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We study a dynamic resource-allocation problem that arises in various parallel computing scenarios such
as mobile cloud computing, cloud computing systems, Internet of Things systems and others. Generically,
we model the architecture as client mobile devices and static base stations. Each client “arrives” to the sys-
tem to upload data to base stations by radio transmissions, and then “leaves”. The problem, called Station
Assignment, is to assign clients to stations so that every client uploads its data under some restrictions,
including a target subset of stations, a maximum delay between transmissions, a volume of data to upload,
and a maximum bandwidth for each station. We study the solvability of Station Assignment under an ad-
versary that controls the arrival and departure of clients, limited to maximum rate and burstiness of such
arrivals. We show upper and lower bounds on the rate and burstiness for various client arrival schedules
and protocol classes. To the best of our knowledge, this is the first time that Station Assignment is studied
under adversarial arrivals and departures.
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1. INTRODUCTION
We study a dynamic allocation problem that arises in various parallel computing sce-
narios where minimum volume of data transferred with some regularity must be
guaranteed. For instance, mobile access to cloud computing services through multi-
ple devices (e.g. smart phones, tablets, etc.) that connect to the cloud through access
points using radio communication. Also, cloud computing systems where virtual ma-
chines with various user-defined resource requirements must be allocated to real ma-
chines. Another example is Internet of Things subnetworks such as wearable health-
monitoring systems where ambulatory patients carry physiological sensors and the
data gathered must be periodically uploaded.

To comprise all the above applications, we consider a general model assuming a con-
tinuous arrival of client mobile devices who have to upload data to static base stations
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via radio transmissions. Clients have a life interval and a fixed subset of stations to
communicate. Mobility can then be modeled as multiple instances of the same client
with subsequent life intervals and possibly different subsets of stations. Under this
model, we study the Station Assignment problem of allocating clients to base stations
so that every client transmits to some station in its subset, limited by maximum delays
between transmissions and data bandwidths in the client and station side.

We show upper and lower bounds on the rate and burstiness of client arrivals for
solvability of Station Assignment under various client arrival schedules and protocol
classes. We assume the presence of an adversary that controls the arrival and depar-
ture of clients. The adversary is limited by two parameters that model the rate and
burstiness of the arrival. We also study the connections of this problem with online
load balancing and scheduling, usually studied using competitive analysis. To the best
of our knowledge, this is the first study of Station Assignment under adversarial ar-
rivals.

2. ADVERSARIAL MODEL AND PROBLEM DEFINITION
Model. We consider a Mobile Radio Network composed of a set S of base stations, or

simply stations for short and a set C of clients that want to transmit packets to some
station. Throughout we denote n , |C| and m , |S|. The time is assumed to be slotted
and the time domain is N. Each time slot is long enough to transmit one packet.

Each client c ∈ C has the following characterization.

— A life interval, which is the set τc = [a, b] ⊆ N of consecutive slots in which c is
active.

— A group of stations, which is the set Sc ⊆ S of stations to which c may transmit
packets.

— A laxity wc ∈ N, 0 < wc ≤ |τc|, such that c ∈ C must transmit to some station in Sc
at least once within every wc consecutive time slots in τc.

— A bandwidth bc ∈ R+ that models a resource requirement (such as frequency band-
width).

On the other hand, each station s ∈ S has the following characterization.

— A bandwidth Bs ∈ R+, which limits the sum of the bandwidth of the clients trans-
mitting to s.

We refer to the set of stations (with their parameters) as the system and to the set of
clients (with their parameters) as the client arrival schedule. The model described
above is very rich and allows for many different combinations of system and client
arrival schedule. In this work, we focus only on a subset of these combinations, which
have been found to have enough variety of challenging cases to explore, leaving the
rest for future work. Hence, we assume in the rest of the paper systems in which all
stations have the same bandwidth B, and client arrival schedules in which all clients
have the same laxity w.

To carry out a worst-case analysis, we consider adversarial client arrival schedules
where the adversary is limited as follows. For any C ′ ⊆ C, let S(C ′) =

⋃
c∈C′ Sc. For a

given pair of values ρ > 0 and β ≥ 0 (that limit the rate and burstiness of the stations
load, which in turn limits the arrival/departure of clients), we say that a client arrival
schedule is (ρ, β)-admissible if the following conditions hold:

∀C ′ ⊆ C : ∀T = [t, t′] ⊆ N :
∑
c∈C′

bc
|τc ∩ T |
w

≤ |T ||S(C ′)|ρB + β (1)

∀c ∈ C : bc ≤ B . (2)
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The first condition (1) restricts the load of the stations for any set of clients C ′ and
any time interval T . In particular, given any C ′ and any T , the total bandwidth re-
quested by the clients in C ′ (specifically,

∑
c∈C′ bc|τc ∩ T |/w) has to be no larger that

a fraction ρ of the bandwidth that can be provided by the stations that can serve the
clients in C ′ (S(C ′)) plus a constant term β (that allows for some burstiness). The sec-
ond condition (2) imposes that the requested bandwidth bc of each client must be no
larger that the bandwidth B of each station. Naturally, if some client had a request
of bandwidth larger than B it would be impossible to satisfy it. Adversarial methodol-
ogy characterized as above is typically used for performing worst-case analysis of the
considered problem [Borodin et al. 2001; Andrews et al. 2001; Blesa et al. 2009].

Problem. The Station Assignment problem is defined as follows. For a given sys-
tem and admissible client arrival schedule, for each time slot t ∈ N, schedule a set of
clients to transmit to each station in t, so that

(1) Each client c ∈ C transmits to some station in Sc at least once within each w
consecutive time slots in τc using a bandwidth bc;

(2) For each station s ∈ S the sum of the bandwidths of the clients transmitting to s in
any time slot is at most B.

Protocols. We consider the following classes of protocols, commonly used in schedul-
ing literature.

— A Station Assignment algorithm is called irrevocable if for each client c all the
transmissions of c are to the same station s. We say that the algorithm irrevocably
assigns the client c to station s.

— A Station Assignment algorithm is called online if the information about any client
c is revealed to the algorithm only at the arrival time of c.

— A Station Assignment algorithm is called improvident if the algorithm does not
know when a client will leave the system.

3. OUR RESULTS
The results presented in this work are summarized in Tables I and II. The tables are
organized by the system characteristics (columns) and the rows are further subdivided
by double lines into comparable settings for which upper and lower bounds are pre-
sented. The terms “distinct”, “identical”, and “any” in these tables refer to the values
that the system characteristics can take. For instance, for bc, “identical” means that all
clients have the same bandwidth, “distinct” means that different clients have different
bandwidth, and “any” means that it is not restricted. The bounds are on the adversary
limitations ρ and β. Thus, lower bounds are for impossibility whereas upper bounds
are for solvability.

We introduce the Station Assignment problem motivated by wireless networks. Our
main contribution is a variety of separation results that expose the complexity of Sta-
tion Assignment according to various model assumptions. Starting from an optimistic
scenario where all clients have the same bandwidth and the same group of stations, we
gradually remove assumptions making the model more pessimistic (hence, realistic),
which gives insight on what the inherent algorithmic challenges of Station Assign-
ment are. We note in Tables I and II that not all combinations of systems assumptions
have been considered. That is, the question of whether other combinations could lead
to more separations is open.

Specifically, we start considering adversarial client arrival schedules where all
clients have the same group of stations and bandwidth. Then, Theorem 5.1 shows that
for each β > mwB ((n/(mw))/dn/(mw)e − ρ), where n ≥ d(mwBρ+ β)/Be, there exists
a (ρ, β)-admissible client arrival schedule such that no Station Assignment algorithm
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Table I. Summary of bounds on problem solvability for offline protocols.

bc Sc
arrival
time

protocol
class β ρ Thm

identical identical identical any
> mwB

(
n/(mw)
dn/(mw)e − ρ

)
n = dmwBρ+β

B
e

>
n/(mw)
dn/(mw)e 5.1

identical identical identical even
assignment ≤ mwB

(
n/(mw)⌈
n/(mw)

⌉ − ρ) ≤ n/(mw)⌈
n/(mw)

⌉ 5.3

distinct identical identical any — > 1/2 5.4

distinct identical identical any > mB(1/m+ 1/2− ρ) — 5.5

any identical identical balance
bandwidth < mwB(1/2− ρ) < 1/2 5.6

distinct distinct identical any > mwB (1/(mw)− ρ) > 1/(mw) 5.7

any any any any ≤ mwB(1/(mw)− ρ) ≤ 1/(mw) 5.8

Table II. Summary of bounds on problem solvability for online protocols.

bc Sc
arrival
time τc

protocol
class β ρ Thm

1 distinct distinct open irrevocable ≥ 0 > 1
1+lnm

6.1

1 distinct distinct open irrevocable > mB
(

1
lnm

− ρ
)

> 1
lnm

6.3

1 distinct distinct distinct
irrevocable
improvident
randomized

> mB
(

3√
2m
− ρ

)
> 3√

2m
6.4

1 distinct distinct distinct
irrevocable
improvident
deterministic

> mB
(

1√
2m
− ρ

)
> 1√

2m
6.4

identical any any open irrevocable
improvident ≤ ρB < 1

2(m+1)
6.5

ρB ≤ b < B
m−1

any any open irrevocable
improvident ≤ ρB ρ < 1

m−1
6.6

can solve the problem, even if all clients arrive simultaneously and have the same life
interval. The intuition is the following. Leaving aside rounding (i.e., β > mwB(1− ρ)),
which is similar to ignoring the effect of one station poorly used, and noticing that
mwB conveys a measure of the overall resources of which a ρ fraction may be “reg-
ularly” used, what Theorem 5.1 shows is that if the adversary is allowed to inject
a burst larger than the resources available, the system is overloaded. Given that it
must be β ≥ 0, this lower bound for non-solvability implies also a lower bound of
ρ > (n/(mw))/dn/(mw)e. Corollary 5.2 shows a stronger bound on β that holds for any
positive ρ. Under the same conditions, Theorem 5.3 shows that the offline algorithm
that distributes the clients evenly solves Station Assignment, for any (ρ, β)-admissible
client arrival schedule that matches those bounds on β and ρ.
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Then, we move to a class of client arrival schedules where clients may have different
bandwidths, although the group of stations is still the same for all. In this scenario,
Theorem 5.4 shows that, for each ρ > 1/2, there exists a (ρ, β)-admissible client arrival
schedule such that no Station Assignment algorithm can solve the problem, even if all
clients must arrive simultaneously. Changing the adversarial client arrival schedule
slightly, Theorem 5.5 shows a bound of β > mB(1/m+ 1/2−ρ) for the same conditions.
This bound implies a bound on ρ as well, but it is subsumed by Theorem 5.4. Under the
same conditions, Theorem 5.6 shows that an algorithm that (somehow) balances the
station-bandwidth usage solves Station Assignment, for any (ρ, β)-admissible client
arrival schedule such that β < mwB(1/2− ρ) and ρ < 1/2.

The last class of client arrival schedules we consider in our offline analysis does
not restrict groups of stations or bandwidths. In Theorem 5.7, it is shown that, for
each β > mB(1/m − ρ), there exists a (ρ, β)-admissible client arrival schedule such
that Station Assignment cannot be solved by any algorithm, even if all clients arrive
at the same time. This result implies ρ > 1/m because β ≥ 0. Theorem 5.8 matches
those bounds, showing that if ρ ≤ 1/(mw) and β ≤ mwB (1/(mw)− ρ) the Station
Assignment problem is solvable.

Moving to online protocols (c.f., Table II), we prove in Theorem 6.3 that for any irre-
vocable algorithm, that is, algorithms where the station-client assignments are final,
if m > 1, there is a client arrival schedule such that if β > mB(1/ lnm− ρ) the Station
Assignment problem is not solvable. The latter lower bound implies a lower bound of
ρ > 1/ lnm because β ≥ 0. If the algorithm is additionally improvident, that is, the
departure time of clients already in the system is not known in advance, by showing
a reduction from Load Balancing [Azar et al. 1994], Theorem 6.4 shows lower bounds
of β > mB

(
3/
√

2m− ρ
)

and β > mB
(
1/
√

2m− ρ
)

for randomized and deterministic
algorithms respectively. Those bounds imply that if ρ > 3/

√
2m and if ρ > 1/

√
2m

respectively the Station Assignment problem cannot be solved. Finally, Theorem 6.5
shows that, when all clients have the same bandwidth b ≤ B and do not depart, even
if the groups of stations and arrival times are different, if ρ < 1/(2(m+ 1)) and β ≤ ρB
the algorithm that distributes clients evenly (restricted to groups of stations) solves
Station Assignment. For a similar scenario but with restricted ρB ≤ b < B/(m − 1), a
better bound of ρ < 1/(m− 1) is shown in Theorem 6.6.

We also show in Theorem 6.1 (not included in Table II) a lower bound on ρ for non-
solvability with irrevocable algorithms that applies to systems with distinct station-
bandwidths. Corollary 6.2 shows that instantiating Theorem 6.1 on a system where
all stations have the same bandwidth B, the lower bound on ρ for non-solvability is
ρ > 1/(1 + lnm).

4. RELATED WORK
Adversarial queuing was introduced in [Andrews et al. 2001; Borodin et al. 2001],
applied to store-and-forward networks, to measure stability of buffers and packet la-
tency of dynamically injected packets. Later, there were approaches to apply it in the
context of wireless networks: modelled as time-varying channels [Andrews and Zhang
2005], radio channels with collisions [Chlebus et al. 2012; Anantharamu et al. 2009],
or SINR networks [Kesselheim 2012]. A more detail competitive analysis of dynamic
and stochastic traffic was performed in a single-hop radio channels with collisions [Bi-
enkowski et al. 2012]. The difference between this line of research and our work is
that it considered simple packet forwarding requests without additional scheduling
constraints.

In [Azar et al. 1994], Azar, Broder, and Karlin studied a load balancing problem
where a set of tasks have to be assigned to a set of machines. In this work, tasks are

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: March .



:6 A. Fernández Anta, D. Kowalski, M. A. Mosteiro, and P. W. H. Wong

Table III. Competitive ratios of load balancing problem

Unknown duration Known duration Permanent
Identical 2 − o(1) [Graham 1966; Azar

et al. 1994]
2 − o(1) [Graham 1966; Azar
et al. 1994]

2− ε [Karger et al. 1996]

Related Θ(1) [Azar et al. 1997] Θ(1) [Azar et al. 1997] Θ(1) [Azar et al. 1997]
Restricted O(

√
m) [Azar et al. 1997] O(logmT ) [Azar et al. 1997] Θ(logm) [Aspnes et al. 1993]

Ω(
√
m) [Azar et al. 1994]

temporary (as opposed to permanent when tasks do not depart), and task arrivals and
departures always occur in time. Each task has an associated weight that represents
the load that processing of such a task adds to a machine. Additionally, each task has
an associated subset of machines that may process the task (restricted assignment).
Upon arrival, a task must be assigned to a machine immediately and cannot be trans-
ferred to another machine later. The machine starts processing the task immediately
and continues until the task departs. An assignment algorithm selects a machine to
assign each task upon arrival. In the online version the algorithm does not know fu-
ture arrivals or departures, whereas an offline algorithm has complete knowledge. The
cost of an assignment of a given input is the maximum load of the machines for such
assignment.

The load balancing problem is related to our Station Assignment problem when the
laxity is the same for all clients. One main difference is the objective function. In load
balancing the load can be unbounded and the objective is to minimize the maximum
load over the machine, while in the Station Assignment problem the maximum load
of the server is bounded and the objective is to find criteria for a feasible schedule. As
will shown later (Theorem 6.4), some special instance of the load balancing problem
can be mapped to some instance of the Station Assignment problem. However, this
mapping is not generic, and there is no evidence that an algorithm that works well for
one objective would work for the other. Moreover, the fact that our adversary has two
limitations also separates the problems. Indeed, allowing a larger burst (β) imposes a
more stringent limitation on arrival rate (ρ) in the Station Assignment problem, while
intuitively the restriction on the load in the load balancing problem corresponds only
to one of these parameters, mainly the arrival rate.

For the load balancing problem, the authors in [Azar et al. 1994] study the compet-
itive ratio of an online algorithm with respect to an offline one as the supremum over
all inputs of the cost ratio. Specifically, for the greedy online algorithm that assigns
each task to the least loaded machine, they show matching upper and lower bounds of
((3m)2/3/2)(1 + o(1)) on the competitive ratio, and a lower bound of Ω(

√
m) for any de-

terministic or randomized algorithm. The lower bound is matched in [Azar et al. 1997].
Variants of the problem include relaxing the constraint such that the duration of a job
is known on arrival (temporary) or the job never depart (permanent). Another direc-
tion of relaxation includes making all machines to be available for all jobs (identical or
related). Table III gives a summary of the results.

In [Alon et al. 1997], Alon et al. studied a similar model for permanent tasks. They
consider two cases: (i) the tasks have associated weights and can be assigned to any
machine (unrestricted), (ii) the tasks have unit weights and can be assigned only to a
subset of the machines (restricted). They provide an ε-approximation scheme for the
Lp norm of the loads. Interestingly, for the restricted unit-weights model, they show
that there exists an assignment that is optimal for all norms. For further references
on dynamic online scheduling and load balancing, see the chapters [Pruhs et al. 2004;
Azar 1996].

Other related problems include the so-called windows scheduling [Bar-Noy et al.
2007; Bar-Noy and Ladner 2003] and bin packing of unit-fraction items [Bar-Noy et al.
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2007; Chan et al. 2008]. In the windows scheduling problem, items (cf. clients) with
windows wi have to be broadcasted on a channel periodically such that every two
broadcasts of the same item cannot be more than wi timeslots apart. In the context
of our problem, this is analogous to the scenario where the bandwidth of a station and
the bandwidth requirement of a client is the same. The objective has been however to
minimize the number of channels (cf. stations). Windows scheduling has been studied
as a restricted version of bin packing of unit-fraction items [Bar-Noy et al. 2007; Chan
et al. 2008] where the size of the items is the reciprocal of the windows. The objective
has been again to minimize the number of bins (cf. stations).

5. ANALYSIS OF OFFLINE PROTOCOLS
In this section, we study the impact of ρ and β on the offline solvability of Station
Assignment.

5.1. Unique Group of Stations and Client Bandwidth
We start with a very optimistic scenario (for Station Assignment algorithms) where
all clients have the same group of stations and the same bandwidth. We show a lower
bound for non-solvability that holds even under those optimistic conditions. Given that
β ≥ 0 by definition, the bound obtained implies a lower bound on ρ.

THEOREM 5.1. Given a system of m stations each with bandwidth B, even if all
clients have the same group of stations and the same bandwidth, for any

β > mwB

(
n/(mw)

dn/(mw)e
− ρ
)
,

where n ≥ d(mwBρ+β)/Be, n ∈ Z+, there exists a (ρ, β)-admissible client arrival sched-
ule such that no algorithm can solve the Station Assignment problem, even if all clients
have the same life interval.

PROOF. Consider a client arrival schedule of n clients, for any n ≥
⌈
(mwBρ +

β)/B
⌉
, n ∈ Z+, with the same bandwidth b = (mwBρ + β)/n and the same life in-

terval of length w. Such schedule is (ρ, β)-admissible because, for any n′ ≤ n and
any subinterval T of the life interval of the clients (i.e., |T | ≤ w), it holds n′b |T |w ≤
nb |T |w = (mwBρ + β) |T |w ≤ m|T |Bρ + β, and b = mwBρ+β

n ≤ mwBρ+β⌈
(mwBρ+β)/B

⌉ ≤ B. How-

ever, by the pigeonhole principle, there is at least one station and one slot for which
the sum of bandwidths of the clients assigned to the station in the slot is at least
dn/(mw)eb = dn/(mw)e(mwBρ + β)/n. Replacing β > mwB ((n/(mw))/dn/(mw)e − ρ),
the latter is bigger than B.

Given that the client arrival schedule is adversarial, by choosing the station group to
be a singleton in the above proof, that is m = 1, and the laxity w = 1, the lower bound
obtained becomes β > B (1− ρ), which implies that if ρ > 1 the Station Assignment
is not solvable. We assume that ρ ≤ 1 throughout the rest of the paper. This result
can also be used to show that, for some higher values of β, Station Assignment is not
solvable for any ρ > 0.

COROLLARY 5.2. Given a system of m stations each with bandwidth B, even if
all clients have the same group of stations and the same bandwidth, if ρ > 0 and
β ≥ nB/dn/(mw)e, where n = d(mwBρ + β)/Be, there exists a (ρ, β)-admissible client
arrival schedule such that no algorithm can solve the Station Assignment problem, even
if all clients have the same arrival time.
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PROOF. From Theorem 5.1, it is enough to prove that β > mwB(n/(mwdn/(mw)e)−
ρ), for n = d(mwBρ+ β)/Be and ρ > 0. This holds if β ≥ mwB n/(mw)

dn/(mw)e = nB
dn/(mw)e .

Now we show a matching upper bound for solvability in the same optimistic scenario.
That is, all clients have the same group of stations and bandwidth.

THEOREM 5.3. Given any (ρ, β)-admissible client arrival schedule of n clients, such
that all clients have the same bandwidth, the same station group of size m > 0, and

the same arrival time, if β ≤ mwB

(
n/(mw)⌈
n/(mw)

⌉ − ρ) , the algorithm that assigns clients

evenly among stations and intervals of w times slots solves the Station Assignment
problem on any system of at least m stations each with bandwidth B.

PROOF. Let b be the client bandwidth. In order to show the claim, it is enough
to show it for the initial w time slots after the arrival of the clients, given that, if
some client departs, the bandwidth usage of the assigned station is reduced. Note
that the life interval of all clients is at least w, by the definition of laxity. Given that
the assignment of clients is even, the station most used has at most dn/(mw)e clients
assigned per slot. Hence, in order to prove the claim, it is enough to prove d n

mw eb ≤ B.
Due to admissibility (Equation (1)) for w slots (i.e., |T | = w), we know that nb ≤ mwBρ+

β. Replacing this bound on b, it is enough to show that d n
mw e

mwBρ+β
n ≤ B. Replacing

the bound on β, it can be seen that the inequality holds.

5.2. Unique Stations Group and Different Client Bandwidth
We now consider a less optimistic scenario where the client bandwidths may be differ-
ent. Theorems 5.4 and 5.5 show lower bounds for non-solvability on ρ and β respec-
tively.

THEOREM 5.4. Given a system of m stations each with bandwidth B, even if all
clients have the same station group, for any ρ > 1/2, there exists a (ρ, β)-admissible
client arrival schedule such that no algorithm can solve the Station Assignment prob-
lem, even if all clients have the same life interval.

PROOF. Consider a client arrival schedule of mw + 1 clients with the same station
group S and the same life interval of length w. One of the clients, call it x, has band-
width b = (ρ − δ)mwB for some value δ such that 1/2 < δ < ρ and ρ − 1/(mw) ≤
δ < (ρmw − 1)/(mw − 1). Each of the remaining mw clients has bandwidth δB. Such
schedule is (ρ, β)-admissible since, for any subset of n ≤ mw+1 clients that includes x,
Equation (1) becomes ∀T : |T | ≤ w : ((n− 1)δB + (ρ− δ)mwB) |T |w ≤ |T |mρB + β, which
is true because n − 1 ≤ mw and β ≥ 0. On the other hand, if we consider the n ≤ mw

clients that do not include x, Equation (1) becomes ∀T : |T | ≤ w : nδB |T |w ≤ |T |mρB+β,
which is true because n ≤ mw, β ≥ 0, and δ < ρ. Finally, Equation (2) also holds be-
cause ρ ≤ 1 and hence δB < ρB ≤ B, and (ρ−δ)mwB ≤ B for δ ≥ ρ−1/(mw). However,
given that there are mw+ 1 clients, due to the pigeonhole principle two clients have to
be assigned to the same slot of the same station. Then, there is a slot in some station
such that the sum of the assigned clients is either 2δB > B or δB + (ρ − δ)mwB > B
because δ < (ρmw − 1)/(mw − 1).

The following theorem shows a lower bound on β for this scenario. The proof uses
an adversarial client arrival schedule similar to the schedule used in the proof of The-
orem 5.4.

THEOREM 5.5. Given a system of m stations each with bandwidth B, even if all
clients have the same station group, for any β > mB(1/m + 1/2 − ρ), there exists a
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(ρ, β)-admissible client arrival schedule such that no algorithm can solve the Station
Assignment problem, even if all clients have the same arrival time.

PROOF. Consider a client arrival schedule of m + 1 clients with the same station
group S, laxity w = 1, and life interval τc ≥ w. One of the clients, call it x, has band-
width B. Each of the remaining m clients has bandwidth δB, for some value δ > 1/2.
We show that for β > mB(1/m+1/2−ρ) and ρ > 0 such schedule is (ρ, β)-admissible as
follows. Given that all clients arrive at the same time and are active at least one slot,
it is enough to consider the first slot upon arrival. This is true since, if some clients
depart, the schedule is still admissible because the station group of all clients is S.
Consider any subset of n ≤ m+ 1 clients that includes x. Then, Equation (1) becomes

(n− 1)δB +B ≤ mρB + β

which is true because n− 1 ≤ m for β = mB(1/m+ δ− ρ) > mB(1/m+ 1/2− ρ). On the
other hand, if we consider n ≤ m clients that do not include x, Equation (1) becomes

nδB ≤ mρB + β

which is true because n ≤ m and β = mB(1/m + δ − ρ) > mB(1/m + 1/2 − ρ). Finally,
Equation (2) also holds because δB < B. However, given that there are m + 1 clients
and w = 1, due to the pigeonhole principle two clients have to be assigned to the same
slot of the same station. Then, there is a slot in some station such that the sum of the
assigned clients is either 2δB > B or δB + B > B. Hence, the Station Assignment
problem cannot be solved.

Now we show an upper bound for solvability for the same scenario. That is, the group
of stations is unique among clients but the bandwidth may be different. This scenario
is similar to packing items into mw bins and the major difference is that typcially in
bin packing the number of bins is not given but the objective to be minimized. First we
present the algorithm that computes the assignment, and then we prove its properties.

ALGORITHM 1: Computation of Station Assignment for a set of clients that arrive simultane-
ously having all the same group of stations S. The transmissions schedule obtained corresponds
to time slots in [1, w], and after periodically with period w. Let A be the output transmissions
schedule implemented as a Boolean matrix of size |C|×|S|×w. Let Bs,t(A) be the bandwidth us-
age on station s and time t in A, and Bmax(A) be the maximum bandwidth usage at any station
and time slot in A.

1 for each c ∈ C do
2 choose some station s ∈ S uniformly at random;
3 choose some time slot t ∈ [1, w] uniformly at random;
4 Ac,s,t ← true;
5 while Bmax(A) > B do
6 find station s and time slot t such that Bs,t(A) = Bmax(A);
7 find stations s′, s′′ and time slots t′, t′′ such that Bs′,t′(A) +Bs′′,t′′(A) ≤ B;
8 for each c ∈ C do
9 if Ac,s′,t′ = true then

10 Ac,s′,t′ ← false;
11 Ac,s′′,t′′ ← true;

12 find some client c such that Ac,s,t = true;
13 Ac,s,t = false;
14 Ac,s′,t′ = true;
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THEOREM 5.6. Algorithm 1 computes in polynomial time a Station Assignment for
any (ρ, β)-admissible client arrival schedule such that all clients have the same arrival
time, the same group of stations of size m > 0, each with bandwidth B, the same laxity
w, and β < mwB(1/2 − ρ). The transmission schedule of such assignment is periodic
with period w.

PROOF. Consider a (ρ, β)-admissible client arrival schedule where all clients have
the same station group, arrive simultaneously, and all have laxity w. Let the time slot
of arrival be labeled as 1. Algorithm 1 computes the assignment for the first interval
of slots [1, w]. The assignment in all the subsequent intervals [iw+ 1, (i+ 1)w], for each
integer i > 0, is identical.

Algorithm 1 initially assigns each client at random to one of the m stations and one
of the w slots (cf. Lines 1 to 4). Call such assignment A. Then, as long as the maximum
bandwidth used in A in some slot t in some station s is above B, the algorithm finds
two stations s′, s′′ and two time slots t′, t′′ such that the sum of bandwidth used in s′, s′′
in time slots t′, t′′ is at most B (cf. Line 7).

To see why s′, s′′ and t′, t′′ exist, assume they do not. Then, adding in pairs, the total
bandwidth used throughout all stations and slots is at least mwB/2. But, according to
Equation (1), the total bandwidth used must be at most mwρB + β < mwB/2. Which
is a contradiction.

Then, in Lines 8 to 14, Algorithm 1 reassigns all clients from s′, t′ to s′′, t′′ (thus
keeping the total bandwidth in s′′ at time t′′ at most B) and reassigns one client from
s at time t to s′ at time t′ (which was left available). Such client exists since otherwise
the client arrival schedule would violate Equation (2).

The polynomial running time follows by simple inspection of Algorithm 1. From Line
6 of the algorithm, when the algorithm stops it holds that Bmax ≤ B.

A similar bound can be obtained if clients never depart, even if they arrive at differ-
ent times.

5.3. Distinct Stations Group and Client Bandwidth
Now we consider the harshest scenario where clients may have different station groups
and different bandwidths. Given that β ≥ 0 by definition, the bound obtained implies
that if ρ > 1/m the problem is not solvable.

THEOREM 5.7. Given a system of m stations each with bandwidth B, for each β >
mwB(1/(mw) − ρ), there exists a (ρ, β)-admissible client arrival schedule such that no
algorithm can solve the Station Assignment problem, even if all clients have the same
life interval.

PROOF. Consider a client arrival schedule of n+ 1 clients, where n = amw, for some
integer a ≥ 1, such that n ≥ (mwBρ+β−B)/B. The first n clients have a singleton sta-
tion group so that, for each station si, i = 1, 2, . . . ,m, the number of clients with station
group {si} is aw. The bandwidth of each of these n clients is b = (mwBρ + β − B)/n.
There is one additional client x with station group M and bandwidth B. All the n + 1
clients in the client arrival schedule have the same life interval of length w ≥ 1). Such
client arrival schedule is (ρ, β)-admissible because, for any subinterval T such that
|T | ≤ w, the total bandwidth of any subset of n′ ≤ n+ 1 clients is, if x is included then
((n′−1)b+B) |T |w = ((n′−1)mwBρ+β−Bn +B) |T |w ≤ (mwBρ+β) |T |w ≤ |T |mBρ+β. Otherwise,
if x is not included, and hence n′ ≤ n, the total bandwidth is n′b |T |w = n′mwBρ+β−Bn

|T |
w =

n′

awBρ|T |+ n′ β−Bn
|T |
w ≤

⌈
n′

aw

⌉
|T |Bρ+ β. Therefore, Equation (1) holds. Additionally, re-

placing the expression of n in b, it can be seen that b ≤ B. Thus, Equation (2) holds for
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all clients. However, for any assignment, there must be at least one slot of one station
with bandwidth usage B+ab = B+ n

mw b = B+ n
mw

mwBρ+β−B
n = B(1 +ρ) + β−B

mw , which
is bigger than B for β > mwB(1/(mw)− ρ).

Now we show a matching upper bound for solvability for the same strict scenario.
That is, both, the group of stations and bandwidth, may be different among clients.
Let a valid assignment be one where each client c is scheduled to transmit to some
station in Sc at least once in each sequence of w slots. The particular relation between
β and ρ in this upper bound guarantees that, as long as the client arrival schedule is
(ρ, β)-admissible, any valid Station Assignment solves the problem.

THEOREM 5.8. For any system of m > 1 stations, each with the same bandwidth B,
if the client arrival schedule is (ρ, β)-admissible with

β ≤ mwB
(

1

mw
− ρ
)
,

any valid assignment solves the Station Assignment problem.

PROOF. Consider an assignment of a given (ρ, β)-admissible client arrival schedule.
Consider the set C ′ ⊆ C of clients that are active at any given time step t in such
assignment. Because the client arrival schedule is (ρ, β)-admissible, making |T | = w in
Equation (1) and using that w ≤ |τc|, it must be

∑
c∈C′ bc ≤ w|S(C ′)|ρB+β ≤ wmρB+β.

Replacing in the latter the upper bound on β, we have that
∑
c∈C′ bc ≤ B. Thus, no

station can have a bandwidth usage bigger than B.

6. ANALYSIS OF ONLINE PROTOCOLS
6.1. Lower Bounds for Non-Solvability
We show now conditions under which irrevocable algorithms do not solve the Station
Assignment problem. Theorem 6.1 applies to a more general model where the station
bandwidths may be different. The corollary that follows instantiates the result on a
model where the station bandwidth is unique.

THEOREM 6.1. For any system of m stations, where station s has bandwidth Bs,
any β ≥ 0, and for each irrevocable online algorithm A, there is a station labeling
{s1, . . . , sm} and a (ρ, β)-client arrival schedule with bc = 1,∀c ∈ C, such that, if

ρ > Bsm

/Bsm +

m−1∑
j=1

 m∑
i=j

Bsi − max
j∈[j,m]

Bsj

 1

m− j + 1

m−j∏
k=2

(
1− 1

k

) ,

A cannot solve the Station Assignment problem.

PROOF. Consider the following (ρ, β)-client arrival schedule. ∀c ∈ C : bc = 1. The life
interval of all clients is open ended. That is, upon arrival, clients stay active forever.
Clients arrive in batches. That is, groups of clients arrive simultaneously, rather than
in separate time slots. A new batch of clients arrives after the previous batch has been
irrevocably assigned by algorithm A. Time is conceptually divided into rounds, which
are enumerated sequentially as 1, 2, . . . ,m. A new round starts when a new batch of
clients arrive. That is, clients will arrive in m groups, each group at a different time,
and rounds are defined by those arrivals. The set of clients arriving at the beginning
of round i is called Ci. All clients arriving in the same round have the same group
of stations. Starting from the whole set of stations S in the first round, the group of
stations for the following round (i.e., of the next batch of clients) has one station less.
We say that such station was removed. (Observe that there are exactly m rounds
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because after this number of rounds all stations have been removed.) For any station
s, let γs(i) be the number of clients assigned by A to s up to the end of round i, and let
the available capacity of station s at the end of round i be wρBs − γs(i). Then, for
round i + 1 the station removed is some station s′ with the largest available capacity
at the end of round i, with ties broken arbitrarily. In other words, s′ is not in the group
of stations of clients arriving at the beginning of round i + 1. For the purpose of this
analysis, we label the stations as follows. For any 0 < i < m the station removed in
round i is labeled si, and the station left in round m is labeled sm. Using this notation,
for round i, the group of stations is ∀c ∈ Ci : Sc = {si, si+1, . . . , sm}, and the number of
clients injected in round i is

|Ci| =
{
wρmaxj∈[1,m]Bsj if i = 1
wρ
(
maxj∈[i,m]Bsj −maxj∈[i−1,m]Bsj +Bsi−1

)
if 2 ≤ i ≤ m

To show that this client arrival schedule is admissible, consider any set of clients C ′ ⊆
C. Let B(C ′) =

∑
s∈S(C′)Bs. To show that Equation (1) holds, it is enough to show

∀T = [t, t′] ⊆ N :
∑
c∈C′

|τc ∩ T |
w

≤ |T |B(C ′)ρ+ β

which is true if

|C ′| ≤ B(C ′)wρ . (3)

To show that the latter inequality holds, consider a partition P = {C ′1, C ′2, . . . , C ′m} of
C ′ such that, for each i ∈ [1,m], it is C ′i = C ′ ∩ Ci. That is, C ′i is the subset of clients in
C ′ that arrived in round i. From the client arrival schedule, we know that |C ′i| ≤ |Ci|.
Additionally, for each round i such that |C ′i| > 0, we know that all stations sj , i ≤ j ≤ m,
are in the group of stations of clients in C ′i. Let r = min{i : |C ′i| > 0}. Then, we know
that B(C ′) =

∑m
i=r Bsi . After replacing in Equation (3), it is enough to show∑

i:|C′i|>0

|Ci| ≤ wρ
m∑
i=r

Bsi

which is true if
m∑
i=r

|Ci| ≤ wρ
m∑
i=r

Bsi .

If r > 1, it is enough to prove
m∑
i=r

(
max
j∈[i,m]

Bsj − max
j∈[i−1,m]

Bsj +Bsi−1

)
≤

m∑
i=r

Bsi .

Expanding and cancelling, it is enough to prove(
− max
j∈[r−1,m]

Bsj +Bsr−1

)
+Bsr + · · ·+Bsm ≤

m∑
i=r

Bsi

which is true because maxj∈[r−1,m]Bsj ≥ Bsr−1 . For r = 1, the derivation is similar but
this term does not appear on the left-hand side.

We show now that A does not solve the Station Assignment problem for this admis-
sible client arrival schedule as follows. Let the total bandwidth of stations {si, . . . , sm}
be Bi =

∑m
j=iBsj . Let the total number of clients assigned to stations {si+1, . . . , sm}

at the end of round i be Γi =
∑m
j=i+1 γsj (i). Recall that at the beginning of the first
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round |C1| clients arrive, and that at the end of that round, after A assigns these
clients, the station s1 is removed from the group of stations for the second round be-
cause it has the largest available capacity at the end of round 1. After the assign-
ment of round 1 is done, the available capacity of s1 is wρBs1 − γs1(1), which, being
the largest, is at least the average available capacity (wρB1 − |C1|)/m. Then, s1 has
γs1(1) ≤ wρBs1 − (wρB1 − |C1|)/m clients assigned. Therefore, for the second round,
there are

Γ1 = |C1| − γs1(1) ≥ wρ

((
max
j∈[1,m]

Bsj −Bs1
)(

1− 1

m

)
+

1

m

m∑
i=2

Bsi

)

clients that are already assigned to stations in {s2, . . . , sm}, and |C2| new clients arrive,
yielding a total of |C2| + Γ1. After the assignment of round 2 is done, the available
capacity of s2 is the largest, and therefore it is at least the average available capacity.
Thus, s2 has

γs2(1) + γs2(2) ≤ wρBs2 −
wρB2 − Γ1 − |C2|

m− 1

clients assigned. Therefore, for the third round, there are
Γ2 = |C2| − γs2(1)− γs2(2) + Γ1

≥ (|C2|+ Γ1 − wρBs2)

(
1− 1

m− 1

)
+
wρ
∑m
i=2Bsi

m− 1

≥ wρ
((

max
j∈[2,m]

Bsj −Bs2
)(

1− 1

m− 1

)
−
(

max
j∈[1,m]

Bsj −Bs1
)

1

m

(
1− 1

m− 1

)
+

m∑
i=2

Bsi
1

m

(
1− 1

m− 1

)
+

m∑
i=3

Bsi
1

m− 1

)
clients that are already assigned to stations in {s3, . . . , sm}, and |C3| new clients arrive,
yielding a total of |C3|+ Γ2. Proceeding similarly, for the m-th round, there are Γm−1 =

|Cm−1| −
∑m−1
i=1 γsm−1

(i) + Γm−2 clients that are already assigned to station sm, and
|Cm| new clients arrive. Lower bounding Γm−1 as before, it yields a total of

|Cm|+ Γm−1 ≥

wρ

Bsm +

m−1∑
j=1

 m∑
i=j

Bsi − max
j∈[j,m]

Bsj

 1

m− j + 1

m−j∏
k=2

(
1− 1

k

) .

However, sm may receive at most wBsm transmissions within w steps. Thus, for any

ρ >
Bsm

Bsm +
∑m−1
j=1

(∑m
i=j Bsi −maxj∈[j,m]Bsj

)
1

m−j+1

∏m−j
k=2

(
1− 1

k

)
the Station Assignment problem cannot be solved.

COROLLARY 6.2. For any system ofm stations each with bandwidthB, and for each
irrevocable algorithm A, and for any ρ > 1/(1 + lnm) and β ≥ 0, there is a (ρ, β)-client
arrival schedule with bc = 1,∀c ∈ C, such that A cannot solve the Station Assignment
problem.
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PROOF. Replacing all bandwidths in the lower bound of ρ in Theorem 6.1 by B, we

get ρ >
(∑m

j=1 1/j
)−1

= H−1m > 1/(1 + lnm).

Observe that for the above proof to work it is not needed that an irrevocable algo-
rithm assigns a client to a station forever. It is enough that it assigns it for m+w steps
to reach the same result.

The following theorem for irrevocable algorithms relates β and ρ for the case where
the bandwidth of all stations is the same and m > 1. Given that β ≥ 0 by definition,
the bound implies that if ρ > 1/ lnm, the Station Assignment problem is not solvable.

THEOREM 6.3. For any system of m > 1 stations, such that all stations have the
same bandwidth B, and for each irrevocable algorithm A, there is a (ρ, β)-client arrival
schedule with bc = 1,∀c ∈ C, and w = 1 such that, if β > mB(1/ lnm−ρ), thenA cannot
solve the Station Assignment problem.

PROOF. Consider an adaptive adversary that decides which clients arrive according
to the actions of A. The adversarial client arrival schedule is the following. Let w = 1.
For each client c, it is bc = 1. The life interval of all clients is open ended. That is, upon
arrival, clients stay active forever. Clients arrive in batches. A new batch of clients
arrive after the previous batch has been irrevocably assigned by algorithm A. Time is
conceptually divided in m rounds, which are enumerated sequentially as 1, 2, . . . ,m. A
new round starts when a new batch of clients arrive. The number of clients arriving in
each round is ρB + β/m. (We omit ceilings and floors throughout the proof for clarity.)
All clients arriving in the same round i have the same group of stations Si. Starting
from the whole set of stations S in the first round, the group of stations for each new
round is reduced by one station. We say that such station is removed. Thus, for round
1 the group of stations has size m, for round 2 the size is m − 1, and so on until round
m when the group of stations has size 1. For any round r > 1, the station removed is
the station with the smallest number of clients assigned.

First we notice that the client arrival schedule defined is (ρ, β)-admissible. For this
purpose, it is enough to show that the property is preserved after each batch of arrivals.
Consider any round i = 1, . . . ,m. Let Cj be any subset of clients arriving in round
j = 1, . . . , i with group of stations Sj . Given that, by definition of the client arrival
schedule, ρB + β/m clients arrive in each round, we know that |Cj | ≤ ρB + β/m. So,
in Equation (1), the ρB term can be applied to the station removed in round j, and
putting together all the β/m terms they add up to iβ/m ≤ β.

We show now that, with the above client arrival schedule, the sum of the bandwidths
of the clients assigned to the station in Sm is more than B. Let the number of clients
arriving in each round be called X = ρB + β/m. In round 1 the overall number of
clients is X. Given that the station removed is the one with the smallest number of
clients, in round 2 the overall number of clients assigned to stations in S2 is at least
X(1−1/m)+X. Likewise, in round 3, the overall number of clients assigned to stations
in S3 is at least ((X(1−1/m)+X)(1−1/(m−1))+X. Inductively, the number of clients
assigned to the station in Sm is at least(

. . .

((
X
m− 1

m
+X

)
m− 2

m− 1
+X

)
m− 3

m− 2
. . .

)
1

2
+X =

X

(
1

m
+

1

m− 1
+ · · ·+ 1

2
+ 1

)
> X lnm.

That is, the total bandwidth of the clients assigned to the station in Sm is at least
lnm(ρB + β/m). Thus, if β > mB(1/ lnm− ρ) the claim follows.
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The following theorem shows that the restriction on ρ for solvability with irrevocable
assignments is stronger for improvident algorithms. Theorem 6.4 shows that, for ran-
domized online algorithms, if β > mB

(
3/
√

2m− ρ
)

the Station Assignment problem is
not solvable, and if β > mB

(
1/
√

2m− ρ
)

the Station Assignment problem is not solv-
able online deterministically. Given that β ≥ 0 by definition, the bound implies that if
ρ > 3/

√
2m, or if ρ > 1/

√
2m respectively, the problem is not solvable.

THEOREM 6.4. For any set of m stations each with bandwidth B, the following
holds, even if all clients have the same bandwidth:

(1) For any m ≥ 5 and β > mB
(
3/
√

2m− ρ
)
, there exists a (ρ, β)-admissible client

arrival schedule such that no online irrevocable improvident randomized algorithm
can solve Station Assignment.

(2) For any m ≥ 1 and β > mB
(
1/
√

2m− ρ
)
, there exists a (ρ, β)-admissible client ar-

rival schedule with w = 1 such that no online irrevocable improvident deterministic
algorithm can solve Station Assignment.

PROOF. If β > mB(1− ρ), the claim follows from Theorem 5.1. So, for the rest of the
proof we assume that β ≤ mB(1− ρ).

For the Load Balancing problem, where computing tasks have to be assigned to
servers, the proof of Theorem 3.3 in [Azar et al. 1994] shows a sequence of unit-weight
tasks such that, the maximum (over the servers) off-line load at all times is 1, and
the competitive ratio of any randomized irrevocable improvident algorithm is at least
(
√

2m/3)(1 + o(1)). (The theorem is stated in asymptotic notation, but the bound ob-
tained in the proof is the expression given here.) We reuse such adversary mapping
tasks to clients, servers to stations and weights/loads to bandwidths. Let the band-
width of such clients be instead ρB + β/m and the laxity w = 1. This client arrival
schedule is (ρ, β)-admissible because (i) β ≤ mB(1 − ρ) and then ρB + β/m ≤ B, and
(ii) the maximum off-line bandwidth at all times on each station is at most ρB + β/m.
However, the bandwidth used at some station is at least (

√
2m/3)(ρB + β/m), which

is larger than B if β > mB
(
3/
√

2m− ρ
)
, which is feasible for m > 9/2. The same

argument can be used for deterministic algorithms and competitive ratio of
√

2m.

6.2. Upper Bounds for Solvability
The following upper bound applies to a setting where the station bandwidth is unique
and all laxities are w = 1, but the station group may be different for each client.
First we present the algorithm that computes the assignment, and then we prove its
properties.

ALGORITHM 2: Online computation of Station Assignment for a set of stations S with unique
bandwidth B, and clients with unit laxity. Cs is the set of clients assigned to station s.

1 for each station s ∈ S do
2 Cs ← ∅;
3 for each arriving client c do
4 find a station s ∈ Sc such that

∑
c′∈Cs bc′ = mins′∈Sc

∑
c′∈Cs′

bc′ ;
5 Cs ← Cs ∪ {c};
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THEOREM 6.5. For any system ofm stations each with bandwidthB, if ρ < 1/(2(m+
1)), β ≤ ρB, and all clients have the same bandwidth b ≤ B, laxity w = 1, and never
depart, Algorithm 2 solves the Station Assignment problem.

PROOF. For the sake of contradiction, assume that some station gets overloaded.
Consider the clients in the order they arrive and are assigned to stations. In particular,
the first client ĉ whose assignment (at some time slot t) makes some station s ∈ S to
be overloaded. Let us assume, without loss of generality, that b divides exactly B,1 and
denote r , B/b. Then, after the assignment of ĉ, we have that s has exactly r + 1
clients assigned, and the rest of stations no more than r clients assigned each. That
is, the total number of clients assigned is at most rm + 1. We will show that in this
scenario the actual number of clients has to be higher, reaching a contradiction.

Let Ĉ be the set of r+ 1 clients assigned to s up to ĉ. Recall that, for any C ′ ⊆ Ĉ, it is
S(C ′) =

⋃
c∈C′ Sc. Also, given that the bandwidth of all clients is the same value b, we

have that
∑
c∈C′ bc = |C ′|b. Replacing in Equation 1 and considering as time interval

the time slot t, we have for any C ′ ⊆ Ĉ,

|C ′|b ≤ |S(C ′)|ρB + β, given that β ≤ ρB,
≤ (|S(C ′)|+ 1)ρB.

Hence, the following holds.

|S(C ′)| ≥ |C
′|

ρr
− 1, for any C ′ ⊆ Ĉ. (4)

Consider a labeling of clients in Ĉ = {c0, c1, c2, . . . , cr = ĉ}, where the subindex is the
order in which the clients were assigned to s. Let us define subsets Ci containing the
latest r − i+ 1 clients assigned to s up to cr = ĉ. That is,

Ci = {ci, . . . , cr}, for each i = 0, . . . , r.

Then, from Equation 4 we have that

|S(Ci)| ≥
r − i+ 1

ρr
− 1, for each i = 0, . . . , r. (5)

The following observations will be used. Observe that S(Ci) ⊆ S(Ci−1), since Ci ⊂
Ci−1. The set of stations S(Ci) contains by definition the stations to which at least one
of the clients cj ∈ Ci could be assigned, where j ≥ i. Also, notice that Algorithm 2
assigns cj to the station in Scj with the largest available bandwidth, breaking ties
arbitrarily. Then, when cj (which is the j + 1st client assigned to s) was processed in
Line 4 of Algorithm 2, all stations in Scj had at least j clients already assigned. In
order to lower bound the number of clients in all the stations after ĉ = cr is assigned
to s, we will use the latter argument for each station in S(Ĉ).

Let the number of clients in all stations after ĉ = cr is assigned to s be denoted as X.
We associate to each station s′ ∈ S(Ĉ) the largest j, denoted k(s′), such that s′ ∈ Scj .
In other words, we associate to each station s′ the maximum of the minimum number
of clients that should have been assigned to s′, due to assignments to s. Then, we have
the following lower bound.

X ≥ 1 +
∑

s′∈S(Ĉ)

k(s′). (6)

1Otherwise, the stations’ bandwidth can be redefined to a value B′ such that B′ = bB/rcb.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: March .



Dynamic Station Assignment :17

Where the additive one corresponds to client ĉ. If we show that the latter sum is∑
s′∈S(Ĉ) k(s′) > rm we reach a contradiction proving the theorem. So, in the rest

of the proof we focus on proving the latter inequality.
First, we re-write the sum in Equation 8 grouping the stations that have the same

k(·), as follows.

X ≥ 1 + r|S(Cr)|+
r−1∑
i=1

i(|S(Ci)| − |S(Ci+1)|)

= 1 +

r∑
i=1

|S(Ci)|

≥ 1 +

r∑
i=1

(
r − i+ 1

ρr
− 1

)
, from Equation 5,

= 1 +
r(r + 1)

2ρr
− r = 1 +

r + 1

2ρ
− r.

Since ρ < 1
2(m+1) <

r+1
2(m+1)r , it is X > rm+ 1, which is a contradiction.

THEOREM 6.6. For any system of m stations each with bandwidth B, if β ≤ ρB,
and all clients have the same bandwidth b such that ρB ≤ b < B/(m− 1), laxity w = 1,
and never depart, Algorithm 2 solves the Station Assignment problem.

PROOF. For the sake of contradiction, assume that some station gets overloaded.
Consider the clients in the order they arrive and are assigned to stations. In particular,
the first client ĉ whose assignment (at some time slot t) makes some station s ∈ S to
be overloaded. Let us assume, without loss of generality, that b divides exactly B,2 and
denote r , B/b. Then, after the assignment of ĉ, we have that s has exactly r + 1
clients assigned, and the rest of stations no more than r clients assigned each. That
is, the total number of clients assigned is at most rm + 1. We will show that in this
scenario the actual number of clients has to be higher, reaching a contradiction.

Let Ĉ be the set of r + 1 clients assigned to s up to ĉ. Recall that, for any C ′ ⊆ Ĉ, it
is S(C ′) =

⋃
c∈C′ Sc. The following property holds.

PROPERTY 6.7. ∀C ′ ⊆ Ĉ : |C ′| ≤ |S(C ′)|.

That is, for each group of clients of cardinality x, there are at least x stations to which
these clients can be assigned. To see this, consider a set C ′ ⊆ Ĉ, the corresponding set
S(C ′), and considering as time interval the time slot t. Given that the bandwidth of
all clients is the same, we have that

∑
c∈C′ bc = |C ′|b. Replacing in Eq. 1 we have the

following.

|C ′|b ≤ |S(C ′)|ρB + β, given that β < ρB,
< (|S(C ′)|+ 1)ρB, given that b ≥ ρB,
≤ (|S(C ′)|+ 1)b,

which proves the property.
Consider a labeling of clients in Ĉ = {c0, c1, c2, . . . , cr = ĉ}, where the subindex is the

order in which the clients were assigned to s. Let us define subsets Ci containing the

2Otherwise, the stations’ bandwidth can be redefined to a value B′ such that B′ = bB/rcb.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: March .



:18 A. Fernández Anta, D. Kowalski, M. A. Mosteiro, and P. W. H. Wong

latest r − i+ 1 clients assigned to s up to cr = ĉ. That is,

Ci = {ci, . . . , cr}, for each i = 0, . . . , r.

Then, from Property 6.7 we have that

|S(Ci)| ≥ r − i+ 1, for each i = 0, . . . , r. (7)

The following observations will be used. Observe that S(Ci) ⊆ S(Ci−1), since Ci ⊂
Ci−1. The set of stations S(Ci) contains by definition the stations to which at least one
of the clients cj ∈ Ci could be assigned, where j ≥ i. Also, notice that Algorithm 2
assigns cj to the station in Scj with the largest available bandwidth, breaking ties
arbitrarily. Then, when cj (which is the j + 1st client assigned to s) was processed in
Line 4 of Algorithm 2, all stations in Scj had at least j clients already assigned. In
order to lower bound the number of clients in all the stations after ĉ = cr is assigned
to s, we will use the latter argument for each station in S(Ĉ).

Let the number of clients in all stations after ĉ = cr is assigned to s be denoted as X.
We associate to each station s′ ∈ S(Ĉ) the largest j, denoted k(s′), such that s′ ∈ Scj .
In other words, we associate to each station s′ the maximum of the minimum number
of clients that should have been assigned to s′, due to assignments to s. Then, we have
the following lower bound.

X ≥ 1 +
∑

s′∈S(Ĉ)

k(s′). (8)

Where the additive one corresponds to client ĉ. If we show that the latter sum is∑
s′∈S(Ĉ) k(s′) > rm we reach a contradiction proving the theorem. So, in the rest

of the proof we focus on proving the latter inequality.
First, we re-write the sum in Equation 8 grouping the stations that have the same

k(·), as follows.

X ≥ 1 + r|S(Cr)|+
r−1∑
i=1

i(|S(Ci)| − |S(Ci+1)|)

= 1 +

r∑
i=1

|S(Ci)|

≥ 1 +

r∑
i=1

(r − i+ 1) , from Equation 7,

= 1 + r(r + 1).

Since r + 1 = B/b+ 1 > m, it is X > rm+ 1, which is a contradiction.

7. CONCLUSIONS
This paper presented worst-case (adversarial) analysis of scheduling periodic commu-
nication between base stations and mobile clients. We considered various classes of
scheduling settings and protocols, and provided limitations on feasible mobility pat-
terns given in the form of upper and lower bounds on client injection rates and bursti-
ness.

The separation results obtained expose the dependency of the complexity of Station
Assignment on model assumptions. The question of whether other combinations could
lead to more separations is enticing. For instance, what are the bounds on the adver-
sary limitations for offline protocols when the bandwidth is the same for all clients
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but the group of stations is not. Or what is the impact in online protocols of having
different client bandwidths if the group of stations is the same for all clients. Also, in
our study, we assumed that all clients have the same laxity, but the additional com-
binatorial problem of having different laxities may yield more complexity separations.
The answers to these questions are open.

In this paper we explored the solvability of Station Assignment, without evaluating
the performance of the algorithms proposed. A future line of work could explore these
algorithms (and other that may be proposed) in terms of some goodness parameter that
would have to be defined. For instance, one could allow the algorithms to refuse service
to some of the arriving clients, and measure their goodness by the volume of clients
that are in fact granted service. The analyses may also explore the competitiveness of
the algorithms, and their performance in simulated scenarios and real traces.
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Maria J. Serna, and Christopher Thraves. 2009. Adversarial Queueing Model for Continuous Network
Dynamics. Theory of Computing Systems 44, 3 (2009), 304–331.

Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson. 2001.
Adversarial queuing theory. J. ACM 48, 1 (2001), 13–38.

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: March .



:20 A. Fernández Anta, D. Kowalski, M. A. Mosteiro, and P. W. H. Wong

Joseph Wun-Tat Chan, Tak Wah Lam, and Prudence W. H. Wong. 2008. Dynamic Bin Packing of Unit Frac-
tions Items. Theoretical Computer Science 409, 3 (2008), 172–206.

Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2012. Adversarial Queuing on the Multi-
ple Access Channel. ACM Trans. Algorithms 8, 1, Article 5 (Jan. 2012), 31 pages.

R. L. Graham. 1966. Bounds on Multiprocessing Timing Anomalies. The Bell System Technical Journal 45
(1966), 1563–1581.

David R. Karger, Steven J. Phillips, and Eric Torng. 1996. A Better Algorithm For an Ancient Scheduling
Problem. Journal of Algorithms 20 (1996), 400–430.

Thomas Kesselheim. 2012. Dynamic packet scheduling in wireless networks. In Proceedings of the 31st ACM
Symposium on Principles of Distributed Computing (PODC). 281–290.

Kirk Pruhs, Jirı́ Sgall, and Eric Torng. 2004. Online Scheduling. In Handbook of Scheduling - Algorithms,
Models, and Performance Analysis., Joseph Y.-T. Leung (Ed.). Chapman and Hall/CRC, Chapter 15, pp.
15–1 to 15–41. http://www.crcnetbase.com/isbn/978-1-58488-397-5

Received ; revised ; accepted

ACM Transactions on Parallel Computing, Vol. , No. , Article , Publication date: March .


