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1. Understanding Variational Auto Encoder

Variational Auto Encoder (VAE)[1] encodes images into vectors in a latent space, and then decode the latent vectors into
images. We denote

o z: latent variable, z € R”
« x: data (images), z € R7TW
* p(z): evidence probability

)
* p(z): prior probability

x|2): likelihood probability

The goal is to find p(z|z) given p(z) and x. Once p(z|x) is known, for each sample in x, we can represent it with a low
dimensional latent vector z by network forward propagration: z < p(z|x) < x. However,
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p(z|z) is intractable due to the intractable denominator. We resort to variational inference which approximates p(z|z) with a
distribution ¢(z|z) from a tractable family (e.g., Gaussian distribution). Then the task is translated to: find ¢(z|z) that is as
close as possible to p(z|x). Formally, their distributional distance to be minimized is measured by KL divergence:
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EvidenceLower Bound

Since KL divergence is positive:

p(x]2)p(2)
q(z|z)
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KL (q(z]2) [p(z]) = — / 4(2|) log +logp(x) > 0
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We derived what is called Evidence Lower Bound:
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More specifically:

/q(2|$) logw =/q(z|a:) log p(2) +/q(z|x) log p(zlz)

q(z|z) q(z|x)

EvidenceLower Bound

= KL(q(2[2)llp(2)) +Eq(z|2) log p(2]2)

Distribution Reconstruction

Based on the above formulation, we finally arrive at the loss function:

£ = — KL (q(=|0)l|p(2)) — Eygzy) log pla]2)

Distribution Reconstruction

Minimizing the loss equals minimizing the distribution distance between ¢(z|z) and p(z|z). Most importantly, each item in
L is tractable:

* ¢(z|z): the encoder output {z; ~ N(uj,afﬂj =1,2,---,J}.
* p(z) is defined as Gaussian priors {z; ~ N(0,1)[7 =1,2,---, J}.
e log p(x|2) =log N (z — fi,6?)

Calculating the loss|[2]:

L= —KL(q(2[7)|lp(2)) = Eq(z|a) log p(2]2)

Distribution Reconstruction
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