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Abstract. We study d-dimensional dynamic bin packing for general d-
dimensional boxes, for d ≥ 2. This problem is a generalization of the bin
packing problem in which items may arrive and depart dynamically. Our
main result is a 3d-competitive online algorithm. We further study the 2-
and 3-dimensional problem closely and improve the competitive ratios.
Technically speaking, our d-dimensional result is due to a space efficient
offline single bin packing algorithm, which is a variant of d-dimensional
NFDH. We introduce an interesting notion of d-dimensional L-shape bin
and show that effective offline packing into L-shape bin leads to effective
online dynamic packing into unit-sized bins.
We also investigate the resource augmentation version of the problem
where the online algorithm can use d-dimensional bins of size s1 × s2 ×

· · ·×sd for si ≥ 1 while the optimal offline algorithm uses unit-sized bins.
We give conditions for the online algorithm to match the performance of
the optimal offline algorithm, i.e., 1-competitive.

1 Introduction

Bin packing is a classical combinatorial optimization problem that has been
studied since the early 70’s and different variants continue to attract researchers’
attention (see [5,7,9]). The problem was first studied in one-dimension (1-D) and
has been extended to multi-dimension (d-D for d ≥ 1). In d-D bin packing, the
items are d-dimensional with length in the range (0, 1] in each dimension and
the bin is a d-dimensional bin with all lengths equal to 1. Items are oriented and
cannot be rotated. The objective is to pack the items into a minimum number of
unit-size bins such that the items do not overlap and do not exceed the boundary
of the bin. The bin packing problem is NP-complete [13], even for 1-D.

The problem has been studied both in offline and online setting. In the offline
setting, all the items and their sizes are given in advance. In the online setting,
items may arrive at arbitrary time; item arrival time and item size are only known
when an item arrives. The performance of an online algorithm is measured using
competitive analysis [2]. Consider any online algorithm A. Given an input I, let
OPT (I) and A(I) be the maximum number of bins used by the optimal offline
algorithm and A, respectively. Algorithm A is said to be c-competitive if there
exists a constant b such that A(I) ≤ cOPT (I) + b for all I.
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Hartnack, Lars Prädel, Isaac K.K. To for discussion at the beginning of the work.



1-D 2-D 3-D d-D

upper bound 2.788 [6] 7.788 [*] 22.788 [*] 3d [*]

(previous) 8.5754 [11] 35.346 [11] 2 × 3.5d [11]

lower bound 2.666 [19] 3.70301 [11] 4.85383 [11] d + 1 [11]

Table 1. Competitive ratios. Results in this paper are marked with [*].

Dynamic bin packing. Most existing work focused on “static” bin pack-
ing in the sense that items do not depart. In some potential applications like
warehouse storage, a more realistic model takes into consideration of dynamic
arrival and departures of items. This natural generalization, known as dynamic
bin packing, was introduced by Coffman, Garey and Johnson [6]. In this gener-
alization, items arrive over time, reside for some period of time, and may depart
at arbitrary time. Each item has to be assigned to a bin from the time it arrives
until it departs. The objective is to minimize the maximum number of bins used
over all time. Note that migration to another bin is not allowed yet rearrange-
ment of items within a bin is allowed. One can imagine that warehouses (c.f.
bins) may be geographically far from each other making migration infeasible
but rearrangement within a warehouse is feasible.1

The dynamic bin packing problem was first studied in 1-D by Coffman, Garey
and Johnson [6] who showed that a modified first-fit algorithm, which we called
FFM, is 2.788-competitive. This algorithm works by classifying items into large
(size larger than 1

2
) and small ones (size 1

2
or less), then using a dedicated bin for

each large item and using first-fit for the small ones. The 2.788 bound is derived
from the 1.788-competitive ratio if all items are small [6]. Recently, Chan, Wong
and Yung [4] have shown a lower bound that there is no algorithm better than
2.5-competitive and this is further improved to 8/3 ≃ 2.666 very recently [19] .

Multi-dimensional dynamic bin packing has been studied by Epstein and
Levy [11]. They gave a 2 × 3.5d-competitive algorithm for d-D dynamic bin
packing, i.e., 24.5 for d = 2 and 85.75 for d = 3. They further presented al-
gorithms specifically for d = 2 and d = 3 and claimed that they are 8.5754-
and 35.346-competitive, respectively. They also gave lower bounds of d + 1 for
general d, 3.70301 and 4.85383 for d = 2 and d = 3.

Resource augmentation [14] has also been studied in 1-D dynamic bin pack-
ing [4] and online static bin packing [1, 10, 12] for various dimensions. In this
setting, the online algorithm can use larger bins than the optimal offline algo-
rithm. For 1-D dynamic bin packing, it is shown that using bins of double size
is both necessary and sufficient to achieve 1-competitiveness [4].

Our contribution. In this paper, we study multi-dimensional dynamic bin
packing and give the following results (see Table 1 for a summary).
– For d-D where d ≥ 2, we present a 3d-competitive algorithm (Theorem 1).
– For 2-D and 3-D, we further improve the above general ratio. We give 7.788-

and 22.788-competitive algorithms, respectively (Theorems 2 and 3).
– We consider resource augmentation and give conditions for the online algo-

rithm to match the offline algorithm, i.e., 1-competitive (Corollary 1).

1 If rearrangement within a bin is not allowed, one can show that there is no constant
competitive deterministic online algorithm.



For the d-D result, our algorithm classifies items into large and small items.
Roughly speaking, we show that large items can be handled as small items of
lower dimensions, hence, we can focus on small items. The main idea is a test-
ing procedure to check whether a new small item can be packed into existing
bins. This naturally involves a space efficient offline single bin packing proce-
dure, which is indeed an interesting problem by itself. Multi-dimensional NFDH
(next-fit-decreasing-height) is a common strategy to achieve this; in particular,
a formula has been given in [15,16] for the minimum total volume of d-D cubes
(i.e., all sides are equal) that can be packed without overflowing a bin. However,
there is no matching results for d-D boxes of general size. We devise a single
bin packing procedure using a variant of NFDH, which instead of packing items
using the whole bin space, reserves space to accommodate the new item and tries
to repack existing items into a so called L-shape space. At first glance, reserving
space may be too pessimistic, yet it can be shown that packing boxes using full
space may perform only as good as the L-shape approach (we skip the details
due to space limit). Using this new packing procedure, we show that the same
formula in [15] can be obtained even for packing boxes of general sizes.

Notations and definitions. We now give a precise definition of the problem
and the necessary notations for further discussion. In general, a d-D object (item
or bin) is called a d-D cube if all sides have the same length; and d-D box
otherwise. A packing configuration is said to be feasible if all items do not overlap
and the packing in each bin does not exceed the boundary of the bin; otherwise,
the packing is said to overflow and is infeasible.

In d-D dynamic bin packing, d-D items arrive and depart at arbitrary time.
When an item arrives, it must be assigned to a unit-sized bin immediately so
that the resulting packing is feasible. The item then resides in the assigned bin
until it departs, i.e., migration is not allowed. Rearrangement of items within a
bin is allowed upon item arrival or departure. The objective is to minimize the
maximum number of bins used over all time.

For 2-D packing, we call the two dimensions width and height. For general
d-D packing, we name the d dimensions x1, x2, · · · , xd and denote the length
of an item R along dimension xi by xi(R). When the context is clear, we may
also call xd the height. In the d-D packing algorithms, we use the concept of
projection of higher dimension item to lower dimension item. We say that an
item is projected along xd when the item is projected on the hyperplane of
dimensions x1, x2, x3, · · · , xd−1.

Several of our algorithms involve reserving some space for a new item and
repacking existing items in a bin to check if the new item can be packed to
this bin. If such a repacking is not feasible, it is understood that we restore the
packing to the original configuration.

2 d-Dimensional Dynamic Bin Packing

In this section, we consider d-D dynamic bin packing for any d ≥ 2 and present
a 3d-competitive online algorithm, called DynamicPack(d). Roughly speaking,
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Fig. 1. (a) 2-D L-shape bin. (b) 3-D L-shape bin. (c) Removing a box at the bottom
left corner from a layer of a 3-D bin and projecting on 2-D gives a 2-D L-shape bin.

when an item R arrives, Algorithm DynamicPack(d) checks if an existing bin
can accommodate R by reserving some space for R and repacking existing items
into the remaining space. If there is any bin that such repacking is feasible, R
is assigned to this bin. If no such bin exists, open a new bin for R. In other
words, the algorithm involves a repacking procedure that rearranges items in a
given bin. We present this repacking procedure in Section 2.1 and the overall bin
assignment algorithm in Section 2.2. Furthermore, the algorithm distinguishes
between small and large items. An item R is said to be small if xi(R) ≤ 1

2
for all

1 ≤ i ≤ d, and large otherwise. In Section 2.2, we show that large items can be
handled as small items of lower dimensions and so we can focus on small items.

2.1 Repacking Procedure for Small Items into a Single Bin

In this section, we present a procedure to repack small items into a single bin
and give a formula for the minimum total volume of small items that can be
packed in the bin. This procedure is invoked when a new item arrives, some
space is reserved and existing items are repacked into the remaining space. We
call the remaining space an L-shape bin. The repacking makes use of a variant
of NFDH (next-fit-decreasing-height) approach.

Below we first formally define a d-D L-shape bin and describe some property
of NFDH. Then we show that if a set of items cannot be packed in a d-D L-shape,
the volume of these items is at least 2d (Lemma 1).

d-D L-shape bin. For any d ≥ 2, a d-D L-shape bin is a unit d-D bin with a
corner removed: the corner removed is a d-D cube with all sides equal to 1

2
. For

the sake of reference, we say that the cube removed is the “bottom left-most”
corner of the bin. See Figure 1 (a) and (b) for examples. We note the following
property about a unit d-D bin and a d-D L-shape bin.

Property 1. Consider a unit d-D bin and a d-D L-shape bin.

(i) Any small item can be packed into the cube that is removed from the unit
bin to form the L-shape bin.

(ii) Take a layer of the unit bin with length h in dimension xd and length 1 in all
other dimensions, if we remove a box of length h in xd and length 1

2
in other

dimensions from bottom left corner of the layer and project along dimension
xd, we obtain a (d−1)-D L-shape bin. See Figure 1 (c) for an example.
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Fig. 2. Example for NFDH-LS(2). The number on the items is the order the items
are packed. The item overflows from a layer (e.g., 3, 7 and 11) is packed in the first
(reserved) partition of the next layer and the height of this item determines the height
of the next layer. Packing then continues in the second partition.

NFDH. Our procedure to pack into an L-shape bin makes use of the idea of
NFDH. In general, the d-D version of NFDH first sorts the items in descending
order of the length of dimension xd, say R1, R2, R3, · · · such that xd(Ri) ≥
xd(Ri−1). Then the items are packed into layers aligned to dimension xd. The
first layer has a “height” equal to xd(R1). Items, projected along xd, are then
packed into this layer using some (d−1)-D packing algorithm until a certain
item, say Rj , cannot be packed. Then the next layer is constructed with height
equals to xd(Rj). We then observe the following property about NFDH.

Property 2. Suppose NFDH has packed k layers with height h1 ≥ h2 ≥ · · · ≥ hk.

(i) All the items in Layer-i have height at least hi+1.
(ii) If the (d−1)-D packing algorithm guarantees each layer is packed with a

(d−1)-D volume of at least V , then the total d-D volume of items in Layer-i

≥ hi+1V and the total volume of all items in all layers ≥
∑k

i=2
hiV .

Packing an L-shape bin. We now present the recursive procedure, called
NFDH-LS(d), that packs into a d-D L-shape bin. As to be shown in Lemma 1,
if NFDH-LS(d) cannot pack a set S of small items into a d-D L-shape bin, the
total volume of S is more than 1

2d . We first describe the base case NFDH-LS(2).
Single-bin repacking procedure NFDH-LS(2): packing small items

into a 2-D L-shape bin. We first sort the items in descending order of height.
Items are packed into layers as follows (see Figure 2 for an example). Layer-0
is the bottom square with height and width 1

2
. We pack the items (in order

of height) to Layer-0 until a certain item, say Q, cannot be packed. Then the
height of Q becomes the height of Layer-1. Layer-1 is divided into two equal
partitions each with width 1

2
. We place Q into the first partition and continue

packing the remaining items into the second partition until overflow. In general,
the item that overflows from a layer is packed to the first partition of the next
layer. The procedure returns whether all items can be packed in the L-shape bin
(i.e., whether the last layer can be packed without overflow).

Single-bin repacking procedure NFDH-LS(d): packing small items
into a d-D L-shape bin. We first sort the items in descending order of xd(·).
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Fig. 3. Example for NFDH-LS(3). (a) 3-D L-shape bin. (b) In each layer, the 2-D L-
shape on the right is the projection of the layer. The overflow item is packed in the
reserved box in the next layer and the height of this item determines the height of the
next layer. (c) The layers as shown in the 3-D L-shape.

Items are then packed one by one in the sorted order into layers along dimen-
sion xd (see Figure 3). Layer-0 has height 1

2
along dimension xd. Projecting the

layers along dimension xd forms (d−1)-D L-shape bins (Property 1 (ii)). Items
are packed with dimension xd aligned to the height of the layer, and then pro-
jecting the items along dimension xd, we use NFDH-LS(d−1) to recursively pack
the items into Layer-0. For Layer-i, if NFDH-LS(d−1) reports feasible packing,
we try to include the next item into Layer-i; if packing is not feasible with the
inclusion of a certain item R, we create Layer-(i+1) with xd(R) as the layer
height along dimension xd. We then reserve a box with height xd(R) along di-
mension xd and length 1

2
along all other dimensions; the box is at the bottom

leftmost corner of the layer. Hence, projecting the layer along dimension xd gives
a (d−1)-D L-shape bin (Property 1 (ii)). We pack R into the reserved box and
continue the process with the remaining items: adding them one by one and use
NFDH-LS(d−1) recursively to pack into the (d−1)-D L-shape bin.

Whenever NFDH-LS(d−1) reports packing is not feasible with the next item
included, a new layer is created. At the end, if all the layers constructed can be
packed into the d-D L-shape bin without overflow, then NFDH-LS(d) reports a
feasible packing, otherwise NFDH-LS(d) reports infeasible packing.

Lemma 1. Let S be a set of items with sides bounded by 1

2
. If NFDH-LS(d)

cannot pack S into a d-D L-shape bin, the total volume of S is more than 1

2d .

Proof. We prove the lemma by induction on the dimension. Base case: when
d = 2, Layer-0 together with the first item on Layer-1 has width greater than 1

2
.

For i > 0, all items in Layer-i (except the first item in the reserved box) together
with the first item in Layer-(i+1) has width greater than 1

2
. All items in Layer-i

has a height at least the height of Layer-(i + 1) (Property 2 (i)). If not all items



can be packed, the total height of the layers (including the one that cannot fit)
is more than 1. Since Layer-0 has height at most 1

2
, the total volume of all items

is greater than (1 − 1

2
) × 1

2
= 1

22 (Property 2 (ii)).
Assume the lemma is true for dimension d − 1. For dimension d, we can use

a similar argument as the base case to show that if not all items can be packed,
the total height of all layers in dimension d is at least 1. Using the induction
hypothesis, all items in each layer has volume greater than 1

2d−1 . Hence, the total

volume of all items is greater than (1 − 1

2
) × 1

2d−1 = 1

2d (Property 2 (ii)).

The results in this section can be generalized as follows. Let S be a set of
items with sides bounded by 1

k
. There is a packing algorithm such that if S

cannot be packed into a d-D L-shape bin, then the total volume of S is more
than (1− 1

k
)d. As mentioned in the introduction, this bound has been shown for

packing d-D cubes and we show that it is also true for packing d-D boxes.

2.2 Bin Assignment Algorithm

We now present a 3d-competitive online dynamic bin packing algorithm. We
first present an algorithm AFReserveNFDH(d) for packing small items (AF for
any-fit) and then an algorithm DynamicPack(d) for arbitrary items.

Bin assignment algorithm AFReserveNFDH(d) for small items.
When an item R with sides bounded by 1

2
arrives, we consider every bin in

turn to reserve for R the bottom leftmost cube of all sides 1

2
and check if all

the existing items in that bin can be packed into the d-D L-shape bin using
NFDH-LS(d). If NFDH-LS(d) finds a bin that there is feasible packing, R is
packed in the reserved bottom leftmost corner of that bin and the other items
are packed in the way NFDH-LS(d) packs them. If there is no such existing bin,
open a new bin for R. Lemma 2 is a direct consequence of Lemma 1.

Lemma 2. Algorithm AFReserveNFDH(d) is 2d-competitive for packing d-D
items with sides bounded by 1

2
.

Algorithm DynamicPack(d) for arbitrary sized items. We distinguish
items based on whether each dimension xi is larger than 1

2
or at most 1

2
, and

classify the items into 2d classes. Consider items of the same class. If xi(·) > 1

2
in

this class, then in any packing, a line drawn parallel to dimension xi intercepts
at most one item in that class. Suppose there are z dimensions with length at
most 1

2
and (d − z) dimensions larger than 1

2
. Then items in this class can be

considered as z-D small items. We use AFReserveNFDH(z) to pack the items
by projecting along all the dimensions xi such that xi(·) > 1

2
. These items will

be packed to align to the facets for those dimensions with xi(·) > 1

2
.

For the class where all dimensions are larger than 1

2
, we pack each in a

separate bin (no two such items can be packed into the same bin by any packing).

Theorem 1. Algorithm DynamicPack(d) is 3d-competitive.

Proof. For each z, we run a couple of Algorithm AFReserveNFDH(z) and the
number is at most

(

d

z

)

. By Lemma 2, the competitive ratio of DynamicPack(d)

is at most the sum over all ratios of AFReserveNFDH(z), i.e.,
∑d

z=1

(

d

z

)

2z = 3d.



3 Two- and Three-Dimensional Dynamic Bin Packing

In this section, we improve the results in Section 2 for d = 2 and 3 by more
careful classification and assignment of items into bins. Similar to Section 2, the
algorithms make use of reserve-and-repacking procedures to check if a new item
can be assigned to an existing bin.

3.1 Two-Dimensional Dynamic Bin Packing

Repacking Procedures The procedures described in this section will be reused
later and so they are stated in a more general form. We assume we are given
a bin with width u and height v throughout Section 3.1. Before we present our
two-dimensional repacking procedures, we first note the result by Steinberg [18]
for static bin packing. In particular, we will use the following lemma which is
implied by Theorem 1.1 in [18].

Lemma 3 ( [18]). Given a bin with width u and height v, if all items have
width at most u

2
and height at most v, then any set of these items with total area

at most uv
2

can fit into the same bin by using Steinberg’s algorithm.

While Steinberg’s result gives a condition for a set of items to be fit into a
bin, we also need a slightly different condition which bounds the area of existing
items in a bin if a new item cannot be packed into the bin. The latter is a typical
notion required when the objective is to minimize the number of bins. Below we
describe two such packing procedures.

Procedure 2DRepackNarrow: for items with width in (0, u

3
] and

height in (0, v]. We divide each bin into two partitions both with height v,
and the first one with width u

3
, second with width 2u

3
. Note that any item can

fit into the first partition. When an item R arrives, we reserve the first partition
for R, and repack existing items using the second partition as a bin of width 2u

3

and height v using Lemma 3. If repacking is feasible, the packing configuration
is returned as solution.

Procedure 2DRepackMedium: for items with width in (u

3
, u

2
] and

height in (0, v]. Note that since the items have width more than u
3
, in any

packing including the optimal one, at most two items can be packed side by side
along the width. We divide each bin into two equal partitions each with width
u
2

and height v. When a new item R arrives, we reserve the first partition for R
and stack the existing items (in arbitrary order) along the height of the sec-
ond partition. Similar to 2DRepackNarrow, if repacking is feasible, the packing
configuration is returned as solution.

Lemma 4. Consider a bin with width u and height v.
(i) Consider items with width in (0, u

3
] and height in (0, v]. If 2DRepackNarrow

returns an infeasible repacking, the total area of the existing items in the bin
is more than uv

3
.

(ii) Consider items with width in (u
3
, u

2
] and height in (0, v]. If 2DRepackMedium

returns an infeasible repacking, the total height of the existing items in the
bin is more than v.



Proof. (i) This means that existing items cannot be packed into the second
partition (the larger one) of the bin. By Lemma 3, the total area of these items
is more than 1

2
× 2uv

3
= uv

3
; otherwise, the items can be packed in the partition.

(ii) This means the total height of the existing items exceed the height of the
second partition, i.e., v.

Bin Assignment Algorithm. Using the above two procedures, we present
an algorithm called 2DDynamicPack, which classifies items into three classes:
narrow, medium-wide and wide according to their width. An item is said to be
narrow if its width is in (0, 1

3
]; medium-wide if in (1

3
, 1

2
]; and wide if in (1

2
, 1].

Algorithm 2DDynamicPack. Classify items into narrow, medium-wide,
and wide as they arrive. Items of the same class are assigned to bins indepen-
dently of other classes.

– Narrow items. When a narrow item R arrives, find any bin that existing
narrow items in the bin can be repacked using procedure 2DRepackNarrow
into the larger partition of the bin and pack R into the smaller partition of
the bin. If no such bin exists, open a new bin for R.

– Medium-wide items. When a medium-wide item R arrives, find any bin
that existing medium-wide items in the bin can be repacked using procedure
2DRepackMedium into the second partition of the bin and pack R into the
first partition of the bin. If no such bin exists, open a new bin for R.

– Wide items. Items are packed so that the width of the item is aligned to
the width of the bin, and then ignoring the width of the items, use the 1D
algorithm FFM to pack according to the height of the items.

Theorem 2. Algorithm 2DDynamicPack is 7.788-competitive.

Proof. Let OPT denote the maximum number of bins used by the optimal of-
fline algorithm, and n, n1, n2, and n3 be that used by 2DDynamicPack for all,
narrow, medium-wide and wide items, respectively, i.e., n ≤ n1 +n2 +n3. When
2DDynamicPack opens the n1-th bin for a new narrow item, the total area of all
items is more than n1−1

3
(Lemma 4 (i)). Hence, we have OPT ≥ ⌊n1−1

3
⌋+1 ≥ n1

3
.

When 2DDynamicPack opens the n2-th bin for a new medium-wide item, by
Lemma 4 (ii), the total height of all items is more than n2 − 1. Since the width
of these items is more than 1

3
, in any packing of the items, every horizontal line

drawn intercepts at most two items and hence, the total number of bins used is
at least ⌊n2−1

2
⌋ + 1, i.e., OPT ≥ n2

2
. Finally, for wide items, using FFM means

OPT ≥ n3

2.788
. In total, n ≤ n1 + n2 + n3 ≤ 7.788OPT and the lemma follows.

3.2 Upper Bounds for 3-D Dynamic Bin Packing

Recall that the three dimensions are x1, x2 and x3 and the length of an item R
along dimension xi is denoted as xi(R). Our algorithm, called 3DDynamicPack,
classifies the items into four classes according to xi of the items. An item R is
said to be in

– Class-1 if x1(R) > 1

2
;



– Class-2 if x1(R) ≤ 1

2
and x2(R) > 1

2
;

– Class-3 if x1(R) ≤ 1

2
and 1

3
< x2(R) ≤ 1

2
; and

– Class-4 if x1(R) ≤ 1

2
and x2(R) ≤ 1

3
.

Classes 1 and 2 can be handled rather straightforwardly by using 2-D packing
algorithm (details to be given later). Classes 3 and 4 need more attention. We
describe two repacking procedures for handling these two classes.

Procedure 3DRepackClass3: for items with x1(R) ≤ 1

2
and 1

3
<

x2(R) ≤ 1

2
. Similar to an observation made in 2DRepackMedium, in any pack-

ing including the optimal one, at most two items can be packed side by side along
dimension x2. We divide a bin into two equal partitions along dimension x2 both
with length 1

2
(the length along dimension x1 and x3 remains 1). When a new

item R arrives, we reserve the first partition for R and check if existing items
can be packed into the second partition: project existing items along dimen-
sion x2, repack them by Lemma 3, treating them as rectangles with dimension
x1 as width and x3 as height. If repacking is feasible, the packing configuration
is returned as solution.

Procedure 3DRepackClass4: for items with x1(R) ≤ 1

2
and x2(R) ≤

1

3
. We first sort the existing items in descending order of x1(R). Items are then

packed into layers constructed along dimension x1, in an NFDH manner (next-
fit-decreasing-height). The first layer has length 1

2
along dimension x1. Project

the items along dimension x1 and treating x2 as width x3 as height, we pack items
into this layer using 2DRepackNarrow, i.e., create two partitions with width 1

3

and 2

3
, and pack to the larger partition. If some item Q cannot be packed into

this layer, we then create a new layer with length x1(Q) along dimension x1

and pack Q into the first partition of this layer. Then we use 2DRepackNarrow
similarly to pack items to the second partition. The item that overflows from a
layer will be packed into the first partition of the next layer. Repeat this until
all existing items are packed or a new layer overflows dimension x1 of the bin.
If repacking is feasible, the packing configuration is returned as solution.

Algorithm 3DDynamicPack. Classify the items as they arrive into the
four classes defined above. Items in each class are assigned to bins independently
of other classes.
– Class-1: Project the items along dimension x1 treating them as rectangles,

and then pack the items using Algorithm 2DDynamicPack.
– Class-2: Project each item along dimension x2 and further classify the items

into two sub-classes with 0 < x1 ≤ 1

3
and 1

3
< x1 ≤ 1

2
. For items of the

first sub-class, find a bin such that existing items can be repacked using
2DRepackNarrow. If there is no such bin, open a new bin for the new item.
Similarly for the second sub-class, use 2DRepackMedium.

– Class-3: When a new item R of Class-3 arrives, find any bin that existing
items can be repacked using procedure 3DRepackClass3 into the second par-
tition and pack R into the first partition. If there is no such bin, open a new
bin for R.

– Class-4: When a new item R of Class-4 arrives, find any bin that existing
items can be repacked using procedure 3DRepackClass4 and pack R into the
reserved space in the first layer. If there is no such bin, open a new bin for R.



Theorem 3. 3DDynamicPack is 22.788-competitive.

Proof. Let OPT be the maximum number of bins used by the optimal offline
algorithm, n, n1, n2, n3, and n4 be that by 3DDynamicPack for all, Classes 1, 2,
3 and 4 items, respectively, i.e., n ≤ n1 + n2 + n3 + n4. When 3DDynamicPack
opens the n1-th bin for a new Class-1 item, by Theorem 2, we have OPT ≥ n1

7.788
.

Let n2,1 and n2,2 be the maximum number of bins used for the two sub-classes
of Class-2 items, i.e., n2 ≤ n2,1 + n2,2. By Lemma 4 (i) and (ii) and a similar
argument as Theorem 2, we have OPT ≥

n2,1

3
and OPT ≥

n2,2

2
. So, OPT ≥ n2

5
.

When 3DDynamicPack opens the n3-th bin for a new Class-3 item, by
Lemma 3, the total area of all Class-3 items is more than n3−1

2
. Furthermore,

the length of these items along dimension x2 is more than 1

3
, in any packing

of the items, every line drawn parallel to dimension x2 intercepts at most two
items. Hence, OPT ≥ ⌊n3−1

4
⌋ + 1 ≥ n3

4
.

When 3DDynamicPack opens the n4-th bin for a new Class-4 item, by
Lemma 4 (i), in the repacking of each bin, the total area of all Class-4 items in the
second partition in each layer and the first partition in the next layer is more than
1

3
. Furthermore, the height of all items in each layer is at least the height of the

next layer. Since existing items cannot be repacked into the same bin using the
procedure 2DRepackNarrow, the total height of all layers is more than 1 and that
of all but the first layer is more than 1

2
(since the first layer has height 1

2
). There-

fore, the total volume of existing items in each bin is more than 1

6
and the total

volume of all existing items is more than n4−1

6
. Hence, OPT ≥ ⌊n4−1

6
⌋+1 ≥ n4

6
.

In summary, we have n ≤ n1 + n2 + n3 + n4 ≤ 22.788OPT .

4 Concluding Remarks

In this paper, we have studied multi-dimensional dynamic bin packing. We have
presented a general competitive ratio for d ≥ 2 and improved the ratio further for
d = 2 and d = 3. So far the competitive ratio for multi-dimensional bin packing
(both static and dynamic, as well as for both cube and box) grows exponentially
with d. Yet there is no matching lower bound that also grows exponentially with
d. It is believed that this is the case [8] and any such lower bound would be of
great interest. Furthermore, the general upper bound for d-dimension is usually
worse than the corresponding 2-D or 3-D upper bound when substituting d = 2
or d = 3. It would be desirable to have d-dimensional packing algorithm that
have a more accurate formula to reflect the ratio for lower dimension. As for
lower dimension, an obvious open question is to close the gap between the upper
bound and lower bound.

Another direction is to consider resource augmentation in which the online
algorithm can use d-dimensional bins of size s1×s2×· · ·×sd for si ≥ 1 while the
optimal offline algorithm uses unit-sized bins. As a first step, we give some simple
conditions for the online algorithm to match the performance of the optimal
offline algorithm, i.e., 1-competitive. The results here are obtained directly from
those in Sections 2 and 3.



Corollary 1. Consider the optimal offline algorithm that uses unit sized bins.
(i) For 2-D, there is a 1-competitive online algorithm using bins of size 3 × 1.
(ii) For d-D, there is a 1-competitive online algorithm using bins of size {2}d.
(iii) For d-D, no online algorithm is 1-competitive using bins of size {2− ǫ}d for

any ǫ > 0.
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