi+1 if i ∈ [0, h− 1],

1 if i = h.

such that w = log2 7, β =
4− w

2
, h = log 2

4−w

2 log n

log log log n
− 1.

(5.2)

In step 1, we computed the input matrices in the top-down fashion. In contrast, in this step,
we construct the output matrices at di�erent recursion levels in a bottom-up fashion. In other
words, we compute the last stage Sh �rst, then stage Sh−1, and so on until stage S0. At stage S0,
the �nal output matrix X will be of size n× n.

Please refer to Figure (the Compute-Output-Matrices algorithm) for computing the output
matrix for all leaf nodes in all stages. We �rst descend the tree until we reach the last stage Sh.
We know that all cells in the leaf nodes of this stage (or the recursion tree) already store the input
U and V matrices using which we can compute the output matrices at that level. Using these
output matrices at the leaf level of Sh, we compute the output matrices at the root level of Sh
(or the leaf level of Sh−1). Using these matrices at the leaf level of Sh−1, we compute the output
matrices at the root level of Sh−1. This process continues until we reach the root level of S0 (or
the root node of the entire recursion tree), which is the desired matrix product.

The way an output matrix at the root level is computed from the output matrices at the leaf
level of stage Si is as follows. For all cells in the output matrix at the root level, we invoke the
function Compute-Output-Cell. This function computes the �nal value at that cell.

The working of the Compute-Output-Cell algorithm is shown in Figure 5.5 (right). The
�gure shows the way in which a highlighted cell in the output matrix at the root level is computed.
The highlighted cell belongs to the �rst quadrant (11) of the output matrix. From the logic of the
Strassen’s MM algorithm, we know that the �rst quadrant of the output matrix of a node is
computed by adding the output matrices of the 0th, 3rd, and 6th child nodes and subtracting that
of the 4th child node. We can compute the highlighted cell from four cells in the next level in
O (1) time. Now, consider the output cell in the 3rd child node of the root node. This cell belongs
to the third quadrant (22) of that matrix. Again, from the logic of the Strassen’s MM algorithm,
the fourth quadrant of the matrix is computed by adding the output matrices of the 0th, 2nd, and
5th child nodes and subtracting that of the 1st child node. We continue the process until we reach
the leaf level of that stage.

Once cells in the output matrices at the root level of a stageSi are computed, the algorithm will
proceed to computing the cells in the output matrices at the root level of stage Si−1 recursively
until we reach the root node of the entire recursion tree.

105

Lemma 43. Compute-Output-Matrices has a complexity of O (nw log log n) work, O (log n)
span, and O (nw) space.

Proof. [Work.] We compute the output matrix in h+ 1 stages S0, S1, . . . , Sh, where
h = logw−1(log n/ log log log n). SupposeWi de�nes the work done at stage Si. We �rst come up
with a generic formula for Wi. We use a direct proof to show that Wi = O (nw), which implies
that the total work is

∑h
i=0Wi = O (nw log log n).

We computeWi for i ∈ [0, h−1]. Each output matrix at the root level of stageSi is constructed
from the output matrices at the leaf level of the stage. All cells in all output matrices at the root
level of stage Si are computed in parallel. #Nodes at the root level of stage Si is 7di−1 logn = nwdi−1 .
Each such matrix has (n1−di−1)2 = n2(1−di−1) cells. Each cell at a recursion level ` depends on at
most 4 output cells in recursion level `+ 1. Hence, each cell in a matrix at the root level of stage
Si depends on O(4(di−di−1) logn) = O

(
n2(di−di−1)

)
cells in a matrix at the leaf level of the stage.

Hence, Wi = O
(
nwdi−1n2(1−di−1)n2(di−di−1)

)
= O

(
n2di+(w−4)di−1+2

)
.

To show that Wi = O (nw) for all i ∈ [0, h − 1], it is enough to prove that 2di + (w −
4)di−1 + 2 = w. We substitute the values of di and di−1 from equation 5.2 and simplify to get:
2di + (w − 4)di−1 + 2 = w.

We now compute Wh. We see that Wh = O(n2dh+(w−4)dh−1+2) using the equation aforemen-
tioned. We substitute the values of dh, dh−1, h, and β from equation 5.2 and simplify to obtain
Wh = O(nw · n(4−w)(1−dh−1)) = O(nw · n2βh+1

) = O (nw log log n).
Combining the work of the �rst h stages and the last stage, we get T1(n) =

∑h−1
i=0 Wi+Wh =

O (nw log log n).
[Span.] Let T∞(m, i) denote the span of the Compute-Output-Matrices algorithm starting
from stage i where a matrix at the leaf level is of size m × m. We give a recursive formula to
compute T∞(m, i). Then, the total span for the algorithm is T∞(n, 0).

Consider the Compute-Output-Matrices algorithm. Let ∆di = di+1 − di. #Nodes at the
leaf level of stage Si is 7∆di logn. Launching these nodes in parallel (line 2) incurs a span of
O (∆diw log n). A matrix at the leaf level will be of sizem/(2∆di logn)×m/(2∆di logn). Spawning
Compute-Output-Cell function for all cells (lines 6, 7) incur a span ofO (2 logm− 2∆di log n).
Executing the Compute-Output-Cell algorithm incurs O (∆di log n) span. Adding all these
spans give us O (∆di log n+ logm).

The span of stage Si recursively depends upon the span of stage Si+1 as the output matrices at
the leaf level of stageSi+1 are constructed from the leaf level matrices of stageSi. Hence, T∞(m, i)
can be recursively de�ned using the previous analysis as: T∞(m, i) = O (log log log n) if i = h
and T∞(m, i) = O (∆di log n+ logm) + T∞(m1−∆di , i + 1) if i < h. Substituting the values of
di from equation 5.2, we get ∆di = 1 − βi+2 − (1 − βi+1) = βi+1(1 − β) = O (βi). We know
thatm starts with n and decreases by a factor of n∆di for every stage. Hence,m = n1−di−1 = nβ

i ,
which implies that logm = βi log n.

By unrolling the recursion and using the fact that βi is a geometric series and β < 1, we
compute the total span as T∞(n, 0) =

∑h−1
i=0 β

i log n+ T∞(n, h) = O (log n).

[Space.] Using a similar analysis as given in Lemma 43, space usage is O (nw).

Theorem 23. The Strassen-S MM algorithm has a complexity ofO (nw log log n) work,O (log n)
span, and O (nw) space.

106

Proof. The theorem follows from lemmas 42 and 43.

5.2.3 Strassen-S-Adaptive MM.

We design a parallel Strassen’s MM algorithm Strassen-S-Adaptive with space-span trade-o�,
which for any given s amount of space in the range [n2, nw], achieves the optimal span for that
space and performing work very close to O (nw). Suppose we are given the input matrices U
and V . We need to compute the output matrix X using space s ∈ [n2, nw]. Then, the algorithm
works as follows. Observe that there are log n levels in the recursion tree of the Strassen’s MM
algorithm. We split the entire recursion tree, at level t, into two parts: the top part and the
bottom part. The threshold level t depends on the value s. We execute the classical sequential
Strassen’s MM algorithm in the top portion of the recursion tree and the Strassen-S algorithm
in the bottom portion of the tree.

Theorem 24. The Strassen-S-Adaptive MM algorithm has a complexity ofO (nw log log n) work
and O ((nw/s) log n) span, given Θ (s) amount of space.

Proof. LetT1(n, s), T∞(n, s), andS∞(n, s) denote work, span, and space of Strassen-S-Tunable.
Let T1(n), T∞(n), and S∞(n) denote work, span, and space of Strassen-S. Note that Strassen-S
does not have a space parameter.

We run the sequential Strassen’s MM algorithm for the �rst t levels of the recursion tree. At
level t, the size of the matrices is n/2t × n/2t and the number of matrices is 7t. We have

T1(n, s) = 7T1(n/2, s) +O
(
n2
)

= · · · = 7tT1(n/2t) +O
(
7tn2

)
T∞(n, s) = 7T∞(n/2, s) +O (log n) = · · · = 7tT∞(n/2t) +O

(
7t log n

)
S∞(n, s) = S∞(n/2, s) +O

(
n2
)

= · · · = S∞(n/2t) +O
(
n2
)

= O
(
(n/2t)w + n2

)
Equating the total space usage with s, we get s = Θ ((n/2t)w + n2). We simplify this expres-

sion to get the two expressions n/2t = Θ
(
(s− n2)(1/w)

)
and 7t = Θ (nw/(s− n2)). Substituting

the two expressions in the span and work equations, we have

T∞(n/2t) = O
(
log2(n/2t)

)
= O

(
log2 s

)
= O (log n)

T∞(n, s) = 7tT∞(n/2t) +O
(
7t log n

)
= O ((nw/s) log n)

T1(n/2t) = (n/2t)w log log(n/2t)

T1(n, s) = 7t · T1(n/2t) +O
(
7tn2

)
= O (nw log log n)

Strassen-W-Adaptive MM We can show that by using the sequential 1-way Strassen’s MM
until recursion level t (depends on s units of space) and then switching to the 7-way Strassen’s
MM instead of Strassen-S, we can achieve work bound the same as that of the classical Strassen’s
MM, but the span increases by an extra O (log n) factor.

Theorem 25. The Strassen-W-Adaptive MM algorithm has a complexity of O (nw) work and

O
(
(nw/s) log2 n

)
span, given Θ (s) amount of space.

107

Proof. The proof is similar to that of Theorem 24 except thatT∞(n/2t) = O
(
log2 n

)
andT1(n/2t) =

(n/2t)w.

Corollary 2. With s = Θ (n2) units of space, (i) Strassen-S-Adaptive has a complexity of

O (nw log log n) work and O (nw−2 log n) span and (ii) Strassen-W-Adaptive has a complexity

of O (nw) work and O
(
nw−2 log2 n

)
span.

Strassen-WMM We ask the following question. If the work is bounded byO (nw), what is the
best span achievable by a parallel Strassen’s MM algorithm? It turns out that with O (nw) work
bound one can achieve O (log n log log log n) span.

We split the entire recursion tree, at level log(n/(log log n)1/(w−2)), into two parts: the top
and the bottom parts. We execute the Strassen-S in the top portion and the quadratic space
Strassen-W-Adaptive algorithm in the bottom portion.

Theorem26. The Strassen-WMMalgorithmhas a complexity ofO (nw)work,O (log n · log log log n)
span, and O (nw/ log log n) space.

Proof. There are m matrices of size (n/m)× (n/m) at the switching level t, where
m = n/(log log n)1/(w−2)). At each node at the threshold level, we add two matrices with two for
loops. Adding two matrices hasO (log(n/m)) span andO ((n/m)2) work. From Theorem 23, the
span and work for Strassen-S areO (logm · log(n/m)) andO ((mw log logm) · (n/m)2) respec-
tively. The span and work for Strassen-W-Tunable inmw leaves areO

(
(n/m)(w−2) log2(n/m)

)
andO (mw(n/m)w) respectively. Combining the span from Strassen-S and Strassen-W-Tunable,
we get the expression for span for the hybrid algorithm as follows.

When m = n/(log log n)1/(w−2), then n/m = (log log n)1/(w−2). We compute span as

T∞(n) = O
(
logm · log(n/m) + (n/m)w−2 log2(n/m)

)
= O (log n · log log log n) .

Combining work from both Strassen-S and Strassen-W-Tunable, we get the total work as:

T1(n) = O
(
(mw log logm)(n/m)2 +mw(n/m)w

)
= O

(
(nw/(log log n)

w
w−2)(log log n)

2
w−2 + nw

)
= O (nw) .

We use s = Θ (nw/ log log n) space for the whole algorithm.

S∞(n) = O
(
mw(n/m)2

)
= O

(
(nw/(log log n)

w
w−2)(log log n)

2
w−2

)
= O (nw/ log log n) .

Strassen-like MM Algorithms. Let recursive algorithm ALG multiply two input matrices U
and V of size n×n and produce output matrix X , that is X = U ·V . ALG divides U into m×m
blocks each of size (n/m)× (n/m). Similarly, ALG divides the other input matrix V and output
matrixX . Suppose that algorithm ALG hasR recursive calls in each level of recursion. Then ALG
creates R temporary matrices each for both input matrices and the output matrix. In particular,

108

the computation of ALG in each level of recursion is as follows. For each r = 0, 1, . . . , R − 1,
Here A(r), B(r) and C(r) represent temporary matrices.

A(r) ←− 0;B(r) ←− 0

A(r) ←− A(r) + α
(r)
i,kUi,k for i, k = 0, 1, · · · ,m− 1

B(r) ←− B(r) + β
(r)
k,jVk,j for k, j = 0, 1, . . . ,m− 1

C(r) ←− A(r) ·B(r)

Xi,j ←− Xi,j + γ
(r)
i,j C

(r) for i, j = 0, 1, . . . ,m− 1.

We call ALG a Strassen-like MM algorithm [105]. Sequential algorithm ALG does O (nw) work
where w = logmR. In Strassen, m = 2 and R = 7.

It is important to observe that the approaches used by Strassen-S, Strassen-W, Strassen-S-
Adaptive, and Strassen-W-Adaptive MM algorithms apply to all Strassen-like MM algorithms.

5.3 Lower Bounds.

We give the following lower bound of any parallel version of Strassen’s MM algorithm using s
units of space in the binary-forking model.

Theorem 27. Let A be a parallel version of Strassen’s MM algorithm which uses s units of extra
space. Then A’s span is Ω (max(nw/s, log n)) in the binary-forking model.

Proof. We consider the binary-forking model without atomics [40]. In this model, every binary
operation (addition, subtraction, multiplication and division) is associated with a memory loca-
tion. Speci�cally, the output of such binary operation needs to be written to a memory location.
Concurrent reads from a memory location are allowed, while concurrent writes are not.

Let A be a matrix multiplication serial algorithm with Θ (nw) work where w ≥ 2. Let
T∞(n,w, s) denote the span of any parallel algorithm B that parallelize the serial algorithm A
using s units of space. We do not make any restriction on the number of processors used. We
remark that only heap space is counted in s (all our previous algorithms also allocate space from
heap memory).

We get the �rst lower bound as follows. When we use s units of memory locations, then
from the pigeonhole principle, there must exist a memory location that is subjected to Θ (nw/s)
write operations. As concurrent writes to a memory location are not allowed, the following lower
bound holds: T∞(n,w, s) = Ω (nw/s) .

We get the second lower bound from a more general PRAM CREW model. Thus, it holds for
a more restricted binary-forking model. When we have an unbounded #memory locations and
unbounded #processors, the following lower bound [84] holds for the computation of x1 + x2 +
· · ·+ xn (array-sum) where every si ∈ {0, 1}: T∞(n,w,∞) = Ω (log n) .

As matrix multiplication is at least as hard as array-sum, it must have Ω(log n) span. Com-
bining both the lower bounds, we get the following: T∞(n,w, s) = Ω (max(nw/s, log n)) .

109

Chapter 6

Conclusion

In this dissertation we tackle three vital challenges that arise in shared-memory multiproces-
sor systems: (1) e�ciently managing the memory shared by multiple processors, (2) avoiding
race conditions with minimal loss in parallelism, and (3) synchronizing processors e�ciently to
minimize span. The contribution of this dissertation is thus three-fold. (1) To handle the �rst
challenge, we develop an algorithmic foundation for automated management of shared-memory
in multilevel-memory systems; (2) to handle the second challenge, we give provably good al-
gorithms that schedule memory in a parallel computation to avoid race conditions and achieve
optimal or near-optimal span (parallel running time); (3) to handle the third challenge, we present
techniques that take into account synchronization costs among the processors and yet achieve
optimal span at the cost of slightly increasing work.

We summarize the contribution of each chapter as follows.

6.1 Algorithmic Foundation of Parallel Paging

The fundamental result of this work is that a seemingly unrelated problem called green paging,
with a memory capacity between k and k/p, is essentially equivalent to parallel paging, with
memory capacity k and p processors. Moreover, we obtain tight bounds for both. It is interesting
to note that, informally, an optimal parallel solution must also be “green”; this validates the folk-
lore principle in “practical parallelism” that extra parallelism should never be purchased at a(n
excessive) cost in work-e�ciency.

A crucial di�erence in parallel paging from classic paging, or even from pure page replacement
with variable memory capacity, is that any online parallel paging algorithm is at best Θ(log p)
competitive, even with O(1) resource augmentation: i.e., informally, online memory allocation
is much harder than online page replacement, at least in the presence of signi�cant parallelism
or signi�cant capacity �exibility. Crucially, the source of this log p factor appears to be the lack
of knowledge about future locality of the computation. In practice, future locality can often be
gauged, whether by pro�ling or simply because it does not change too often during the course
of a computation. It would be interesting to incorporate this knowledge into our model, showing
if and to what extent it can rid us of the log p factor. Also, we strongly believe that the log p
factor can in fact subsume the logarithmic factor in ε when translating an e�cient green paging
strategy into a parallel paging algorithm with a low completion time for the all but the εp slowest

110

processors (and that eliminating one will eliminate the other); this is also an obvious avenue for
future work.

We would also remark that to simplify our analysis we have often used constant factors that
are larger that necessary. Reducing constants, both theoretically and experimentally, through
better analysis and more sophisticated algorithms, would be crucial to the practicality of our (or
in fact any) general scheme for both green and parallel paging.

6.2 How toManageHigh-BandwidthMemoryAutomatically

There are a number of relevant theoretical and practical questions we leave for future work.
For instance, we would like to understand the practical impact of this work. Motivated by the
discussion of the work by Butcher et al. [45] in Section 3.1.2, suppose that an HBM manufac-
turer like Intel had known about prioritized far-channel arbitration when they were creating the
relevant system software. Might a di�erently-designed cache mode have given (for example)
GNU::parallel sort a speedup of 1.5x over what it gets now? From the algorithm design per-
spective, we can ask the following questions: (1) Is there a solution to the makespan problem
when the request sequences are not disjoint? (2) Relatedly, we currently consider the p cores to
be running their own independent sequential jobs; what if the cores were running one (or more)
parallel job(s)? (3) What kind of far-channel arbitration policy works with other block replace-
ment policies, for instance, direct-mapped cache? (4) What if we made our model more general
such that the far channel bandwidth was asymptotically larger than 1, but still asymptotically
smaller than p?

6.3 Avoiding Races with Extra Memory

We introduce the discrete resource-time tradeo� problem with resource reuse, in which each
unit of resource is routed along a source to sink path and is possibly used and reused to expedite
activities encountered along that path. We assume that a general duration function (i.e., time
needed to complete an activity as a function of the amount of resources used) is associated with
each activity. We consider two di�erent objective functions: (1) optimize makespan given a
limited resource budget and (2) optimize resource requirements given a target makespan.

Our original motivation was to mitigate the cost of data races in shared-memory parallel
programs. We achieve this by using extra space to reduce the time it takes to perform con�ict-
free write operations to shared memory locations. We consider three types of duration functions:
general non-increasing functions, recursive binary reduction functions, and multiway (k-way)
splitting functions.

We present the �rst hardness and approximation hardness results as well as the �rst ap-
proximation algorithms for our problems. We show that the makespan optimization problem
is strongly NP-hard under all three types of duration functions. When the duration function is
general non-increasing we also show that it is strongly NP-hard to achieve an approximation ratio
less than 2 for the makespan optimization problem and less than 3

2
for the resource optimization

problem. We give a
(

1
α
, 1

1−α

)
bi-criteria (resource, makespan) approximation algorithm for that

same duration function, where 0 < α < 1. We present an improved
(

4
3
, 14

5

)
bi-criteria approxima-

111

tion algorithm for the recursive binary reduction function. We also give 4- and 5-approximation
algorithms for the makespan optimization problem under recursive binary reduction functions
and multiway (k-way) splitting functions, respectively.

6.4 Reducing Synchronization Cost with Extra Memory

We presented several fundamental low-span algorithms in the binary-forking model without us-
ing locks and atomic instructions. Our parallel algorithms perform work (almost) the same as
that of the serial algorithms from which they are derived. All our results improve known results
in the binary-forking model with and without atomics.

We introduced the technique of single-point computation in stages through Strassen’s MM to
carefully set a balance between high work-sharing and high span of the given algorithm and low
work-sharing and low span of the single-point computation variant to obtain parallel algorithms
with optimal/near-optimal span without work blow-up. This technique can be used to design
e�cient parallel algorithms for other problems too.

An interesting open question that remains is whether there exists a parallel Strassen’s MM
algorithm that performs O(nw) work and achieves O(log n) span simultaneously.

112

Bibliography

[1] High-performance on-package memory, January 2015. http:
//www.micron.com/products/hybrid-memory-cube/
high-performance-on-package-memory.

[2] Fast, multi-threaded malloc() and nifty performance analysis tools.
http://code.google.com/p/gperftools/, Google gperftools.

[3] Lockless memory allocator. http://locklessinc.com/, llalloc.

[4] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing. In ACM

symposium on Parallel algorithms and architectures, pages 1–12, 2000.

[5] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical memory.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages
305–314, May 1987.

[6] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical
Computer Science, pages 3–28, March 1990.

[7] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, Sept. 1988.

[8] K. Agrawal, M. Bender, R. Das, W. Kuszmaul, E. Peserico, and M. Scquizzato. Brief an-
nouncement: Green paging and parallel paging. In Proc. 32st ACM on Symposium on Par-

allelism in Algorithms and Architectures, 2020.

[9] K. Agrawal, M. A. Bender, R. Das, W. Kuszmaul, E. Peserico, and M. Scquizzato. Brief an-
nouncement: Green paging and parallel paging. In Proceedings of the 32nd ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), pages 493–495, 2020.

[10] K. Agrawal, M. A. Bender, R. Das, W. Kuszmaul, E. Peserico, and M. Scquizzato. Tight
bounds for parallel paging and green paging. In Proceedings of the 2021 ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), pages 3022–3041. SIAM, 2021.

[11] Z. Ahmad, R. Chowdhury, R. Das, P. Ganapathi, A. Gregory, and M. M. Javanmard. Low-
depth parallel algorithms for the binary-forking model without atomics. arXiv preprint

arXiv:2008.13292, 2020.

113

http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory

[12] M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova. Fast, multicore-scalable, low-
fragmentation memory allocation through large virtual memory and global data structures.
In ACM SIGPLAN Notices, volume 50, pages 451–469. ACM, 2015.

[13] C. Akkan, A. Drexl, and A. Kimms. Network decomposition-based benchmark results
for the discrete time–cost tradeo� problem. European Journal of Operational Research,
165(2):339–358, 2005.

[14] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. In
SODA, volume 99, pages 31–40. Citeseer, 1999.

[15] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling problem.
In Proc. 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 580–589,
1996.

[16] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling problem.
Algorithmica, 32(2):277–301, February 2002.

[17] S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equivalence of
paging strategies. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 229–237. Society for Industrial and Applied Mathematics, 2007.

[18] S. Angelopoulos and P. Schweitzer. Paging and list update under bijective analysis. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages
1136–1145. SIAM, 2009.

[19] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel algorithms
for private-cache chip multiprocessors. In Proceedings of the Twentieth Annual Symposium

on Parallelism in Algorithms and Architectures (SPAA), pages 197–206, 2008.

[20] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual randomized algorithm for weighted
paging. Journal of the ACM (JACM), 59(4):1–24, 2012.

[21] R. Barve and J. S. Vitter. External memory algorithms with dynamically changing memory
allocations. Technical report, Duke University, 1998.

[22] R. D. Barve, E. F. Grove, and J. S. Vitter. Application-controlled paging for a shared cache.
SIAM Journal on Computing, 29(4):1290–1303, 2000.

[23] L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM Systems

Journal, 5(2):78–101, 1966.

[24] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGu�ey, and J. Shun.
Parallel algorithms for asymmetric read-write costs. In ACM Symposium on Parallelism in

Algorithms and Architectures, pages 145–156, 2016.

[25] M. Bender, R. Chowdhury, R. Das, R. Johnson, W. Kuszmaul, A. Lincoln, Q. Liu, J. Lynch,
and H. Xu. Closing the gap between cache-oblivious and cache-adaptive analysis. In Proc.

32st ACM on Symposium on Parallelism in Algorithms and Architectures, 2020.

114

[26] M. A. Bender, J. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore, B. Moseley,
C. A. Phillips, D. Resnick, and A. Rodrigues. Two-level main memory co-design: Multi-
threaded algorithmic primitives, analysis, and simulation. In Proc. 29th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Hyderabad, INDIA, May 2015.

[27] M. A. Bender, J. W. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore, B. Mose-
ley, C. A. Phillips, D. Resnick, and A. Rodrigues. Two-level main memory co-design:
Multi-threaded algorithmic primitives, analysis, and simulation. Journal of Parallel and

Distributed Computing, 102:213–228, 2017.

[28] M. A. Bender, J. W. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore, B. Mose-
ley, C. A. Phillips, D. S. Resnick, and A. Rodrigues. Two-level main memory co-design:
Multi-threaded algorithmic primitives, analysis, and simulation. Journal of Parallel and

Distributed Computing, 102:213–228, 2017.

[29] M. A. Bender, J. W. Berry, S. D. Hammond, B. Moore, B. Moseley, and C. A. Phillips. k-
means clustering on two-level memory systems. In B. Jacob, editor, Proc. 2015 International
Symposium on Memory Systems, (MEMSYS), pages 197–205, Washington DC, USA, October
2015.

[30] M. A. Bender, A. Conway, M. Farach-Colton, W. Jannen, Y. Jiao, R. Johnson, E. Knorr,
S. McAllister, N. Mukherjee, P. Pandey, D. E. Porter, J. Yuan, and Y. Zhan. Small re�ne-
ments to the dam can have big consequences for data-structure design. In Proc. 31st ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 265–274, Phoenix,
AZ, June 2019.

[31] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman, R. Johnson, A. Lincoln, J. Lynch,
and S. McCauley. Cache-adaptive analysis. In Proc. 28th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), pages 135–144, 2016.

[32] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman, R. Johnson, A. Lincoln, J. Lynch,
and S. McCauley. Cache-adaptive analysis. In Proc. 28th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), pages 135–144, July 2016.

[33] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and S. McCauley.
Cache-adaptive algorithms. In Proceedings of the 25th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 958–971, 2014.

[34] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and S. McCauley.
Cache-adaptive algorithms. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 958–971, Portland, OR, USA, January 2014.

[35] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. In ACM SIGARCH Computer Architecture News,
volume 28, pages 117–128. ACM, 2000.

[36] E. Blayo, L. Debreu, G. Mounie, and D. Trystram. Dynamic load balancing for ocean circu-
lation model with adaptive meshing. In European Conference on Parallel Processing, pages
303–312. Springer, 1999.

115

[37] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In Pro-

ceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 501–
510. Society for Industrial and Applied Mathematics, 2008.

[38] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In SODA,
volume 8, pages 501–510. Citeseer, 2008.

[39] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling irregular parallel
computations on hierarchical caches. In ACM symposium on Parallelism in algorithms and

architectures, pages 355–366, 2011.

[40] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in the binary-
forking model. In ACM Symposium on Parallelism in Algorithms and Architectures, pages
89–102, 2020.

[41] O. A. R. Board. OpenMP: A proposed industry standard API for shared mem-
ory programming. White Paper, 1997. url: http://www.openmp.org/specs/mp-
documents/paper/paper.ps.

[42] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[43] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of
reference. Journal of Computer and System Sciences, 50(2):244–258, 1995.

[44] A. Borodin, P. Raghavan, S. Irani, and B. Schieber. Competitive paging with locality of ref-
erence. In Proceedings of the twenty-third annual ACM symposium on Theory of computing,
pages 249–259. Citeseer, 1991.

[45] N. Butcher, S. L. Olivier, J. Berry, S. D. Hammond, and P. M. Kogge. Optimizing for knl usage
modes when data doesn’t �t in mcdram. In Proceedings of the 47th International Conference

on Parallel Processing, page 37. ACM, 2018.

[46] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally, M. Houle, M. Hubbell,
M. Jones, A. Klein, et al. Benchmarking data analysis and machine learning applications
on the intel knl many-core processor. arXiv preprint arXiv:1707.03515, 2017.

[47] P. Cao, E. W. Felten, and K. Li. Application-controlled �le caching policies. In Proceedings

of the USENIX Summer 1994 Technical Conference (USTC), pages 171–182, 1994.

[48] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. In ACM

International Conference on Supercomputing 25th Anniversary Volume, pages 402–412, 2007.

[49] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch, B. Falsa�,
L. Fix, N. Hardavellas, T. C. Mowry, et al. Scheduling threads for constructive cache sharing
on cmps. In Proceedings of the nineteenth annual ACM symposium on Parallel algorithms

and architectures, pages 105–115. ACM, 2007.

116

[50] M. Chrobak. SIGACT news online algorithms column 17. SIGACT News, 41(4):114–121,
2010.

[51] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[52] R. Cole and V. Ramachandran. Bounding cache miss costs of multithreaded computations
under general schedulers. In Proceedings of the 29th ACM Symposium on Parallelism in

Algorithms and Architectures, pages 351–362, 2017.

[53] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM Transactions

on Parallel Computing, 3(4):1–31, 2017.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2009.

[55] R. Das, K. Agrawal, M. Bender, J. Berry, B. Moseley, and C. Phillips. How to manage high-
bandwidth memory automatically. In Proc. 32st ACM on Symposium on Parallelism in Al-

gorithms and Architectures, 2020.

[56] R. Das, K. Agrawal, M. A. Bender, J. Berry, B. Moseley, and C. A. Phillips. How to manage
high-bandwidth memory automatically. In Proceedings of the 32nd ACM Symposium on

Parallelism in Algorithms and Architectures, pages 187–199, 2020.

[57] R. Das, S.-Y. Tsai, S. Duppala, J. Lynch, E. M. Arkin, R. Chowdhury, J. S. Mitchell, and
S. Skiena. Data races and the discrete resource-time tradeo� problem with resource reuse
over paths. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures,
pages 359–368, 2019.

[58] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. The discrete time-cost tradeo� problem
revisited. European Journal of Operational Research, 81(2):225–238, 1995.

[59] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost tradeo�
problem for project networks. Operations research, 45(2):302–306, 1997.

[60] A. S. de Loma. New results on fair multi-threaded paging. Electronic Journal of SADIO,
1(1):21–36, 1998.

[61] D. W. Doer�er. Trinity: Next-generation supercomputer for the asc program. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2014.

[62] R. Dorrigiv, M. R. Ehmsen, and A. López-Ortiz. Parameterized analysis of paging and list
update algorithms. Algorithmica, 71(2):330–353, 2015.

[63] R. Dorrigiv, A. López-Ortiz, and J. I. Munro. On the relative dominance of paging algo-
rithms. Theoretical Computer Science, 410(38-40):3694–3701, 2009.

[64] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM Journal on

Discrete Mathematics, 2(4):473–487, 1989.

117

[65] P.-F. Dutot, G. Mounié, and D. Trystram. Scheduling parallel tasks: Approximation algo-
rithms, 2004.

[66] M. Feng and C. E. Leiserson. E�cient detection of determinacy races in Cilk programs.
Theory of Computing Systems, 32(3):301–326, 1999.

[67] E. Feuerstein and A. S. de Loma. On-line multi-threaded paging. Algorithmica, 32(1):36–60,
2002.

[68] E. Feuerstein and A. Strejilevich de Loma. On-line multi-threaded paging. Algorithmica,
32(1):36–60, 2002.

[69] A. Fiat and A. R. Karlin. Randomized and multipointer paging with locality of reference.
In Proceedings of the 27th annual ACM Symposium on Theory of Computing (STOC), pages
626–634, 1995.

[70] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive
paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

[71] http://docs.oracle.com/javase/tutorial/essential/
concurrency/forkjoin.html.

[72] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++
hyperobjects. In Proceedings of the twenty-�rst annual ACM Symposium on Parallelism in

Algorithms and Architectures, pages 79–90. ACM, 2009.

[73] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In Proc. 40th Annual ACM Symposium on Foundations of Computer Science (FOCS), pages
285–297, 1999.

[74] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
ACM Transactions on Algorithms, 8(1):4, Jan. 2012.

[75] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5 multithreaded
language. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 212–223, 1998.

[76] D. R. Fulkerson. A network �ow computation for project cost curves. Management science,
7(2):167–178, 1961.

[77] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[78] P. B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asynchronous
pram model. In European Conference on Parallel Processing, pages 277–292. Springer, 1996.

[79] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Elastic caching. In Proceedings

of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 143–156,
2019.

118

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

[80] A. Hassidim. Cache replacement policies for multicore processors. In A. C. Yao, editor,
Proc. Innovations in Computer Science (ICS), pages 501–509, 2010.

[81] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation
of concurrent data structures. In ACM SIGPLAN Notices, volume 48, pages 317–328. ACM,
2013.

[82] S. Irani. Competitive analysis of paging. In Developments from a June 1996 Seminar on

Online Algorithms: The State of the Art, pages 52–73, 1998.

[83] S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive algorithms for paging with
locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996.

[84] J. JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1997.

[85] K. Jansen and H. Zhang. An approximation algorithm for scheduling malleable tasks under
general precedence constraints. ACM Transactions on Algorithms (TALG), 2(3):416–434,
2006.

[86] M. M. Javanmard, P. Ganapathi, R. Das, Z. Ahmad, S. Tschudi, and R. Chowdhury. Toward
e�cient architecture-independent algorithms for dynamic programs. In International Con-

ference on High Performance Computing, pages 143–164. Springer, 2019.

[87] S. Kamali and H. Xu. Beyond worst-case analysis of multicore caching strategies. In Sym-

posium on Algorithmic Principles of Computer Systems (APOCS21). SIAM, 2021.

[88] A. K. Katti and V. Ramachandran. Competitive cache replacement strategies for shared
cache environments. In Proceedings of the 26th International Parallel and Distributed Pro-

cessing Symposium (IPDPS), pages 215–226, 2012.

[89] A. K. Katti and V. Ramachandran. Competitive cache replacement strategies for shared
cache environments. In 2012 IEEE 26th International Parallel and Distributed Processing

Symposium, pages 215–226. IEEE, 2012.

[90] J. E. Kelley Jr. Critical-path planning and scheduling: Mathematical basis. Operations

research, 9(3):296–320, 1961.

[91] J. E. Kelley Jr and M. R. Walker. Critical-path planning and scheduling. In Papers presented

at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference, pages 160–173.
ACM, 1959.

[92] http://www.hpcwire.com/2014/06/24/.

[93] P. Kogge and J. Shalf. Exascale computing trends: Adjusting to the" new normal"’for com-
puter architecture. Computing in Science & Engineering, 15(6):16–26, 2013.

[94] R. Kumar, M. Purohit, Z. Svitkina, and E. Vee. Interleaved caching with access graphs. In
Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1846–1858, 2020.

119

http://www.hpcwire.com/2014/06/24/

[95] J. K. Lenstra and A. Rinnooy Kan. Complexity of scheduling under precedence constraints.
Operations Research, 26(1):22–35, 1978.

[96] R. Lepère, G. Mounié, and D. Trystram. An approximation algorithm for scheduling trees
of malleable tasks. European Journal of Operational Research, 142(2):242–249, 2002.

[97] R. Lepere, D. Trystram, and G. J. Woeginger. Approximation algorithms for scheduling
malleable tasks under precedence constraints. International Journal of Foundations of Com-

puter Science, 13(04):613–627, 2002.

[98] A. Li, W. Liu, M. R. Kristensen, B. Vinter, H. Wang, K. Hou, A. Marquez, and S. L. Song.
Exploring and analyzing the real impact of modern on-package memory on hpc scienti�c
kernels. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, page 26, 2017.

[99] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into mul-
ticore cache partitioning: Bridging the gap between simulation and real systems. In 2008

IEEE 14th International Symposium on High Performance Computer Architecture, pages 367–
378. IEEE, 2008.

[100] A. Lincoln, Q. C. Liu, J. Lynch, and H. Xu. Cache-adaptive exploration: Experimental results
and scan-hiding for adaptivity. In Proc. 30th on Symposium on Parallelism in Algorithms and

Architectures (SPAA), pages 213–222, 2018.

[101] A. López-Ortiz and A. Salinger. Minimizing cache usage in paging. In Proceedings of the

10th Workshop on Approximation and Online Algorithms (WAOA), pages 145–158, 2012.

[102] A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In Proceedings of the

3rd Innovations in Theoretical Computer Science conference (ITCS), pages 113–127, 2012.

[103] A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In Proceedings of the

3rd Innovations in Theoretical Computer Science Conference, pages 113–127. ACM, 2012.

[104] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[105] W. F. McColl and A. Tiskin. Memory-e�cient matrix multiplication in the bsp model.
Algorithmica, 24(3-4):287–297, 1999.

[106] I. Menache and M. Singh. Online caching with convex costs. In Proceedings of the 27th

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 46–54, 2015.

[107] R. H. Möhring. Computationally tractable classes of ordered sets. In Algorithms and order,
pages 105–193. Springer, 1989.

[108] R. H. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations.
ACM Letters on Programming Languages and Systems (LOPLAS), 1(1):74–88, 1992.

[109] http://nnsa.energy.gov/mediaroom/pressreleases/trinity.

120

http://nnsa.energy.gov/mediaroom/pressreleases/trinity

[110] V. Y. Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting
and canceling for constructing fast algorithms for matrix operations. In Symposium on

Foundations of Computer Science, pages 166–176, 1978.

[111] D. Panagiotakopoulos. A cpm time-cost computational algorithm for arbitrary activity cost
functions. INFOR: Information Systems and Operational Research, 15(2):183–195, 1977.

[112] K. Panagiotou and A. Souza. On adequate performance measures for paging. In Proceedings

of the thirty-eighth annual ACM symposium on Theory of computing, pages 487–496, 2006.

[113] E. Peserico. Paging with dynamic memory capacity. CoRR, abs/1304.6007, 2013.

[114] E. Peserico. Paging with dynamic memory capacity. In Proceedings of the 36th International

Symposium on Theoretical Aspects of Computer Science (STACS), pages 56:1–18, 2019.

[115] S. Phillips Jr and M. I. Dessouky. Solving the project time/cost tradeo� problem using the
minimal cut concept. Management Science, 24(4):393–400, 1977.

[116] V. Ramachandran and E. Shi. Data oblivious algorithms for multicores. arXiv preprint

arXiv:2008.00332, 2020.

[117] J. Reinders. Intel Threading Building Blocks: out�tting C++ for multi-core processor paral-

lelism. O’Reilly Media, Inc., 2007.

[118] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access scheduling.
In ACM SIGARCH Computer Architecture News, volume 28, pages 128–138. ACM, 2000.

[119] D. R. Robinson. A dynamic programming solution to cost-time tradeo� for cpm. Manage-

ment Science, 22(2):158–166, 1975.

[120] T. J. Schaefer. The complexity of satis�ability problems. In Proceedings of the tenth annual

ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

[121] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable locality-conscious mul-
tithreaded memory allocation. In Proceedings of the 5th international symposium onMemory

management, pages 84–94. ACM, 2006.

[122] M. Scquizzato. Paging on Complex Architectures. PhD thesis, University of Padova, 2013.

[123] S. S. Seiden. Randomized online multi-threaded paging. Nordic Journal of Computing,
6(2):148–161, 1999.

[124] N. Shavit. Data structures in the multicore age. Communications of the ACM, 54(3):76–84,
2011.

[125] M. Skutella. Approximation algorithms for the discrete time-cost tradeo� problem. Math-

ematics of Operations Research, 23(4):909–929, 1998.

[126] D. D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and paging rules. Com-

munications of the ACM, 28(2):202–208, 1985.

121

[127] D. D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and paging rules. Com-

mun. ACM, 28(2):202–208, Feb. 1985.

[128] G. M. Slota and S. Rajamanickam. Experimental design of work chunking for graph algo-
rithms on high bandwidth memory architectures. In 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 875–884. IEEE, 2018.

[129] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agar-
wal, and Y.-C. Liu. Knights landing: Second-generation intel xeon phi product. Ieee micro,
36(2):34–46, 2016.

[130] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory. IEEE Transac-

tions on Computers, 41:1054–1068, 1992.

[131] V. Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356,
1969.

[132] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache memory. The
Journal of Supercomputing, 28(1):7–26, 2004.

[133] https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.
110%29.aspx.

[134] T. N. Theis and H.-S. P. Wong. The end of moore’s law: A new beginning for information
technology. Computing in Science & Engineering, 19(2):41–50, 2017.

[135] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving disk cache hit-ratios through cache
partitioning. IEEE Transactions on Computers, 41:665–676, 1992.

[136] https://www.threadingbuildingblocks.org.

[137] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling parallelizable tasks. In
Proceedings of the fourth annual ACM Symposium on Parallel Algorithms and Architectures,
pages 323–332. ACM, 1992.

[138] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier, M. Ashfaq, B. Messer,
and S. Parete-Koon. Announcing supercomputer summit. Technical report, ORNL (Oak
Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)), 2016.

[139] R. S. Williams. What’s next?[the end of moore’s law]. Computing in Science & Engineering,
19(2):7–13, 2017.

[140] Y. Xie and G. H. Loh. Pipp: promotion/insertion pseudo-partitioning of multi-core shared
caches. ACM SIGARCH Computer Architecture News, 37(3):174–183, 2009.

[141] N. E. Young. Online paging and caching. 2008.

122

https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx
https://www.threadingbuildingblocks.org

	Acknowledgments
	Publications
	Introduction
	Scope and Contribution of this Dissertation
	Algorithmic Foundation for Automated Management of Shared Memory (Handling the First Challenge):
	Parallel Paging
	Paging in High-Bandwidth Memory (HBM)

	Avoiding Race Conditions with Extra Memory (Handling the Second Challenge)
	Reducing Synchronization Cost of the Processors with Extra Memory (Handling the Third Challenge)
	Organization of this Dissertation

	Algorithmic Foundation of Parallel Paging
	Introduction
	Technical Overview
	A Useful Tool: Box Profiles
	Tight Bounds for Green Paging
	Using Green Paging to Solve Parallel Paging
	Transforming Green Paging Lower Bounds into Parallel Paging Lower Bounds
	Putting Pieces Together

	The Models
	The Green Paging Model
	The Parallel Paging Model

	A Toolbox for Paging Analysis
	Memory Expansions
	Space and Time Normalization
	Compartmentalization

	The Tight Relationship between Green Paging and Parallel Paging
	Transforming Green Paging Algorithms into Parallel Paging Algorithms
	Transforming Green Paging Lower Bounds into Parallel Paging Lower Bounds

	Tight Bounds for Green Paging
	Lower Bounds for Green Paging
	normalnormalO(logp)-Competitive Green Paging

	How to Manage High-Bandwidth Memory Automatically
	Introduction
	Results
	Related Work

	HBM Model
	Technical Overview
	O(1)-Competitive Online Algorithm for HBM Block Management
	Constant-approximation offline algorithm
	Online algorithm

	FCFS with LRU is not a Good Policy in the HBM Model
	NP-hardness of the Makespan-minimization Problem
	Performance Metric in HBM Model
	How does uneven bandwidth affect makespan?

	Minimizing Total Completion Time Offline
	Reduction to a resource constrained scheduling problem
	Solving the Scheduling Problem

	Avoiding Races with Extra Memory
	Introduction
	Preliminaries, Problem Formulation
	Approximation Algorithms
	Bi-criteria Approximation for Non-increasing Duration Functions
	Single-criteria Approximation for k-Way and Recursive Binary Splitting
	Improved Bi-criteria Approximation for Recursive Binary Splitting Functions
	Exact Algorithm for Series-Parallel Graphs

	NP-Hardness
	Reuse Over a Path with General Non-increasing Duration Function
	Reuse Over a Path with Recursive Binary Splitting and k-Way Splitting
	Underlying Bounded Treewidth Graph

	Alternate hardness proof from numerical 3D matching

	Reducing Synchronization Cost with Extra Memory
	Introduction
	Strassen's Matrix Multiplication
	k-way Strassen's MM.
	Strassen-S MM.
	Strassen-S-Adaptive MM.

	Lower Bounds.

	Conclusion
	Algorithmic Foundation of Parallel Paging
	How to Manage High-Bandwidth Memory Automatically
	Avoiding Races with Extra Memory
	Reducing Synchronization Cost with Extra Memory

