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Abstract

We consider the following online scheduling problem in which the input consists of n jobs
to be scheduled on identical machines of bounded capacity g (the maximum number of jobs
that can be processed simultaneously on a single machine). Each job is associated with a
release time and a completion time between which it is supposed to be processed. When a
job is released, the online algorithm has to make decision without changing it afterwards.
A machine is said to be busy at a certain time if there is at least one job processing on
the machine at that time. We consider two versions of the problem. In the minimization
version, the goal is to minimize the total busy time of machines used to schedule all jobs.
In the resource allocation maximization version, the goal is to maximize the number of jobs
that are scheduled under a budget constraint given in terms of busy time. This is the first
study on online algorithms for these problems. We show a rather large lower bound on the
competitive ratio for general instances. This motivates us to consider special families of input
instances for which we show constant competitive algorithms. Our study has applications in
power aware scheduling, cloud computing and optimizing switching cost of optical networks.

1 Introduction

The problem. Job scheduling on parallel machines has been widely studied (see, e.g., the
surveys in [5, 10]). In particular, much attention was given to interval scheduling [21], where
jobs are given as intervals on the real line, each representing the time interval during which a
job should be processed; each job has to be processed on some machine, and it is commonly
assumed that a machine can process a single job at any given time.

In this paper we consider online interval scheduling with bounded parallelism. Formally, the
input is a set J of n jobs. Each job, J ∈ J , is associated with an interval [rJ , cJ ] during

∗This work was supported in part by the Israel Science Foundation grant No. 1249/08 and British Council
Grant UKTELHAI09. A preliminary version of the paper appeared in Proceedings of the 9th Annual Conference
on Theory and Applications of Models of Computation, 2012, pp. 448–460.

1



which it should be processed. We are also given the parallelism parameter g ≥ 1, which is
the maximum number of jobs that can be processed simultaneously by a single machine. At
any given time t a machine Mi is said to be busy if there is at least one job J scheduled on
it such that t ∈ [rJ , cJ ], otherwise Mi is said to be idle at time t. We call the time period in
which a machine Mi is busy its busy period. In this work we study two optimization problems
MinBusy and MaxThroughput. In MinBusy we focus on minimizing the total busy time
over all machines. Note that a solution minimizing the total busy time may not be optimal in
terms of the number of machines used. In Section 5.3 we discuss the relation between MinBusy
and minimization of the number of machines. In MaxThroughput, the resource allocation
version of the problem, we are given a budget T of total machine busy time and the objective
is to maximize the number of scheduled jobs under this constraint.

The input to our scheduling problems can be viewed as an interval graph, which is the
intersection graph of a set of intervals on the real line. It has one vertex for each interval in
the set, and an edge between every pair of vertices corresponding to intersecting intervals. In
our setting, each vertex corresponds to a job, and there is an edge between two jobs whose
processing times overlap.

Applications. Our scheduling problems can be directly interpreted as power-aware schedul-

ing problems in cluster systems. These problems focus on minimizing the power consumption
of a set of machines (see, e.g., [31] and references therein) measured by the amount of time the
machines are switched on and processing, i.e. the total busy time. It is common that a machine
has a bound on the number of jobs that can be processed at any given time.

Another application of the studied problems comes from cloud computing (see, e.g., [27,30]).
Commercial cloud computing provides computing resources with specified computing units.
Clients with computation tasks require certain computing units of computing resources over a
period of time. Clients are charged in a way proportional to the total amount of computing
time of the computing resource. The clients would like to minimize the charges they have to pay
(i.e. minimize the amount of computing time used) or maximize the amount of tasks they can
compute with a budget on the charge. This is in analogy to our minimization and maximization
problems, respectively.

Our study is also motivated by problems in optical network design (see, e.g., [9, 12, 13]).
Optical wavelength-division multiplexing (WDM) is the leading technology that enables us to
deal with the enormous growth of traffic in communication networks, like the Internet. In
an optical network, communication between nodes is realized by lightpaths, each of which is
assigned a certain color. As the energy of the signal along a lightpath decreases, regenerators
are needed in order to regenerate the signal, thus the associated hardware cost is proportional to
the length of the lightpaths. Furthermore, connections can be “groomed” so that a regenerator
placed at some node v and operating at some color λ can be shared by at most g connections
colored λ and traversing v. This is known as traffic grooming. The regenerator optimization
problem on the path topology is in analogy to our scheduling problem in the sense that the
regenerator cost measured in terms of length of lightpaths corresponds to the busy time while
grooming corresponds to the machine capacity.

In the above three applications, it is natural to consider online version of the problem where
jobs arrive at arbitrary time and decisions have to be made straightaway (see e.g., [25, 27,30]).

Related work. Some of the earlier work on interval scheduling considers the problem
of scheduling a feasible subset of jobs with maximum total weight, i.e., a maximum weight

2



independent set (see, e.g., [2] and surveys in [18, 19]). There is wide literature on real-time
scheduling, where each job has to be processed on some machine during a time interval between
its release time and due date. There are also studies on real-time scheduling, where each machine
has some capacity and each job has a demand of a certain machine capacity; however, to the
best of our knowledge, all of this prior work (see, e.g., [2,6,8,28]) refers to different flavor of the
model than the one presented here. Interval scheduling has been studied in the context of online
algorithms and competitive analysis [20, 22]. It is also common to consider both minimization
and maximization versions of the same scheduling problem, see e.g., [3] but in that model the
machines have unit capacity.

Our study also relates to batch scheduling of conflicting jobs, where the conflicts are given
as an interval graph. In p-batch scheduling model (see, e.g., Chapter 8 in [5]) a set of jobs
can be processed jointly. All the jobs in the batch start simultaneously, and the completion
time of a batch is the last completion time of any job in the batch. (For known results on
batch scheduling, see, e.g., [5].) Our scheduling problem differs from batch scheduling in several
aspects. In our problems, each machine can process g jobs simultaneously, for some g ≥ 1, the
jobs need not be partitioned to batches, i.e., each job can start at different time. Also, while
in known batch scheduling problems the set of machines is given, we assume that any number
of machines can be used for the solution. Finally, while common measures in batch scheduling
refer to the maximum completion time of a batch, or a function of the completion times of the
jobs, we consider the total busy times of the machines.

Previous work on busy time scheduling. The complexity of MinBusy was studied
in [32], which showed that the problem is NP-hard already for g = 2. The work [14] considered
the problem where jobs are given as intervals on the line with unit demand. For this version
of the problem it gives a 4-approximation algorithm for general inputs, and better bounds for
some subclasses of inputs. In particular, 2-approximation algorithms were given for instances
where no job interval is properly contained in another interval (called “proper” instance), and
“clique” instances where any two job intervals intersect, i.e., the input forms a clique (see same
approximation but different algorithm and analysis in [15]). The work [17] extends the results
of [14], considering the case where each job has a different demand on machine capacity and
possibly has some slack time. The work [26] improves upon [14] on some subclasses of inputs and
initiates the study of MaxThroughput. A 6-approximation is proposed for clique instances,
and a polynomial time algorithm is proposed for proper clique instances, i.e. instances that are
both “clique” and “proper”. These special instances have been considered in [17,26]. The study
so far has been focused on the offline setting [14,15,17,26].

Our contribution. We extend the study on busy time optimization to the online setting
and give deterministic online algorithms for both the minimization and maximization variants.
For the MinBusy problem, we first show that

• g is a lower bound for the competitive ratio of any online algorithm.

We therefore consider special instances. We first show that a better bound can be achieved if
the lengths of the jobs do not grow exponentially with g. Namely we show

• A strictly 5 log lenmax-competitive online algorithm where lenmax is the length of the
longest job.

One special set of instances we consider is the clique instances where any two job intervals
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intersect, and the one-sided clique instances where all jobs have the same release time or same
completion time. Specifically, we show the following:

• Lower and upper bounds of 2 and (1 + φ) < 2.62 respectively, where φ = (1 +
√
5)/2 is

the Golden Ratio, for one sided clique instances.

• Extension of the upper bound to the clique instances with a blow up of 2 in the ratio.

For theMaxThroughput problem we first show that no online algorithm is better than (gT/2)-
competitive. We therefore consider feasible instances for which there exist offline schedules that
schedule all jobs. We show the following for feasible one-sided clique instances:

• Asymptotic competitive ratio of at least 2 in general,

• Absolute competitive ratio of at least 2− 2
g+1 even if g is fixed.

• A constant competitive online algorithm with ratio depending on g, but at most 9/2 in
general.

We also extend our results to the context of optimization in optical network with grooming.
We show that the results can be applied directly if the underlying network topology is a path
and adapt some results to other topologies like ring and tree.

Organization of the paper. In Section 2 we present some preliminaries. We consider
online busy time minimization and maximization in Sections 3 and 4, respectively. In Section 5
we discuss the application of our results in the context of optical networks. We then conclude
in Section 6 with some open problems and further research directions.

2 Notations and preliminaries

Unless otherwise specified, we use lower case letters for indices and specific times, and upper
case letters for jobs, time intervals and machines. Moreover, we use calligraphic characters for
sets (of jobs, intervals and machines).

The input consists of a set of machines M = {M1,M2, · · · }, an integer g representing the
machine parallelism bound, and a set of jobs J = {J1, J2, · · · , Jn} each of which is associated
with an interval [rJ , cJ ] during which it is supposed to be processed, where rJ and cJ denote
the release time and completion time of the job J , respectively. We use jobs and time intervals
interchangeably throughout the paper. We assume that the given setM of machines is infinite
as we do not aim at optimizing the number of machines. We address the issue of number of
machines in Section 5. We are to decide a schedule to assign jobs to the machines.

To define the objective of the problem, we first define the notion of length and span of

intervals. Given a time interval I = [rI , cI ], the length of I is len(I)
def
= cI − rI . The notion

extends to a set I of intervals; namely the length of I is len(I) =
∑

I∈I len(I). Two intervals are
said to be overlapping if their intersection contains more than one point. For example, the two
intervals [1,2] and [2,3] are considered to be non-overlapping. For a set I of intervals we define

SPAN(I) def
= ∪I∈II and span(I) def

= len(SPAN(I)). We refer to both of them as the span of a set
of interval, when the intention is clear from the context. For example, if I = {[1, 3], [2, 4], [5, 6]},
then SPAN(I) = {[1, 4], [5, 6]} span(I) = 4, and len(I) = 5. Note that span(I) ≤ len(I) and
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equality holds if and only if I is a set of pairwise non-overlapping intervals. A (partial) schedule
is a function from (a subset of) the set of jobs J to the set of machinesM.

A schedule is said to be valid if every machine processes at most g jobs at any given time.
In this definition a job [rJ , cJ ] is considered as not being processed at time cJ . For instance, a
machine processing jobs [1, 2], [2, 3], [1, 3] is considered to be processing two jobs at time 2. Note
that this is consistent with the definition of the notion overlapping intervals, and equivalent to
saying that the intervals do not contain their completion time, i.e. are half-open intervals.

Given a (partial) schedule s : J 7→M, we denote by J s
i the set of jobs assigned to machine

Mi by schedule s, i.e. J s
i

def
= s−1(Mi). The cost of machine Mi in this schedule is the length of

its busy interval, i.e. busysi
def
= span(J s

i ). We further denote the set of jobs scheduled by s as

J s def
= ∪iJ s

i . The cost of schedule s is costs
def
=
∑

i busy
s
i , and its throughput is tputs

def
= |J s|.

When there is no ambiguity on the schedule in concern, we omit the superscripts (e.g. we use
Ji for J s

i , etc.).
We consider two variants of the problem: MinBusy is the problem of minimizing the to-

tal cost of scheduling all the jobs, and MaxThroughput is the problem of maximizing the
throughput of the schedule subject to a budget given in terms of total busy time. These two
problems are formally defined as follows:

MinBusy
Input: (M,J , g), where M is an infinite set of machines, J is a set of jobs (i.e.
time intervals), and g is the parallelism bound.
Output: A valid schedule s : J 7→M.
Objective: Minimize costs.

MaxThroughput
Input: (M,J , g, T ) whereM is an infinite set of machines, J is a set of jobs, g is
the parallelism bound, and T is a budget given in terms of total busy time.
Output: A valid (partial) schedule s : J 7→M such that costs ≤ T .
Objective: Maximize tputs.

For both problems we denote by s∗ an optimal schedule. The cost of s∗ is denoted by cost∗

and its throughput by tput∗.
Without loss of generality, we assume that each machine is busy over a contiguous time

interval. Note that the definition of busy time measures the time that a machine is actually
processing some job. If a machine is busy over several contiguous time intervals, then we can
replace it with several machines that satisfy the assumption, changing neither the feasibility
nor the measure of the schedule. For example, if a machine is busy over [1, 2] and [3, 4], we can
replace this machine with two machines, one busy over [1, 2], the other over [3, 4] and this does
not change the total busy time.

Special instances. A set of jobs J is a clique set if there is a time t common to all the
jobs in J . This happens if and only if the corresponding interval graph is a clique. When J
is a clique set we call the corresponding instance ((M,J , g) or (M,J , g, T )) a clique instance.
A clique instance in which all jobs have the same release time or the same completion time is
termed a one-sided clique instance.
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A set of jobs J is proper if no job in the set properly includes another. Note that in this
case for two jobs J, J ′ ∈ J , rJ ≤ rJ ′ if and only if cJ ≤ cJ ′ . We denote this fact as J ≤ J ′ and
w.l.o.g. we assume the jobs are numbered in such a way that J1 ≤ J2 ≤ . . . ≤ Jn.

Online algorithms. When a job is given, an online algorithm has to assign it to a machine
or reject it with no future knowledge of jobs to be given. We consider deterministic online
algorithms and analyze the performance by competitive analysis [4]. An online algorithm A
for MinBusy is c-competitive, for c ≥ 1, if there exists a constant b ≥ 0 such that for all
input instances, its cost is at most c · cost∗ + b. For MaxThroughput, A is c-competitive,
for c ≥ 1, if there exists a constant b ≥ 0 such that for all input instances, its benefit is at
least (1/c) · tput∗ − b. Note that in both cases, the competitive ratio is ≥ 1. When the additive
constant b is zero, A is said to be strictly c-competitive and c is its absolute competitive ratio.

Consider MinBusy in which we schedule all jobs in J . The following observation gives two
immediate lower bounds for the cost of any schedule of MinBusy.

Observation 1. For any instance (M,J , g) of MinBusy and a valid schedule s for it, the
following bounds hold:

• the parallelism bound: costs ≥ len(J )
g ,

• the span bound: costs ≥ span(J ), and

• the length bound: costs ≤ len(J ).

The parallelism bound holds since a machine can process at most g jobs at any time. The
span bound holds because at any time t ∈ SPAN(J ), at least one machine is busy. The length
bound holds because len(J ) is the total busy time if each job is allocated a distinct machine.

By the parallelism bound and length bound, the following holds.

Proposition 2. For MinBusy, any online algorithm is strictly g-competitive.

The following relationship between MinBusy and MaxThroughput is observed in [26].

Proposition 3 ([26]). There is a polynomial time reduction from the MinBusy problem to the
MaxThroughput problem.

3 Cost Minimization - MinBusy problem

In this section we focus on the MinBusy problem for which we consider general instances in
Section 3.1, one-sided clique instances in Section 3.2 and clique instances in Section 3.3.

3.1 General Instances

We consider general instances for MinBusy. We show a lower bound for any online algorithm
(Theorem 4) and present a greedy algorithm (Algorithm 2 and Theorem 6).
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λ3
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Figure 1: Lower bound forMinBusy: example for g = 3. Jobs with different arrow heads and thicknesses
belong to different values of d. Dashed lines show jobs for which the online algorithm uses a new machine
and the jobs that are just released before each one of them. Note: Within each such pair the shorter job
is of length 1/k times the longer.

3.1.1 Lower Bound

We first describe a lower bound of 2 on any algorithm A. The adversary releases jobs with
release and completion time in the interval [0, T ], for some arbitrarily large T . Let k be an
integer, r = 0 be the release time of the jobs to be released, t = T be the remaining time to be
considered, and ℓ = t/kg−1 be a parameter of the length of jobs to be released.

We first release a job of length t at time r and suppose A assigns the job to machine M .
We then release jobs of lengths ℓ, ℓk, ℓk2, · · · , all at time r, until a machine different from M is
used. Suppose that the job assigned to a different machine is of length ℓkj (note that j ≤ g−1).
Then we set parameters r′ = ℓkj , t′ = t − r and ℓ′ = t′/kg−1. We then release jobs of length
ℓ′, ℓ′k, ℓk2, · · · with release time at r′, until a machine different from M is used. Repeat until a
machine different from M is used for the whole interval [0, T ].

With this adversary, costs ≥ 2T : T for the very first job, and T for the jobs not assigned
to M . One can use the same machine for all jobs except for the shortest ones, and cost∗ ≤
T (1 + 1/kg−1). An arbitrarily large k implies that the competitive ratio of A is no better
than 2. By extending this idea we prove:

Theorem 4. For MinBusy, no online algorithm has an absolute competitive ratio better than g.

Proof. We extend the simple adversary described above and start with the same parameters
k, r, t while ℓ is now defined as t/kdg−1 where d is a new parameter initially set to 1. When
A assigns a new machine to a job of length ℓkj , for some j, we recursively treat ℓkj as t and
ℓkj/k2g−1 as new ℓ. The exponent is 2g− 1 since at most 2g jobs would force A to use another
machine. The adversary is described by three parameters (r, t, d), where 1 ≤ d < g is the
number of machines used by A. Initially, the parameters are (0, T, 1).

The adversary is described in the recursion below (Algorithm 1). See Figure 1 for an
example of the input generated by Adversary.

With the above adversary, we have costs ≥ gT , with T for each machine the algorithm uses.
One can assign a machine to all the longest jobs in their release sequence for a busy time of
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Algorithm 1 Adversary(r, t, d)

1: if d < g then
2: while t > 0 do
3: ℓ = t/kdg−1

4: repeat
5: Release jobs with release time r and length ℓ, ℓk, ℓk2, · · ·
6: until a new machine is used by the algorithm for a job of length ℓkj

7: Adversary(r, ℓkj , d+ 1)
8: t = t− ℓkj , r = r + ℓkj

9: end while
10: end if

T (these jobs are the jobs that are scheduled on new machines by algorithm A). The total
length of the remaining jobs is at most g

∑∞
i=1 T/k

i = g · T/(k − 1). By the length bound, we
have cost∗ ≤ T + g · T/(k− 1) even if the remaining jobs are scheduled individually on different
machines. Therefore, costs/cost∗ ≥ g

1+g/(k−1) . Picking a large k implies the theorem.

3.1.2 Upper Bound

With Proposition 2 and Theorem 4, the competitive ratio is tight in terms of g. Yet the adversary
in Theorem 4 makes use of jobs of many different lengths. In particular, the adversary needs
to generate jobs of length kg

2
, requiring kg

2 ≤ T , i.e. g ≤
√

logk T . When this is not the case,
we have a better result: Algorithm BucketFirstFit achieves a competitive ratio depending
on the span of the longest job. BucketFirstFit takes a parameter α > 1 and classifies jobs
according to their lengths. A job J is classified in a bucket according to len(J): a job with
αi ≤ len(J) < αi+1 belongs to bucket i, for i ≥ 0. Jobs in a bucket are assigned to machines in
a First-Fit manner independently of other buckets.

Algorithm 2 BucketFirstFit(α)

1: When a job J arrives, determine the bucket i of J according to the parameter α.
2: for each machine M already assigned a job from bucket i do
3: if it is valid to assign J to M then
4: Assign J to M
5: return
6: end if
7: end for
8: Assign J to a new machine.

To analyze BucketFirstFit we adapt the proof of Theorem 2.1 in [14]. The offline algo-
rithm in [14] basically sorts the jobs in non-increasing order of length and then assigns jobs in
this order to machines in a First-Fit manner. The analysis [14] proves the following properties:

1. Consider the set of jobs Jj assigned to machine Mj and a job J ∈ Jj . J may prevent a
set of jobs Q from using machine Mj since they overlap with J . It can be shown that

len(J) ≥ span(Q)/3. (1)
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len(J)
≤ α · len(J) ≤ α · len(J)

� -≤ (2α+ 1)len(J)

Figure 2: Analysis of BucketFirstFit: Job J (top middle) overlaps with some other jobs in
the same bucket. The span of those overlapping jobs is at most (2α+ 1)len(J).

Indeed, as jobs are considered in descending order of length, any job in Q has length at
most len(J). The span of any set of jobs overlapping with J is at most len(J) to the left
of rJ and at most len(J) to the right of cJ , and hence span(Q) ≤ 3 · len(J).

2. Using Inequality (1), one can then show that for any j ≥ 1,

len(Jj) ≥
g

3
span(Jj+1) (2)

where the denominator 3 follows from the same denominator in Inequality (1).

3. Summing up Inequality (2) for all j and considering that span(J1) is no more then the
optimum, it is then shown that the cost of the First Fit algorithm is at most 4 times
that of an optimal solution. Note that the coefficient 4 is obtained by adding 1 to the
denominator 3 in Inequality (1).

A similar analysis can be applied to BucketFirstFit on the jobs in the same bucket. In
the same bucket, unlike in [14], jobs are considered in arbitrary order. However the max-min
length ratio of the jobs’ length in one bucket is at most α. Then the factor in (1) becomes
2α+1 because the span of jobs overlapping with J must be in [rJ −α len(J), cJ +α len(J)] and
that cJ = rJ + len(J) (see Figure 2). By Property 3, the performance ratio for each bucket is
therefore 2α+ 2. The result is summarized in Lemma 5.

Lemma 5. Let J (i) be the set of jobs in bucket i and let s be a schedule returned by BucketFirstFit.
Then costs(J (i)) ≤ (2α+ 2)cost∗(J (i)).

By Lemma 5 and the bound on the total number of buckets, we can prove the following
theorem.

Theorem 6. For MinBusy, by choosing α = 4, BucketFirstFit(4) is strictly (5 log lenmax)-
competitive where lenmax is the maximum length of a job.

Proof. Let B = ⌈logα lenmax⌉. Note that B + 1 is an upper bound on the total number of
buckets. Then, costs(J ) =

∑
0≤i≤B costs(J (i)). By Lemma 5, we have

costs(J ) ≤ (2α+ 2)B max
0≤i≤B

cost∗(J (i)) =
(2α+ 2) ⌈log lenmax⌉

logα
max
0≤i≤B

cost∗(J (i)).

On the other hand, an optimal schedule for all jobs in J clearly defines a schedule for the
jobs in any bucket. Therefore, we have cost∗(J ) ≥ max0≤i≤B cost∗(J (i)). By choosing α = 4,
(2α+2)
logα = 5 and hence costs(J ) ≤ 5 log lenmaxcost

∗(J ) and the theorem follows.

By Proposition 2 and Theorem 6, we have the following corollary.

Corollary 7. For MinBusy, there is a strictly min{g, 5 log lenmax}-competitive online algorithm
where lenmax is the maximum length of a job.
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3.2 One-Sided Clique Instances

In this and the next section we consider special instances. We first consider one-sided clique
instances in which all jobs have the same release time or the same completion time. We then
consider in the next section clique instances in which there is a time t common to all jobs.

3.2.1 Upper bound

For one-sided clique instances at most g jobs can be assigned to one machine because all jobs
share a common time. Algorithm BucketFirstFit in Section 3.1.2 can be simplified. For each
bucket, instead of checking machines one by one, we only need to keep one “current” machine
that has fewer than g machines assigned to it. We give the details in Algorithm 3. We show
that it is strictly (1 + φ)-competitive where φ = (1 +

√
5)/2 is the Golden Ratio. Without loss

of generality, we assume that all jobs have the same release time.
BucketGreedy depends on a parameter α > 1 to be determined in the sequel. In the

same way as in the previous section, a job J is categorized to a bucket according to len(J): for
i ≥ 0, bucket i consists of jobs J such that αi ≤ len(J) < αi+1.

Algorithm 3 BucketGreedy(α)

1: When a job J arrives, determine the bucket i of J according to the parameter α.
2: If bucket i has no current machine, then use a new machine and make it the current machine

of bucket i.
3: If there are already g jobs assigned to the current machine of bucket i, then use a new

machine and make it the current machine of bucket i.
4: s(J)← the current machine of bucket i.

The correctness of BucketGreedy stems from the validation in Step 3. We proceed with
its competitive analysis. Let qi · g+ ri be the number of jobs in bucket i, where 0 ≤ ri < g. Let
m be the non-empty bucket with biggest index and let ℓ be the biggest index such that rℓ > 0.
Clearly, bucket ℓ is non-empty (otherwise rℓ = 0), thus ℓ ≤ m. Let L be the maximum length
of a job in bucket ℓ, thus αℓ ≤ L < αℓ+1.

BucketGreedy uses distinct machines for every bucket, thus costs is the sum of the busy
time of machines in each bucket. The sum of busy time of machines in bucket i is at most
(qi + 1)αi+1, because at most qi + 1 machines are used each with busy time at most αi+1. For
i > ℓ this number is at most qiα

i+1 (because ri = 0), and for bucket ℓ this number is at most
(qℓ + 1)L. Therefore we have:

costs ≤
ℓ−1∑
i=0

(qi + 1)αi+1 + (qℓ + 1)L+

m∑
i=ℓ+1

qiα
i+1 ≤

m∑
i=0

qiα
i+1 +

ℓ−1∑
i=0

αi+1 + L

<
m∑
i=0

qiα
i+1 +

αℓ+1

α− 1
+ L ≤

m∑
i=0

qiα
i+1 +

αℓ+1L

(α− 1)αℓ
+ L

= α

m∑
i=0

qiα
i +

2α− 1

α− 1
L . (3)

We then bound the cost of the optimal schedule in the following proposition.
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Proposition 8.

cost∗ ≥
m∑
i=0

qiα
i + L .

Proof. Observe that an optimal schedule s∗ can be obtained by sorting the jobs in non-increasing
order of lengths, and assigning the same machine to every g consecutive jobs in this order.
Note that such a solution might assign jobs of different buckets to one machine. This order is
equivalent to the non-increasing lexicographic order in (bucket(J), len(J)) where bucket(J) is
the index of the bucket of job J . We now consider the buckets in decreasing order. The number
of jobs in bucket i for i > ℓ is a multiple of g, thus in s∗ no machine used for jobs of bucket i
is available for bucket i − 1. The number of machines used is therefore qi, and the busy time
is at least αi in each machine. In bucket ℓ, s∗ spends a busy time of L on the first machine,
and at least αℓ for each of the subsequent qℓ machines. Note that the last machine is available
for bucket ℓ− 1. In bucket i with i < ℓ, s∗ may use the last machine of bucket i+ 1 and needs
at least qi more machines, each with a busy time of at least αi. Note that the last machine is
possibly available for bucket i− 1. We have:

cost∗ ≥
m∑

i=ℓ+1

qiα
i + L+ qℓα

ℓ +

ℓ∑
i=0

qiα
i =

m∑
i=0

qiα
i + L .

For α = 3+
√
5

2 we have 2α−1
α−1 = α. Then Inequality (3) can be written as costs < α

m∑
i=0

qiα
i+

αL ≤ α · cost∗ implying

Theorem 9. For MinBusy, BucketGreedy(1+φ) is strictly (1+φ)-competitive for one-sided

clique instances, where φ = 1+
√
5

2 is the Golden Ratio.

3.2.2 Lower bound

Lemma 10. For MinBusy, no on-line algorithm has an absolute competitive ratio better than
(1+1/x) for one-sided clique instances, where x is the root of the equation xg−1 = (x+1)/(x−1).

Proof. The adversary starts by releasing jobs one by one, of lengths 1, x, x2, · · · , xg−1, with
the same release time. If the on-line algorithm A uses a second machine for a job of length
xi+1 for some 0 ≤ i < g − 1, the adversary stops releasing the remaining jobs. In this case
costs

cost∗ = (xi+1 + xi)/xi+1 = 1 + 1/x.
If A assigns the same machine for all these g jobs, the adversary releases one more job

of length xg−1 at the same arrival time, forcing A to use a different machine. In this case,
costs = 2xg−1 while s∗ assigns one machine to the job of length 1 and another machine for the
rest, resulting in cost∗ = xg−1 + 1. Then, costs

cost∗ = 2xg−1/(xg−1 + 1).
If we set x to be the root of the equation xg−1 = (x+ 1)/(x− 1), then 2xg−1/(xg−1 + 1) =

1 + 1/x, implying that A is at least (1 + 1/x)-competitive.

For g = 2, this implies a lower bound of
√
2 and for larger values of g, we have an increasing

lower bound approaching 2 (see Figure 3).
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Figure 3: Lower bound for MinBusy on one-sided clique instances. The line x and the curve (x +
1)/(x − 1) intersect at x = 1 +

√
2 and for this value 1 + 1/x =

√
2. Note that xg and (x + 1)/(x − 1)

intersect at x ≥ 1, implying 1 + 1/x ≤ 2.

3.3 Clique Instances

We present the online algorithm LeftOrRight(A) for clique instances, which assumes the
knowledge of the time t common to all jobs, and takes as parameter an online algorithm A for
one-sided clique instances. Roughly speaking LeftOrRight runs two copies of A: AL for the
jobs with longer left side (from rJ to t) and AR for jobs with longer right side (from t to cJ).
We give the details in Algorithm 4.

The correctness of LeftOrRight(A) follows from that of A. Lemma 11 asserts that its
competitive ratio is at most twice that of A. Roughly speaking, the lemma stems from the fact
that the sum of the optimal cost for the sets of jobs fed to AL and AR is at most that the
optimal cost for J .

Algorithm 4 LeftOrRight(A, t)
1: Two copies of the online algorithm A are run, AL for some jobs on the left of the common

time t and AR for some jobs on the right.
2: When a job J with interval [rJ , cJ ] arrives, compute the lengths to the left and right to the

common time t, i.e., the two quantities t− rJ and cJ − t.
3: if t− rJ ≥ cJ − t then
4: Create an input job JL with interval [rJ , t]
5: Feed JL to AL.
6: Assign J to the machine that AL assigns JL
7: else
8: Create an input job JR with interval [t, cJ ]
9: Feed JR to AR.

10: Assign J to the machine that AR assigns JR.
11: end if

Lemma 11. If A is c-competitive for one-sided clique instances of MinBusy, then LeftOrRight(A, t)
is 2 · c-competitive for clique instances of MinBusy where t is any common point to all the jobs.

Proof. Consider a given set J of jobs. For each job J ∈ J with interval [rJ , cJ ], let JL be
the job with interval [rJ , t] and JR be the job with interval [t, cJ ]. Let JL = {JL | J ∈ J }
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and JR = {JR | J ∈ J }. Let J ′
L ⊆ JL be the set of jobs that are fed to AL, and J1 be the

corresponding subset of J . Similarly, we define J ′
R and J2 for AR. Note that J ′

R and J ′
L are

one-sided clique instances by the way they are built by the algorithm, and by the fact that t ∈ J
for every J ∈ J .

As J ′
L ⊆ JL, any schedule for JL defines a schedule for J ′

L of same or smaller busy time,
implying that cost∗(J ′

L) ≤ cost∗(JL). Similarly, cost∗(J ′
R) ≤ cost∗(JR). Furthermore, since JL

and JR have no time in common except t, a schedule for J defines two schedules, one for JL
and one for JR. Therefore, we have

cost∗(J ) ≥ cost∗(JL) + cost∗(JR). (4)

Let sL and sR be the schedules returned by AL and AR on J ′
L and J ′

R, respectively. Since
A is c-competitive for one-sided clique instances, costsL(J ′

L) ≤ c · cost∗(J ′
L) and costsR(J ′

R) ≤
c · cost∗(J ′

R), implying

costsL(J ′
L) + costsR(J ′

R) ≤ c · (cost∗(JL) + cost∗(JR)) ≤ c · cost∗(J ).

For every job J , LeftOrRight(A, t) selects JL or JR (whichever longer) to feed to one of
the two copies of algorithm A. Hence, costs(J1) ≤ 2 · costsL(J ′

L) and costs(J2) ≤ 2 · costsR(J ′
R).

Then,

costs(J ) = costs(J1) + costs(J2) ≤ 2(costsL(J ′
L) + costsR(J ′

R)) ≤ 2c · cost∗(J ) . (5)

By Theorem 9 and Lemma 11, the following corollary follows.

Corollary 12. LeftOrRight(BucketGreedy(1 + φ), t) is 2(1 + φ)-competitive for clique

instances of MinBusy where φ = 1+
√
5

2 is the Golden Ratio and t is any point common to all
the jobs.

We note that if t is not known a priori, we can use a modified algorithm that divides jobs
into buckets according to their length cJ − rJ . As

cJ−rj
2 ≤ max {t− rJ , cJ − t} ≤ cJ − rj the

index of the bucket decided by the modified algorithm differs from the index decided by the
original algorithm by at most 1, thus loosing a factor of at most 2 in the performance with
respect to the original algorithm.

4 Throughput Maximization - MaxThroughput problem

4.1 Basic Results

In this section we consider the MaxThroughput problem (M,J , g, T ). An input instance is
said to be feasible if there is a schedule that assigns all the jobs with total machine busy time
at most T , i.e., tput∗ = |J |. The following proposition asserts that the problem does not admit
a small competitive ratio for general instances.

Proposition 13. No online algorithm for MaxThroughput is better than strictly gT -competitive,
while there exists a strictly gT -competitive online algorithm.
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Proof. To simplify the discussion, we assume that time is divided into unit-length intervals. A
simple algorithm that schedules every possible job using any machine is strictly gT -competitive
because it schedules at least one job and at most gT jobs can be scheduled.

We then show a matching lower bound. Consider any online algorithm A. The adversary
releases a job with interval [0, T ]. A has to schedule this job, and spends a busy time of T ,
otherwise, its competitive ratio is unbounded. The adversary then issues gT jobs, all with length
1, g of which with intervals [T, T + 1], g with [T + 1, T + 2], · · · , g with [2T − 1, 2T ]. A cannot
schedule any of these jobs while an optimal solution would only schedule these jobs, and the
competitive ratio is gT .

Following Proposition 13, from now on we consider only feasible instances. Furthermore,
we focus on feasible one-sided clique instances. Proposition 14 asserts that both the simple
greedy algorithm and algorithm BucketGreedy do not admit a small competitive ratio. This
suggests that some form of admission control seems necessary and we will give such an algorithm
in the sequel.

Proposition 14. For feasible one-sided clique instances of MaxThroughput (i) the simple
greedy algorithm is Ω(T )-competitive, and (ii) BucketGreedy is Ω( T

log T )-competitive even
when g = 2.

Proof. (i) The simple greedy algorithm simply assigns the first machine that the new job can
be assigned, i.e., the resulting schedule is still valid. The following adversary shows that the
algorithm is Ω(T )-competitive. Let g = T/2. The adversary releases g groups of jobs each with
g jobs and all with the same arrival time (one-sided clique instance). For each group, the first
job has length T −g and the next g−1 jobs has length 1. Note that this instance is feasible since
one can schedule all the long jobs in one machine with busy time T − g and the other g(g − 1)
jobs in g − 1 machines with total busy time g − 1. So the total busy time of all machines is
T−1. The simple greedy algorithm schedules jobs in the order of groups and would schedule the
same group in the same machine, Then only two groups would be scheduled since T − g = T/2,
resulting in a total busy time of T . Therefore, the competitive ratio is at least g2/2g = T/4.

(ii) The following adversary shows that BucketGreedy is Ω( T
log T )-competitive when g = 2.

Release (log T − 1) jobs of length 2, 22, · · · , T/2 followed by 2T/3 jobs with length 1. This is
a feasible instance since one can schedule the first (log T − 1) jobs in (log T − 1)/2 machines
with total busy time 2T/3 and the remaining 2T/3 short jobs on T/3 machines with total busy
time T/3. On the other hand, BucketGreedy only schedules the first (log T − 1) jobs each
on a different machine and two short jobs on one machine, with a total busy time of T . The
competitive ratio is therefore Ω( T

log T ).

4.2 Lower Bounds for Feasible One-Sided Clique Instances

In this section we show two lower bounds on the competitive ratio of any online algorithms for
feasible one-sided clique instances, one for the absolute competitive ratio for any fixed value of
g and the other for the general case

Lemma 15. Let A be a c-competitive online algorithm for feasible one-sided clique instances of
MaxThroughput, with an additive constant b. If c(b+ 1) < g then

c ≥ 2− 4b+ 2

g + 2b+ 1
.
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Proof. By the definition of competitiveness, for any prefix of the input A returns a schedule s
such that tputs ≥ tput∗/c− b. We describe an adaptive adversary for A. Let T be a large even
integer. Release c(b+1) jobs each of length T/2+1, followed by g− c(b+1) jobs each of length
T/2−1. A has to schedule at least one of the first c(b+1) jobs, otherwise after the first c(b+1)
jobs, tputs = 0 < 1 = c(b+ 1)/c− b. We consider two cases.

Case 1. A uses two machines, one with busy time T/2 + 1 and the other T/2 − 1 and
costs = T . Then A cannot use a third machine, i.e. tputs ≤ 2g regardless of the rest of the
input. The adversary further releases g(T/2 − 1) jobs with length 1. One can schedule all the
jobs by assigning the first g jobs to one machine with busy time T/2+1 and the rest on T/2−1
machines with a total busy time of T/2− 1. Therefore tput∗ = g + g(T/2− 1) = gT/2, and the
competitive ratio is tput∗/(tputs + b) ≥ T

4+2b/g . For any g and b by choosing an arbitrarily large
even T , c is unbounded.

Case 2. A uses only one machine. The adversary then releases g − c(b+ 1) more jobs each
of length T/2+ 1. A cannot use a second machine for these jobs. Therefore tputs ≤ g. One can
schedule all jobs by assigning the same machine to the first c(b+1) and the last g−c(b+1) jobs
using a busy time of T/2 + 1 and leaving a busy time of T/2− 1 for the rest. The competitive
ratio is c ≥ tput∗/(tputs + b) ≥ (2g− c(b+1))/(g+ b). Then we have c(g+2b+1) ≥ 2g and the
result follows.

The condition in Lemma 15 holds when g ≫ b or b = 0, leading to two lower bounds

Theorem 16. For feasible one-sided clique instances of MaxThroughput, any online algo-
rithm has (i) a competitive ratio of at least 2, (ii) an absolute competitive ratio of at least 2− 2

g+1
even if g is fixed.

Proof. Assume by contradiction that there is an algorithm with a competitive ratio c = 2 − ϵ
for some ϵ ∈ (0, 1].

(i) Consider instances with g = 1 + ⌈max
{
c(b+ 1), 2(2b+ 1)(2ϵ − 1)

}
⌉. Then g > c(b + 1),

thus satisfies the condition of Lemma 15. Therefore c ≥ 2 − 4b+2
g+2b+1 = 2 − ϵ

2 > 2 − ϵ = c, a
contradiction.

(ii) As we consider absolute competitive ratio, we have b = 0. Therefore, g ≥ 2 > c = c(b+1),
i.e. the condition of Lemma 15 is satisfied. We conclude that c ≥ 2− 4b+2

g+2b+1 = 2− 2
g+1

4.3 Online Algorithm for Feasible One-Sided Clique Instances

In this section we propose an online algorithm called BalanceBudget that achieves a constant
asymptotic competitive ratio for every fixed g. Since the given instance is feasible, we have
tput∗ = |J |.

We start by defining a few terms and notations for the algorithm. We categorize the input
jobs into buckets1 according to their lengths. Namely, given a job J ∈ J we define bucket(J) as

the smallest non-negative integer i such that T
2i+1 < len(J) and J (i) def

= {J ∈ J | bucket(J) = i}.
In other words we have ∀J ∈ J (i), T

2i+1 < len(J) ≤ T
2i
. We also define the following two dynamic

variables (i.e., their values depend on the state of the algorithm).

• Ti: The total busy time incurred by the algorithm to schedule the jobs of J (i) except its
first g jobs in the order of arrival.

1Note that the definition of bucket is slightly different from that defined for MinBusy.
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• T ∗
i : A set of ⌈log T ⌉ variables (one for each bucket) satisfying, (a) T ∗

i ≥ 0, (b) T ∗
i is

non-decreasing, and (c)
∑

i T
∗
i ≤ cost∗.

In the pseudo code of BalanceBudget (Algorithm 5), accept(J) stands for scheduling J
to the machine with smallest index that is under use in bucket i and the schedule continues to
be valid after assigning J . If no such machine exists J is assigned a new machine. In this case
we also set J (i) ← J (i) ∪ {J}, where i is the bucket J belongs to. reject(J) means that J is
not assigned, i.e. s(J) is undefined, and J (i) remains the same.

Algorithm 5 BalanceBudget

When a job J arrives do:
i← bucket(J)
if
∣∣J (i)

∣∣ ≤ g then
if i ≥ 3 then accept(J) ◃ (+)
else reject(J)
end if

else
if Ti ≤ 3

4T
∗
i would hold after accepting J then accept(J) ◃ (*)

else reject(J)
end if

end if

The analysis of BalanceBudget proceeds as follows. In Lemma 17 we show that, pro-
vided a polynomial-time computable function T ∗

i (of the state of the algorithm) that satisfies
conditions (a)-(c), BalanceBudget returns a valid schedule with total busy time at most
T . We then show in Lemma 18 the existence of such a function T ∗

i . Furthermore, we show
that the throughput in every bucket of BalanceBudget is at least a constant fraction of the
number of jobs in that bucket. Then. in Theorem 20 we can conclude the competitive ratio
of BalanceBudget. We start by stating Lemma 17 that BalanceBudget returns a valid
schedule with nice properties.

Lemma 17. BalanceBudget returns a valid schedule with total busy time at most T , provided
that there is a polynomial-time computable function T ∗

i satisfying the above mentioned conditions
(a)-(c).

Proof. Clearly, the semantics of accept guarantees that the schedule is valid, because an exist-
ing machine is used only if it can accommodate the new job. It remains to show that the total
busy time is at most T .

Initially Ti = 0 ≤ 3
4T

∗
i . Observe that Ti increases only after an accept(J) marked with

a (*) in Algorithm 5 since Ti does not account for the first g jobs accepted. However in this
case the algorithm ensures that Ti ≤ 3

4T
∗
i holds, thus we conclude that for all i, Ti ≤ 3

4T
∗
i at all

times during the execution of BalanceBudget.
For the first g jobs of J (i) BalanceBudget uses one machine with busy time at most T/2i

except for i < 3 where none of the first g jobs is accepted and thus the busy time incurred for
these jobs is zero. For the other jobs in J (i) BalanceBudget incurs a busy time of Ti ≤ 3

4T
∗
i .

Therefore the total busy time of BalanceBudget is at most costs ≤
∑

i≥3
T
2i

+
∑

Ti ≤∑
i≥3

T
2i

+ 3
4

∑
T ∗
i < T

4 + 3
4T = T . The last inequality is due to

∑
T ∗
i ≤ cost∗ ≤ T .
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The following lemma presents a function T ∗
i that satisfies the conditions (a)-(b) required by

Lemma 17.

Lemma 18. The function

T ∗
i

def
=

⌈
max(

∣∣J (i)
∣∣− (g − 1), 0)

g

⌉
T

2i+1
(6)

is polynomial time computable, and satisfies the requirements (a)-(c) stated for T ∗
i .

Proof. T ∗
i is clearly polynomial time computable, non-negative, and also non-decreasing because∣∣J (i)

∣∣ is non-decreasing. It remains to show that
∑

i T
∗
i ≤ cost∗.

It is easy to show (for details see Lemma 3.3 in [26]) that an optimal solution can be obtained
by sorting the jobs of J in decreasing order of length, dividing into consecutive sets of size g with
the last set possibly containing less than g jobs and then scheduling each set using a different
machine. Note that in this ordering the jobs appear in non-decreasing order of their buckets.
The jobs assigned to the same machine may span multiple consecutive buckets. We charge the
busy time cost∗ of an optimal solution to every bucket, so that the busy time of every machine
is charged to the first bucket containing a job of this machine. Consider the optimal solution.
In each bucket, at most g− 1 jobs can share a machine with jobs of previous buckets, therefore
at least max(

∣∣J (i)
∣∣− (g − 1), 0) jobs are assigned machines not used in previous buckets. This

corresponds to

⌈
max(|J (i)|−(g−1),0)

g

⌉
machines, and each machine has a busy time of at least T

2i+1 .

Therefore, cost∗i ≥
∑

i

⌈
max(|J (i)|−(g−1),0)

g

⌉
T

2i+1 =
∑

i T
∗
i .

To analyze the competitiveness of BalanceBudget, let tputi be the throughput in bucket i,
i.e. the number of jobs in J (i) scheduled by BalanceBudget. In each bucket iBalanceBudget
assigns tputi − g jobs to ⌈(tputi − g)/g⌉ machines each with busy time at most T/2i, therefore:

Ti ≤
⌈
tputi − g

g

⌉
T

2i
=

(⌈
tputi
g

⌉
− 1

)
T

2i
.

Using the above inequality we prove the following lemma.

Lemma 19. For every fixed g, there exists a constant c(g) with 2/9 < c(g) < 1 such that
∀i ≥ 3, tputi ≥ c(g) ·

∣∣J (i)
∣∣.

Proof. Let c < 1 be a constant to be fixed later. Note that for i ≥ 3 the first g jobs are always
scheduled by BalanceBudget. If

∣∣J (i)
∣∣ ≤ g then tputi =

∣∣J (i)
∣∣ ≥ c ·

∣∣J (i)
∣∣, otherwise if

g <
∣∣J (i)

∣∣ ≤ g/c then tputi ≥ g ≥ c ·
∣∣J (i)

∣∣. In both cases the claim is correct.

Otherwise
∣∣J (i)

∣∣ > g/c and we assume, by way of contradiction, that the claim does not hold.

Consider the first step during the algorithm that the claim does not hold, i.e. tputi < c ·
∣∣J (i)

∣∣.
Suppose that the decision of the algorithm at this step is accept. Then the number of jobs
scheduled by the algorithm up to (but not including) this step is tputi − 1 < c ·

∣∣J (i)
∣∣ − 1 <

c(
∣∣J (i)

∣∣−1), i.e. the claim did not hold one step before, a contradiction. Therefore the decision
of the algorithm has to be reject. In this case the value of tputi does not change from the last
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step. We denote by T̃i the value that Ti would take if the decision would be accept. We have:

T̃i >
3

4
T ∗
i

T̃i ≤
(⌈

tputi + 1

g

⌉
− 1

)
T

2i

The first inequality is due to the fact that this step was reject. The second inequality is
because the number of scheduled jobs would be tputi + 1, the first g jobs do not affect Ti, and
the length of each job is at most T/2i. By combining the last two inequalities with Equation
(6) we conclude

tputi + 1

g
≥

⌈
tputi + 1

g

⌉
− 1 ≥ 3

8

(⌈∣∣J (i)
∣∣+ 1

g

⌉
− 1

)
≥ 3

8

∣∣J (i)
∣∣− g + 1

g

∴ tputi ≥
3

8

(∣∣∣J (i)
∣∣∣− g − 5

3

)
On the other hand as

∣∣J (i)
∣∣ > g/c we have

∣∣J (i)
∣∣− g − 5/3 >

∣∣J (i)
∣∣ (1− (1 + 5/3g)c), thus

tputi >
3

8

∣∣∣J (i)
∣∣∣ (1− (1 + 5

3g

)
c

)
If c is chosen such that 3

8(1− (1 + 5
3g )c) ≥ c then tputi > c ·

∣∣J (i)
∣∣, a contradiction. It is easy to

verify that this holds for any c ≤ 3g
11g+5 . The expression on the right hand side is monotonically

increasing and attains the minimum of 2/9 for g = 2.

With Lemmas 17-19, we prove the following theorem.

Theorem 20. For any g, BalanceBudget is a c(g)-competitive online algorithm for feasible
one-sided clique instances of MaxThroughput, where c(g) ≤ 9/2.

Proof. Assume that BalanceBudget is given an extra budget of busy time to schedule the
first g jobs of the first 3 buckets. This modification does not change the value of Ti since Ti

ignores the first g jobs, therefore it does not affect the execution of the algorithm besides the
fact that now it schedules the first g jobs in every bucket. Let tput′i be the throughput of the
modified algorithm for bucket i. For every i ≥ 3 we have tput′i = tputi and for i < 3 we have
tput′i ≤ tputi+g. For the modified algorithm Lemma 19 implies that ∀i ≥ 0, tput′i ≥ c(g) ·

∣∣J (i)
∣∣.

Summing over all buckets we get∑
i≥0

tput′i ≥ c(g)
∑
i≥0

∣∣∣J (i)
∣∣∣ = c(g) · |J | = c(g) · tput∗.

On the other hand
∑

i≥0 tput
′
i ≤

∑
i≥0 tputi + 3g, therefore tputs =

∑
i≥0 tputi ≥ c(g) · tput∗ −

3g.

Note that BalanceBudget can be modified so that it gets some integer parameter β ≥ 2
to indicate how many buckets from which we do not accept the first g paths (marked (+) in
Algorithm 5). In the above presentation we assumed, for simplicity that β = 3. In general
the competitive ratio is a decreasing function of β, but the additive constant of β · g increases
with β.
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5 Applications to Optical Networks and Extensions

In this section we extend techniques and results on MinBusy to optical networks. Furthermore
we discuss the performance of some of our algorithms with respect to the number of machined
used. We first give some background on a coloring problem in optical networks with traffic
grooming. In the context of Wavelength Division Multiplexing (WDM) Optical networks, one
is given a network and a set of paths on it and each such path (called a lightpath) has to be
assigned a color. In such a coloring a set of paths that is assigned the same color has to satisfy
the following two conditions:

• The load condition: The number of such paths that use the same edge is at most g, where
g is an integer called the grooming factor.

• The no-split condition: The union of the paths cannot contain split nodes, i.e. it is a
graph of maximum degree 2.

Clearly, when the graph is a path, the second condition is satisfied by any coloring. It is easy
to see that the first condition is similar to the validity condition for schedules. Indeed, when
the graph is a path, a lightpath (resp. color, coloring) is analogous to a job (resp. machine,
schedule) and the satisfaction of load condition by a coloring is analogous to the validity of a
schedule.

Every set of lightpaths that is assigned some color, uses a separate set of devices called
regenerators. The number of regenerators used by this set is proportional to the number of
internal vertices used by these paths. In our terminology this is exactly the span of this set.
Therefore the problem of minimizing the number of regenerators in such a network is equivalent
to the problem of minimizing total machine busy time, and the results on MinBusy can be
applied directly to optical networks when the topology is a path.

In the sequel we extend the definitions of the problems MinBusy and MaxThroughput
to general topologies, while keeping the above analogy in mind. We then extend some of the
results in previous sections to the ring and tree topologies. Note that in a general topology, a
lightpath (a job) can be any path in the input graph and the measurement is still the span of
the set of jobs assigned to a machine. We give the detailed definitions as follows.

Problem definition. We provide new definitions of the terms defined in Section 2 wher-
ever they differ from the original ones. The instances of our problems contain a graph G =
(V (G), E(G)), and a set of jobs J = {J1, J2, ..., Jn} where each job is a simple path on G.
Given a job J , len(J) denotes its length on G. For a set Q of jobs, SPAN(Q) is the graph

induced by the union of the paths in Q, and span(Q) def
= |E(SPAN(Q))|.

A schedule s of J is valid if it satisfies the following two conditions:

• The load condition: For any edge e ∈ E(G) and machine Mi, the number of jobs processed
by Mi and using e is at most g.

• The no-split condition: The set of jobs assigned to any machine Mi satisfies SPAN(J s
i ) is

a graph with maximum degree at most 2.

5.1 General Instances in Ring Topology

Algorithm BucketFirstFit (in Section 3.1.2) can be shown to have the same competitive
ratio, i.e. min(g, 5 log lenmax) in ring topology. It can be verified that all the arguments given
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therein hold for the ring topology too. Yet, we present here a slightly weaker but more general
result.

Lemma 21. For MinBusy, if there is a c-competitive algorithm for one-sided clique instances
in path topology, then there is a 4c-competitive algorithm for clique instances in ring topology.

Proof. The proof goes in the same lines of Lemma 11. It can be verified that all the arguments
therein hold for the ring topology, except Inequality (4) that should be replaced by

cost∗(J ) ≥ max {cost∗(JL), cost∗(JR)}

doubing the factor of the right hand side of Inequality (5).

Corollary 22. There is a (4(1 + φ))-competitive algorithm for clique instances of MinBusy in

ring topologies, where φ = 1+
√
5

2 is the Golden Ratio.

Lemma 23. For MinBusy, if there is a cp-competitive algorithm for general instances in path
topology, and there is a cc-competitive algorithm for clique instances in ring topology then there
is a (cp + cc)-competitive algorithm for ring topology.

Proof. Let AC be a cc-competitive online algorithm for clique instances in ring topology with
an additive constant bc, and let AP be a cp-competitive online algorithm for path topology with
an additive constant bp. Consider an online algorithm that given an instance (G,J , g) chooses
some arbitrary edge e of the ring G, schedules the jobs Je containing e using algorithm AC, and
schedules the rest of the jobs using algorithm AP with a different set of colors.

An optimal solution for an instance costs at least as much as an optimal solution for any
of its sub-instances, therefore cost∗(J ) ≥ max {cost∗(Je), cost∗(J \ Je)}. Let sC and sP be the
schedules returned by AC and AP respectively. Then

costs(J ) = costsC (Je) + costsP (J \ Je)
≤ cc · cost∗(Je) + bc + cp · cost∗(J \ Je) + bp

≤ (cc + cp) ·max {cost∗(Je), cost∗(J \ Je)}+ bc + bp

≤ (cc + cp) · cost∗(J ) + (bc + bp) .

Therefore, the algorithm is (cc + cp)-competitive.

Combining Corollaries 7 and 22 and Lemma 23, we have the following corollary.

Corollary 24. There is a (min{g, 5 log lenmax}+O(1))-competitive algorithm for MinBusy in
ring topology.

5.2 One-Sided Clique Instances in Tree Topology

In this section we consider MinBusy on tree topology. We focus on one-sided clique instances
in which all the jobs in J share a common edge e incident to a leaf of G. We present algorithm
NoSplitBucket (Algorithm 6), that partitions the jobs in J into disjoint subsets S1,S2, · · ·
such that for every j, the jobs in Sj satisfy the no-split condition, in other words, each Sj is
like an input instance on a path topology and if g = ∞, all the jobs in Sj can be assigned to
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Algorithm 6 NoSplitBucket(α)

1: When a job J arrives:
2: Find the first no-split subset Sj such that Sj ∪ {J} satisfies the no-split condition. If there

is no such subset, start a new one.
3: Determine the bucket i for job J according to the parameter α.
4: If bucket i of Sj has no current machine, then choose an unused machine arbitrarily and

make it the current machine of bucket i of Sj .
5: If there are already g jobs assigned to the current machine of bucket i of Sj , then choose an

unused machine arbitrarily and make it the current machine of bucket i.
6: s(J)← the current machine of bucket i of Sj .

the same machine. Within each Sj , the algorithm employs the same classification of jobs into
buckets as the algorithm BucketGreedy in Section 3.2.1.

The correctness of the algorithm follows immediately from Steps 2 and 5. Step 2 guarantees
that the no-split condition is never violated, and Step 5 guarantees that the load condition is
never violated. We now analyze the performance of the algorithm. First, we rearrange the
no-split subsets by non-increasing order of the length of the longest job in each subset. Let Lj

be the length of the longest job in Sj and bj be the bucket that this longest job falls into. Then,
L1 ≥ L2 ≥ · · · , and αbj ≤ Lj < αbj+1. For i, j ≥ 0, let the number of paths in bucket i of Sj be
qi,j · g + ri,j , where 0 ≤ ri,j < g. Then we have

costs(J ) =
∑
j

costs(Sj)

≤
∑
j

bj−1∑
i=0

(qi,j + 1)αi+1 + (qbj ,j + 1)Lj


≤

∑
j

bj∑
i=0

qi,jα
i+1 +

∑
j

( ∞∑
i=0

Lj/α
i + Lj

)

≤
∑
i,j

qi,jα
i+1 +

∑
j

Lj
2α− 1

α− 1
.

As NoSplitBucket finds a no-split subset greedily, for any j1 ̸= j2, the longest jobs
in Sj1 and Sj2 cannot be assigned to the same machine in any schedule, in particular in an
optimal schedule s∗. Together with the grooming bound, we have two bounds on the cost of s∗:
cost∗ ≥

∑
j Lj and cost∗ ≥

∑
i,j qi,jα

i. Hence, costs

cost∗ ≤ α+ 2α−1
α−1 . The ratio attains the minimum

value of 5 when α = 2. We conclude that NoSplitBucket(2) is 5-competitive.
On the other hand, when α = 2, an instance with g jobs satisfying the no-split condition

and having lengths 2, 22, · · · , 2g forces NoSplitBucket(2) to assign every job to a different
machine while s∗ can assign all of them to the same machine. In this case, costs

cost∗ ≥ 2− 1
2g . We

thus conclude

Theorem 25. Algorithm NoSplitBucket(2) is 5-competitive and not better than 2-competitive,
for one-sided clique instances of MinBusy on a tree topology.
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5.3 Minimization of Number of Machines

We note that the (offline) problem of minimizing the number of machines can be solved in
polynomial time. Let ω be the clique number of the interval graph, i.e. the maximum number
of jobs that have to be processed at some given time t. Clearly any schedule has to use ⌈ω/g⌉
machines. This can be achieved by coloring the intervals with ω colors and assigning g color
classes to every machine. Therefore unless P = NP, there are instances of MinBusy having
solutions with a minimum number of machines that are not optimal. On the other hand there
are optimal solutions of MinBusy that do not use the smallest number of machines. Indeed,
consider the instance consisting of g identical jobs [0, 1], g(g − 1) identical jobs [0, 2] and g
identical jobs [1, 2g+1]. These jobs can be scheduled using g machines each of which is assigned
one [0, 1] job, one [1, 2g + 1] job and g − 1 [0, 2] jobs. However, the following schedule s∗ that
assigns g identical jobs to every machine uses g + 1 machines and it is optimal for MinBusy
with a total busy time cost(s∗) = 1+ 2g+ 2(g− 1) = 4g− 1. In order to see that s∗ is optimal,
first note that every optimal solution must assign the [1, 2g + 1] jobs to one machine, because
otherwise its cost would be at least 4g. As the other jobs constitute a one sided clique instance
the optimum is to assign the [0, 1] jobs to one machine and [0, 2] jobs to g − 1 machines.

In this section we provide a short analysis showing that our algorithms have good com-
petitive ratio also for the problem of minimizing the number of machines. We first analyze
the performance of BucketFirstFit(α). The following lemma analyzes its behaviour in one
bucket.

Lemma 26. Let J (i) be the set of jobs in bucket i and s be a schedule returned by BucketFirstFit
using mi machines for the jobs J (i). Let s∗ be a solution using m∗

i machines for the same jobs.
Then mi ≤ ⌈α+ 1⌉m∗

i .

Proof. For simplicity we assume that α is integral, and that without loss of generality the jobs
of J (i) are assigned to the first mi machines. Consider a job J ∈ Jmi , i.e. assigned to machine
mi. Let JJ be the jobs of J (i) intersecting J . By the behavior of the algorithm, every machine
mi′ with i′ < i is assigned at least g jobs of J (i) intersecting J . Therefore |JJ | ≥ g(mi− 1)+ 1.
Let t1 = rJ < t2 < · · · < tα+1 = cJ be the times that divide J into α equal length intervals,
i.e. of length len(J)/α each. Consider a job J ′ ∈ JJ . As J, J ′ are in the same bucket we have
len(J ′) ≥ len(J)/α. Therefore J ′ intersects at least one of the times tk. Then at least one

of these times contains at least g(mi−1)+1
α+1 jobs. We conclude that any solution needs at least

⌈g(mi−1)+1
g(α+1) ⌉ ≥

mi
α+1 machines to schedule these jobs.

By the above lemma and the bound on the total number of buckets, we can prove the
following theorem.

Theorem 27. BucketFirstFit(α) is (⌈α + 1⌉ log lenmax/ logα)-competitive in terms of the
number of machines where lenmax is the maximum length of a job.

As for algorithm BucketGreedy, it is easy to see that it uses the minimum number of
machines in each bucket, concluding

Theorem 28. BucketGreedy(α) is (log lenmax/ logα)-competitive for one-sided clique in-
stances, in terms of the number of machines where lenmax is the maximum length of a job.
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6 Summary and Future Work

In this work we have studied online busy time optimization problems. We have shown some
rather large lower bounds for general instances, and this motivated us to consider special families
of instances for which we have shown better online algorithms. This is the first work that deals
with online algorithms for this setting, and, as such, it calls for a variety of open problems, as
detailed below. Some open problems are closely related to those studied in this work, including:

• For the MinBusy problem, an immediate open question is to close the gaps between the
upper and lower bounds for one-sided clique instances and clique instances.

• For the MaxThroughput problem in one-side clique instances, is there a constant-
competitive algorithm when g is not fixed? On the other hand is there a lower bound for
these instances when g is fixed?

• For theMaxThroughput problem are there better lower bounds for the general instances
or is there a constant-competitive algorithm?

More general open problems naturally arise, including:

• Consider jobs having associated benefit and maximize the total benefit of scheduled jobs.

• In this work the jobs are supposed to be processed during the whole period from start
time rJ to completion time cJ . We can consider jobs of other characteristics.

– One may consider jobs that also have a processing time pJ and have to be processed
for pJ consecutive time units during the interval [rJ , cJ ] (see e.g. [17, 29]).

– One may also consider malleable jobs which can be assigned several machines and
the actual processing time depends on the number of machines allocated (see e.g.,
[23, 29]).

• We assume that each job requires the same amount of capacity (1/g) of a machine. An
extension is to allow a job requiring different amount of capacity and a machine can process
jobs as long as the sum of capacity requirements of its jobs is at most g [17].

As we have mentioned in Section 1, our work is closely related to power-aware scheduling,
cloud computing and optical network design. Our problems can be extended to cover more
general problems in these three applications.

Power-aware scheduling: As said, machine busy time reflects how long the processor
is switched on and how much energy is used. Energy saving can also be achieved via other
mechanisms.

• Modern processors support Dynamic Voltage Scaling (DVS) (see, e.g., [16,24,33]), where
the processor speed can be scaled up or down. The scheduler may speed up the processor
to shorten the busy time, resulting in shorter time of processing but higher power usage
per time unit. It is interesting to derive algorithms that can make a wise tradeoff.
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• We assume that we can use as many machines as we like without any overhead. In reality,
switching on a machine from a sleep state requires some energy and it may save energy
to leave a machine to idle if jobs will be scheduled on it again soon [1, 7]. To take this
advantage, different optimization criteria have to be considered.

Cloud computing: The following extension can be interpreted clearly within the context
of problems in cloud computing (see, e.g., [11, 27, 30]) as presented in Section 1. We assume
that the machines have identical computing power. An extension is to have different machines
types and to allow a job to require a specified list of machines type.

Optical network design: As shown in Section 5 the busy time scheduling problems have
a direct application in placement of regenerators in optical network design: In MinBusy we
are given a set of paths and a grooming factor g and the objective is to find a valid coloring
for all paths with minimum number of regenerators. In MaxThroughput we are also given a
budget T and the objective is to find a valid coloring with at most T regenerators maximizing
the number of satisfied paths. Some of our results for MinBusy can be extended to other
topologies: the result for one-sided clique instances can be extended to tree topologies while the
result for clique instances and general instances can be adapted to ring topologies.
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