
New Resource Augmentation Analysis of the Total

Stretch of SRPT and SJF in Multiprocessor Scheduling

Wun-Tat Chan1 Tak-Wah Lam1 Kin-Shing Liu1 Prudence W.H. Wong2

1Department of Computer Science, University of Hong Kong, Hong Kong

Email: {wtchan,twlam,ksliu}@cs.hku.hk

2Department of Computer Science, University of Liverpool, UK

Email: pwong@csc.liv.ac.uk

May 23, 2006

Abstract

This paper studies online job scheduling on multiprocessors and, in particular,

investigates the algorithms SRPT and SJF for minimizing total stretch, where the

stretch of a job is its flow time (response time) divided by its processing time.

SRPT is perhaps the most well-studied algorithm for minimizing total flow time or

stretch. This paper gives the first resource augmentation analysis of the total stretch

of SRPT, showing that it is indeed O(1)-speed 1-competitive. This paper also gives

a simple lower bound result showing that SRPT is not s-speed 1-competitive for

any s < 1.5.

This paper also makes contribution to the analysis of SJF. Extending the work

of [4], we are able to show that SJF is O(1)-speed 1-competitive for minimizing

total stretch. More interestingly, we find that the competitiveness of SJF can be

reduced arbitrarily by increasing the processor speed (precisely, SJF is O(s)-speed

(1/s)-competitive for any s ≥ 1). We conjecture that SRPT also admits a similar

result.

1 Introduction

We study the problem of online job scheduling for minimizing total stretch. There is a

pool of m ≥ 1 processors. Jobs arrive at arbitrary times, and their processing times are

known only when they arrive. Jobs are sequential in nature and can be scheduled on at

most one processor at a time. Preemption is allowed. The flow time (or response time)

of a job is the amount of time the job spent before it is completed, and the stretch of

the job is the ratio of its flow time to its required processing time. We are interested in

scheduling algorithms that minimize the total stretch (or equivalently the average stretch)

1

Single processor Multiprocessors

2-competitive [19] 14-competitive [19]
SRPT

2-speed 1-competitive * 5-speed 1-competitive *

(1 + ε)-speed (1 + 1
ε
)-competitive [4] (2 + 2ε)-speed (1 + 1

ε
)-competitive [4]

SJF
2-speed 1-competitive [4, 20] (24s)-speed (1

s
)-competitive, for s ≥ 1 *

Table 1: SRPT and SJF using faster processors can be 1-competitive (or even better) for

minimizing total stretch. Results given in this paper are marked with asterisks.

of the jobs. Stretch is a useful indicator of system performance, and has received a lot of

attention in recent years (see, e.g., [3, 5–7, 11, 12, 19]). Roughly speaking, if the average

stretch is λ, a job on average takes λ times the required processing time to complete, i.e.,

it appears to be processed by a 1
λ
-speed processor1. Competitive analysis is often used

to measure the performance of an online algorithm with respect to total stretch (or any

other objective function). An online scheduling algorithm A is said to be c-competitive

for any number c > 0 if for any input job sequence, the total stretch of the jobs as defined

by A is at most c times that of the optimal offline algorithm.

SRPT (Shortest Remaining Processing Time First) is a popular online algorithm when

the concern is the total flow time or total stretch. With respect to total flow time, SRPT

is 1-competitive for a single processor [2]. But for multiprocessors (m ≥ 2), Leonardi and

Raz [17] showed that SRPT is Θ(min(log P, log n/m))-competitive, where n is the number

of jobs and P is the ratio of the maximum possible processing time to the minimum possi-

ble processing time. To obtain better performance guarantee for multiprocessor schedul-

ing, Phillips et al. [20] applied resource augmentation analysis (which was pioneered by

Kalyanasundaram and Pruhs [16]) to SRPT, showing that SRPT is 1-competitive when

using processors that are two times faster, or in short, 2-speed 1-competitive. This result

means that a modest increase in the processor speed of the online scheduler can compen-

sate its lack of future information. Recently, McCulloguh and Torng [18] further showed

that SRPT is s-speed (1
s
)-competitive for any s ≥ 2 − 1

m
. In a wider context, resource

augmentation analysis has been found useful in a number of difficult scheduling problems

(see, e.g., [8–10, 13–16, 20]).

Muthukrishan et al. [19] were the first to study total stretch. They showed that SRPT

is 2-competitive on a single processor and 14-competitive on multiprocessors, and no

online algorithm can be 1-competitive. Chekuri et al. [12] proposed a different algorithm

(called SG) that is 9.81-competitive on multiprocessors. Existing resource augmentation

results are actually based on algorithms like SJF (Shortest Job First), which assigns

fixed priorities to jobs independently of the schedule. On a single processor, the work

of Phillips (on weighted flow time) [20] implies that an algorithm called Preemptively-

Schedule-by-Halves as well as SJF are 2-speed 1-competitive for minimizing total stretch.

1A speed-s processor, where s > 0, can process s units of work in one unit of time.

2

For multiprocessors, there are two algorithms known to be O(1)-speed O(1)-competitive

(namely, SJF is (2 + 2ε)-speed (1 + 1
ε
)-competitive [4], and IMD [1] is (1 + ε)-speed

O(1+ 1
ε
)-competitive [11]). Though SRPT is believed to perform well and is known to be

O(1)-competitive, no resource augmentation analysis has been given for SRPT and it is

generally agreed that SRPT is more difficult for resource augmentation analysis (see, e.g.,

[21]). In this paper we show that SRPT is indeed 2-speed 1-competitive for minimizing

total stretch on a single processor. A more elaborate analysis further reveals that SRPT

is 5-speed 1-competitive on multiprocessors. This is the first result on exploiting extra

speed to achieve 1-competitiveness. Table 1 gives a summary of the performance of SRPT

and SJF. We also derive a simple lower bound that for any s < 1.5, SRPT is not s-speed

1-competitive.

Technically speaking, our analysis of SRPT is based on an observation that the optimal

offline algorithm, at any time, has no more finished jobs than SRPT does, and more

interestingly, each finished job of the optimal offline algorithm can be mapped to a unique

finished job of SRPT with same or smaller processing time.

This paper also makes contribution to the analysis of SJF. It has been known that

based on the result on weighted flow time, SJF is 2-speed 1-competitive for minimizing

total stretch on a single processor, and (2+2ε)-speed (1+ 1
ε
)-competitive on multiprocessors

[4, 20]. We improve the analysis of SJF on multiprocessors to show that SJF is indeed

24-speed 1-competitive and, in general, (24s)-speed (1
s
)-competitive for any s ≥ 1, for

minimizing total stretch. We conjecture that SRPT also admits a similar result, i.e.,

SRPT is also O(s)-speed (1
s
)-competitive.

Before moving on to the analysis of SRPT and SJF, we give a definition of these two

algorithms. Suppose there are m ≥ 1 processors. At any time, if there are at most m

unfinished jobs, SRPT and SJF both schedule each job to a distinct processor; otherwise,

SJF gives priority to the m jobs with the shortest processing times, and SRPT schedules

the m jobs with the shortest remaining processing times. A tie is simply broken by job ID.

Formally speaking, we say that SRPT (or SJF) is s-speed c-competitive if for any job

sequence, SRPT (or SJF) using m s-speed processors incurs a total stretch at most c

times of that of the optimal offline algorithm using m unit-speed processors.

Organization of the paper: Section 2 gives three useful properties of an SRPT sched-

ule regardless of processor speed. Section 3 presents a resource augmentation analysis of

SRPT on multiprocessors, revealing that SRPT is 5-speed 1-competitive for minimizing

total stretch. Section 4 shows a lower bound of SRPT. Section 5 analyzes the perfor-

mance of SJF. Section 6 shows that SRPT is 2-speed 1-competitive on a single processor.

Section 7 discusses some future work.

2 Preliminaries

In this section we give some basic definitions and three useful properties of an SRPT

schedule regardless of processor speed. Let I be an input sequence of jobs to be scheduled

3

on m ≥ 1 processors. For any job J ∈ I, let p(J) and r(J) denote the processing time and

release time of J , respectively. For any set K of jobs, p(K) is defined to be
∑

J∈K p(J).

Let x > 0 be any number. A job J is said to be x-large if p(J) > x, and x-small if

p(J) ≤ x. Consider a schedule S for I on m processors. We assume that jobs can be

preempted and later resumed at the point of preemption. The following notations are

concerned with a particular time t in the schedule S.

• Let wS
t (J) and rwS

t (J) denote the processed work and the remaining work, respec-

tively, of a job J in S at time t. Note that wS
t (J) + rwS

t (J) = p(J). A job J is said

to be partially processed if 0 < rwS
t (J) < p(J).

• Let QS
t denote the set of jobs released at or before time t and unfinished at time t,

and let QS
t (x) ⊆ QS

t denote the set of x-small jobs in QS
t .

• Let ShrinkS
t (x) denote the set of x-large jobs J in QS

t such that rwS
t (J) ≤ x (note

that any job J in ShrinkS
t (x) is partially processed because p(J) > x).

• Let F S
t denote the set of jobs finished at or before time t, and let F S

t (x) ⊆ F S
t denote

the set of x-small jobs in F S
t .

When the context is clear, we will omit the superscript S in the above notations, which

become wt(J), rwt(J), Qt, Qt(x), Ft, and Ft(x). Using the above definitions, the stretch

of a schedule S can be expressed as ∫ ∞

0

∑
J∈Qt

1

p(J)
dt.

To ease our discussion, we use c-speed SRPT, for any c ≥ 1, to denote an online scheduler

running SRPT on m c-speed processors, and we let OPT denote an optimal schedule for

I on m unit-speed processors. To compare the stretch of the schedule defined by c-speed

SRPT and OPT, we focus on analyzing the corresponding Qt and Ft. Hereafter, we use

the notations Q∗
t , Q∗

t (x), F ∗
t and F ∗

t (x) to denote the above concepts for OPT.

Before we move on to the analysis of 5-speed SRPT, we show in the rest of this section

three useful properties of an SRPT schedule regardless of processor speed. Precisely, let

S denote the schedule defined by c-speed SRPT for any c ≥ 1. Consider any x > 0. The

properties are concerned with three categories of jobs defined at any time in S as follows.

• There are at most m unfinished x-large jobs whose remaining work is at most x

(Lemma 1).

• While there is an x-small job J waiting (i.e., not being processed by an proces-

sor), jobs that can be scheduled include only x-small jobs or jobs in Shrinkr(J)(x)

(Lemma 2).

• The accumulated processed work on all unfinished x-small jobs is less than mx

(Lemma 3).

4

Lemma 1. At any time t ≥ 0 and for any x > 0, |Shrinkt(x)| ≤ m.

Proof. We prove the lemma by contradiction. Suppose that Shrinkt(x) = {J1, J2, · · · , Jm′},

for some m′ > m. By definition, rwt(Ji) ≤ x < p(Ji). Let y be a number such that

x < y < minJ∈Shrinkt(x){p(J)}. For each job Ji ∈ Shrinkt(x), let ti < t be the latest time

such that rwti(Ji) = y. Note that Ji must be processed by some processor at time ti and

its remaining work is strictly less than y immediately after ti. Without loss of generality,

we assume that t1 ≤ · · · ≤ tm′ < t.

Suppose that tm′−k < tm′−k+1 = · · · = tm′ for some integer k ∈ [1, m]. At tm′ , the

jobs Jm′−k+1, · · · , Jm′ are each being processed by a processor. And, for 1 ≤ i ≤ m′ − k,

rwt
m′

(Ji) < y = rwt
m′

(Jm′), which implies that all these Ji are also being processed at

time tm′ (because SRPT always processes jobs with smallest remaining work first). This

leads to a contradiction that m′ > m jobs are being processed at the same time.

Lemma 2. Let J be any x-small job. Whenever J is waiting, S can only schedule other

x-small jobs or jobs in Shrinkr(J)(x).

Proof. Any x-large job J ′ 6∈ Shrinkr(J)(x) has rwr(J)(J
′) > x ≥ p(J). Starting from r(J),

whenever J ′ is being processed, J is also being processed. Therefore, the remaining work

of J is always less than that of J ′. Thus, whenever J is waiting, J ′ also needs to wait

as J ′ has more remaining work.

Lemma 3. At any time t ≥ 0 and for any x > 0, wt(Qt(x)) < mx, where wt(Qt(x)) =∑
J∈Qt(x) wt(J).

Intuitively, at any time t, there may be many unfinished x-small jobs, but the above

lemma states that their total processed work up to time t is less than mx. To prove the

lemma, we let L be the set of jobs in Qt(x) that are partially processed. Notice that

wt(Qt(x)) = wt(L). Assume that L = {J1, J2, · · · , J|L|} where p(J1) ≥ p(J2) ≥ · · · ≥

p(J|L|).

Below we show that jobs in L can be partitioned into m disjoint sets Y1, Y2, · · · , Ym

such that for 1 ≤ k ≤ m, wt(Yk) < x. Then wt(Qt(x)) =
∑

1≤k≤m wt(Yk) < mx and the

upper bound follows. We construct the partition by inserting the jobs in L one by one

into the m sets. Denote by last(Yk) the last job inserted to Yk.

• Initially, set Y1 = {J1}, Y2 = {J2}, · · · , Ym = {Jm}.

• For i = m + 1 to |L|, insert Ji to the set Yk with the largest rwt(last(Yk)) value.

The following lemma gives a property on rwt(last(Yk)).

Lemma 4. Whenever a job Ji is inserted to a set Yk, p(Ji) ≤ rwt(last(Yk)).

Proof. Suppose on the contrary that rwt(last(Yk)) < p(Ji). Notice that for all 1 ≤ z ≤ m,

we have (1) rwt(last(Yz)) ≤ rwt(last(Yk)) because Ji is inserted to Yk; and (2) p(Ji) ≤

5

p(last(Yz)). Therefore, all the m + 1 jobs including Ji and last(Y1), · · · , last(Ym) have

processing time at least p(Ji) but remaining work at time t less than p(Ji). So letting

x = max{rwt(Ji), rwt(last(Yk))}, we have x < p(Ji) and |Shrinkt(x)| ≥ m+1 > m, which

is a contradiction to Lemma 1.

Consider any Yk. Suppose J ′
1(= Jk), J

′
2, · · · , J ′

h, for some h ≥ 1, are the jobs inserted

to Yk (in that order). Then by Lemma 4, wt(Yk) =
∑

1≤i≤h wt(J
′
i) =

∑
1≤i<h(p(J ′

i) −

rwt(J
′
i))+wt(J

′
h) ≤

∑
1≤i<h(p(J ′

i)−p(J ′
i+1))+wt(J

′
h) = p(J ′

1)−p(J ′
h)+wt(J

′
h) < p(J ′

1) ≤ x.

The second last inequality holds because J ′
h is not finished at time t. Therefore, we have

wt(Qt(x)) =
∑

1≤k≤m wt(Yk) < mx and Lemma 3 follows.

3 Resource augmentation analysis of SRPT

In this section we show that SRPT is 5-speed 1-competitive for minimizing total stretch

on m ≥ 2 processors. We analyze the schedule of 5-speed SRPT, denoted by S5 below,

against OPT on a given input sequence, and in particular, we show in Lemma 6 that at any

time t, S5 outperforms OPT on finished jobs; precisely, for any x > 0, p(Ft(x)) ≥ p(F ∗
t (x)).

Then we show in Lemma 7 (Section 3.2) that there is a one-to-one mapping from F ∗
t to Ft

such that each job J∗ ∈ F ∗
t can be mapped to a unique job J ∈ Ft with p(J∗) ≥ p(J).

In other words, at any time t, we have
∑

J∈Ft
1/p(J) ≥

∑
J∗∈F ∗

t

1/p(J∗), implying that∑
J∈Qt

1/p(J) ≤
∑

J∗∈Q∗

t

1/p(J∗). It is then easy to see that the total stretch of S5 is no

more than that of OPT (Theorem 8).

3.1 Outperforming the optimal schedule on finished jobs

In this section we show that 5-speed SRPT outperforms OPT on finished jobs. Consider

the schedule S5 defined by 5-speed SRPT. For any x > 0, a time interval is said to be a

λ(x)-interval if at any time within the interval, there is an x-small job waiting.

Lemma 5. Let J be a job with p(J) = x. Suppose that S5 does not complete J at time

t ≥ r(J) + x.

• Then during [r(J), t], S5 schedules at least 3m(t − r(J)) units of work on x-small

jobs; and p(Ft(x)) ≥ p(Fr(J)(x)) + 2m(t − r(J)).

• Furthermore, if r(J) is inside a λ(x)-interval starting from t′ ≤ r(J), then during

[t′, t], the work scheduled by S5 on x-small jobs is at least 3m(t− t′); and p(Ft(x)) ≥

p(Ft′(x)) + 2m(t − t′).

Proof. During [r(J), t], J incurs a waiting time longer than t − r(J) − x
5
≥ 4

5
(t − r(J)),

and S5 must process at least 5m · 4
5
(t − r(J)) = 4m(t − r(J)) units of work; otherwise, J

should have been finished in S5 at time t. By Lemma 2, while J is waiting, S5 can only

process other x-small jobs or jobs in Shrinkr(J)(x). By Lemma 1, |Shrinkr(J)(x)| ≤ m.

6

Each job in Shrinkr(J)(x), by definition, has remaining work at most x at time r(J). Thus,

during [r(J), t], the work scheduled by S5 on x-small jobs is at least 4m(t− r(J))−mx ≥

3m(t − r(J)).

By Lemma 3, wt(Qt(x)) < mx. During [r(J), t], the work scheduled by S5 on x-small

jobs that are completed by time t is at least 3m(t− r(J))−mx ≥ 2m(t− r(J)). Consider

jobs in Ft(x) but not in Fr(J)(x). They are all x-small jobs scheduled by S5 to completion

during [r(J), t], and their total processing time is at least the work scheduled by S5 on them

during [r(J), t], i.e., at least 2m(t − r(J)). Thus, p(Ft(x)) ≥ p(Fr(J)(x)) + 2m(t − r(J)).

Furthermore, if r(J) is inside a λ(x)-interval starting from t′ ≤ r(J), we have

Shrinkr(J)(x) ⊆ Shrinkt′(x). During [t′, r(J)] and the waiting time of J , S5 can only

process x-small jobs or jobs in Shrinkt′(x). Using the same argument above, we can con-

clude that during [t′, t], the work scheduled by S5 on x-small jobs is at least 3m(t − t′),

and p(Ft(x)) ≥ p(Ft′(x)) + 2m(t − t′).

Lemma 6. At any time t ≥ 0 and for any x > 0, p(Ft(x)) ≥ p(F ∗
t (x)).

Proof. Let Ψu(x) denote the set of x-small jobs released before time u. We will use a

property of F ∗
t (x) that for any time u < t, p(F ∗

t (x)) ≤ p(Ψu(x)) + m(t − u).

We prove the lemma by contradiction. Suppose that t ≥ 0 is the earliest time such

that at time t, there is a smallest x > 0 such that p(Ft(x)) < p(F ∗
t (x)). Then there must

be an x-small job J with p(J) = x such that at time t, J is finished in OPT but unfinished

in S5. Note that t − r(J) ≥ x.

We consider two cases. First, if r(J) is not within a λ(x)-interval in S5, then at time

r(J) in S5, no x-small jobs are waiting, and there are at most m unfinished x-small jobs.

Thus, p(Ψr(J)(x)) ≤ p(Fr(J)(x)) + mx, and p(F ∗
t (x)) ≤ p(Fr(J)(x)) + mx + m(t − r(J)) ≤

p(Fr(J)(x))+ 2m(t− r(J)). By Lemma 5, p(Ft(x)) ≥ p(Fr(J)(x))+ 2m(t− r(J)), and thus

p(Ft(x)) ≥ p(F ∗
t (x)). A contradiction occurs.

Second, if r(J) is within a λ(x)-interval starting from time t′ ≤ r(J) in S5, then we can

upper bound p(Ψt′(x)) by p(Ft′(x))+mx. Then p(F ∗
t (x)) ≤ p(Ft′(x))+2m(t−t′). Together

with Lemma 5, we can again derive the contradiction that p(Ft(x)) ≥ p(F ∗
t (x)).

3.2 5-speed SRPT is 1-competitive

Based on Lemma 6, we can prove that 5-speed SRPT is 1-competitive. First, we show

that at any time t, there is a one-to-one mapping between F ∗
t and Ft.

Lemma 7. Consider any time t ≥ 0. Assume that p(Ft(x)) ≥ p(F ∗
t (x)) for any x > 0.

Then there is a one-to-one mapping from F ∗
t to Ft such that each job J∗ ∈ F ∗

t is mapped

to a unique job J ∈ Ft with p(J∗) ≥ p(J).

Proof. Suppose that the processing times of the jobs in F ∗
t have d distinct values, denoted

by x1 < x2 < · · · < xd. We construct a mapping from F ∗
t to Ft incrementally, each time

we consider jobs in F ∗
t with the same processing time.

7

Consider all jobs in F ∗
t that have the smallest processing time (i.e., equal to x1). Given

that p(Ft(x1)) ≥ p(F ∗
t (x1)), Ft(x1) must contain at least as many jobs as F ∗

t (x1). Thus,

each job in F ∗
t (x1) can be mapped to a unique job in Ft(x1) with processing time at

most x1.

Assume that for some k ≥ 1, we have constructed a mapping from F ∗
t (xk) to Ft as

required by Lemma 7. Next, we consider jobs in F ∗
t with processing time xk+1. Let Y ⊂ Ft

be the set of jobs to which jobs in F ∗
t (xk) are mapped. As each job in F ∗

t (xk) is mapped to

a job with the same or shorter processing time, we have p(F ∗
t (xk)) ≥ p(Y). The number

of jobs in F ∗
t with processing time xk+1 is exactly

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1
.

The number of unmapped jobs in Ft(xk+1) is at least

p(Ft(xk+1)) − p(Y)

xk+1
≥

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1

because p(Ft(xk+1)) ≥ p(F ∗
t (xk+1)) and p(F ∗

t (xk)) ≥ p(Y). Thus, each job in F ∗
t with

processing time xk+1 can be mapped to a unique job in Ft with the same or shorter

processing time.

We are now ready to show our main theorem.

Theorem 8. SRPT is 5-speed 1-competitive for minimizing total stretch.

Proof. For any time t ≥ 0, let Φt denote the set of jobs released at or before time t.

(Note that Φt equals the union of the set of jobs released at time t and Ψt, the set of jobs

released before time t.) The set of unfinished jobs in S5 is Qt = Φt − Ft; and the set of

unfinished jobs in OPT is Q∗
t = Φt − F ∗

t .

Total stretch of 5-speed SRPT =

∫ ∑
J∈Qt

1

p(J)
dt =

∫ ∑
J∈Φt

1

p(J)
dt −

∫ ∑
J∈Ft

1

p(J)
dt

By Lemma 7, each job J∗ in F ∗
t is mapped to a unique job in Ft with processing time at

most p(J∗), so we have ∫ ∑
J∈Ft

1

p(J)
dt ≥

∫ ∑
J∗∈F ∗

t

1

p(J∗)
dt

Thus,

total stretch of 5-speed SRPT ≤

∫ ∑
J∈Φt

1

p(J)
dt −

∫ ∑
J∗∈F ∗

t

1

p(J∗)
dt

=

∫ ∑
J∗∈Q∗

t

1

p(J∗)
dt,

which is equal to the stretch of OPT. Hence, 5-speed SRPT is 1-competitive.

8

4 Speed requirement for SRPT to be 1-competitive

In this section we give a lower bound on the speed requirement for SRPT to be 1-

competitive.

Theorem 9. For minimizing total stretch, SRPT is not c-speed 1-competitive for any

c < 1.5.

Proof. Let c = 1.5 − ε where 0 < ε < 1.5. We construct a sequence of jobs such that the

total stretch of c-speed SRPT schedule is larger than that of OPT. At time 0, m jobs

J1, J2, · · · , Jm of equal processing time are released. (The processing time p will be fixed

shortly.) Each job is processed in a distinct processor at time 0. Just after c-speed SRPT

has started the last unit of work, i.e., at time (p − 1)/c + δ, for some small 0 < δ < 1/c,

m more jobs J ′
1, J

′
2, · · · , J ′

m, all of which have processing time equal to 1, are released.

In this case, c-speed SRPT continues processing Ji, and starts processing J ′
i only after

finishing all Ji.

We analyze the total stretch of c-speed SRPT and OPT. For c-speed SRPT, the

stretch of Ji is 1/c. Since J ′
i is processed after Ji is finished, J ′

i is finished at p/c + 1/c

and thus with stretch 2/c− δ. Therefore, the total stretch of c-speed SRPT is m(3/c− δ).

On the other hand, a unit-speed schedule can start processing J ′
i immediately after the

job is released and then resume processing Ji; the stretch of J ′
i and Ji is 1 and (p + 1)/p,

respectively. Therefore, the total stretch of OPT is at most m(2 + 1/p). We can fix the

value of p > 1/(4ε/(3 − 2ε) − δ), then we have 3/c − δ = 3/(3/2 − ε) − δ > 2 + 1/p.

(Notice that 0 < ε < 3/2 and if we choose δ < 4ε/(3 − 2ε), then we can ensure p to be

positive.) The total stretch of c-speed SRPT is greater than that of OPT and thus the

theorem follows.

5 Resource augmentation analysis of SJF

In this section we analyze the performance of SJF for scheduling m ≥ 2 processors. We

show that the total stretch of the schedule of (24c)-speed SJF is at most 1/c times the

total stretch of an optimal schedule using unit-speed processors. Recall that SJF gives

higher priority to jobs with shorter processing times, with tie broken by job ID.

Our analysis makes use of the result by Becchetti et al. [4] that HDF (Highest Density

First) is (2 + 2ε)-speed (1 + 1/ε)-competitive for minimizing weighted flow time. If we

define the weight of a job J to be 1/p(J), then the stretch of J is equal to the weighted flow

time of J . Furthermore, HDF is equivalent to SJF (since the density of a job is defined

to be its weight divided by its processing time). Thus, the work of Becchetti et al. [4]

implies that SJF is (2 + 2ε)-speed (1 + 1/ε)-competitive for minimizing total stretch.

The framework of our analysis of SJF is as follows. Let τ = (2 + 2ε), for some ε > 0

to be fixed later, and let c ≥ 1 be any number. We compare the schedules of (cτ)-speed

SJF and τ -speed SJF. We show that the flow time of each job in the former schedule

9

is at most 3/c times of the flow time in the latter schedule. Combining with the result

of Becchetti et al., we conclude that SJF is c(2 + 2ε)-speed (3/c)(1 + 1/ε)-competitive,

or equivalently, (24c)-speed ((2 + 2ε)(1 + 1/ε)/(8c))-competitive. Putting ε = 1 (so as to

minimize (2+2ε)(1+1/ε)), we obtain the result that SJF is (24c)-speed (1/c)-competitive.

Lemma 10. Consider any real numbers z ≥ z ′ ≥ 1. Given an input job sequence, denote

the schedules of z-speed SJF and z ′-speed SJF as S and S ′, respectively. At any time t ≥ 0

and for any job J , we have rwS
t (J) ≤ rwS′

t (J).

Proof. We prove the lemma by contradiction. Let t be the earliest time such that there

is a job J with rwS
t (J) > rwS′

t (J). If there are more than one such J , then we pick the

one with the highest priority, i.e., the shortest processing time. We can assume that, at

time t, J is processed by some processor in S ′ but not by any processor in S, otherwise, t

can be smaller because z ≥ z′. By the definition of SJF, as J is processed in S ′ at time

t, there are at most m − 1 unfinished jobs with priority higher than J . On the other

hand, since J is not processed in S at time t, there are at least m unfinished jobs with

priority higher than J , and one of these m jobs must have already been finished in S ′. It

contradicts the assumption that t is the earliest time and J is the job with highest priority

that rwS
t (J) > rwS′

t (J).

Corollary 11. Assume that z ≥ z′ ≥ 1. For any job J , the flow time of J in the schedule

of z-speed SJF is at most that of J in the schedule of z ′-speed SJF.

Lemma 12. Consider a schedule S of (any speed) SJF. At the time when a job J is

finished, the total remaining work of the unfinished jobs arrived before J is finished and

with priority higher than J is at most (m − 1)p(J).

Proof. At the time when J is finished, there are at most m − 1 unfinished jobs arrived

before r(J) and with priority higher than J . Otherwise, J will be preempted and cannot

finish at the time. Since a job with priority higher than J has processing time at most

p(J), the total remaining work of those jobs is at most (m − 1)p(J).

Let Sτ denote the schedule of τ -speed SJF. We denote the flow time of a job J in Sτ

as flowτ (J), which can be divided into two parts, waitτ (J) and busyτ (J), corresponding to

the amount of time J is waiting for a processor and J is being processed by a processor,

respectively. Similarly, we use the notations Scτ , flowcτ(J), waitcτ(J) and busycτ (J) for

the schedule of (cτ)-speed SJF.

Consider any job J . Our goal is to show that flowcτ (J) ≤ 3
c
flowτ (J). This is done by

proving busycτ(J) ≤ 1
c
flowτ (J) and waitcτ (J) ≤ 2

c
flowτ (J). The former is straightforward

because busycτ(J) = p(J)/(cτ) = busyτ (J)/c ≤ flowτ (J)/c.

The rest of this section is devoted to showing that the work scheduled by Scτ while

J is waiting, denoted W below, is upper bounded by 2mτflowτ (J). Then it follows that

waitcτ (J) ≤ W/(mcτ) ≤ 2
c
flowτ (J). Let G be the set of jobs that have ever been scheduled

by Scτ while J is waiting. Note that jobs in G must arrive before r(J) + flowcτ (J), and

10

they all have priority higher than J . We partition G into two subsets G1 and G2 such

that G1 contains jobs arriving before r(J) and G2 the rest. The work scheduled by Scτ

while J is waiting, i.e., W , is at most
∑

J ′∈G1
rwScτ

r(J)(J
′) + p(G2). To relate W with the

flow time of J in Sτ , we consider two sets of jobs H1 and H2 in the schedule Sτ .

• H1 contains jobs with priority higher than J that arrive before r(J) and are unfin-

ished at r(J) in Sτ .

• H2 contains jobs J ′ with priority higher than J such that r(J) ≤ r(J ′) < r(J) +

flowτ (J).

It is not difficult to see that G1 ⊆ H1 and G2 ⊆ H2 (see Lemma 13), and hence W can

be bounded by the remaining work of H1 in Sτ at r(J) plus the processing time of H2.

Details are as follows. Consider any set K of jobs, at any time t, rwS
t (K) is defined to be∑

J∈K rwS
t (J) for any schedule S.

Lemma 13. G1 ⊆ H1 and G2 ⊆ H2. Furthermore, rwScτ

r(J)(G1) ≤ rwSτ

r(J)(H1),

Proof. Consider any job J ′ in G1. By definition, J ′ is unfinished in Scτ at r(J) and has

priority higher than J . By Corollary 11, J ′ is also unfinished in Sτ at r(J). Therefore,

we have J ′ ∈ H1. Furthermore, by Lemma 10, rwScτ

r(J)(J
′) ≤ rwSτ

r(J)(J
′). Together with

G1 ⊆ H1, we have rwScτ

r(J)(G1) ≤ rwSτ

r(J)(H1).

Consider any job J ′′ in G2. By definition, r(J) ≤ r(J ′′) < r(J) + flowcτ (J). By

Corollary 11, flowcτ (J) ≤ flowτ (J), and hence r(J ′′) < r(J) + flowτ (J). Therefore, G2 ⊆

H2.

Corollary 14. W ≤ rwSτ

r(J)(H1) + p(H2).

Lemma 15 further shows that the upper bound of W is 2mτ flowτ (J).

Lemma 15. rwSτ

r(J)(H1) + p(H2) ≤ 2mτ flowτ (J).

Proof. Let us consider how Sτ schedules the work in H1 and H2 starting from time r(J).

First, we note that the total amount of such work is exactly rwSτ

r(J)(H1) +p(H2). During

[r(J), r(J) + flowτ (J)], the work scheduled by Sτ is at most mτ flowτ (J). At time r(J) +

flowτ (J), Sτ may not complete all work in H1 and H2; yet, by Lemma 12, at the time

when J is finished, all unfinished jobs arriving before J is finished and with priority

higher than J have a total remaining work at most (m − 1)p(J), and thus, from r(J) +

flowτ (J) onwards, Sτ can schedule at most (m − 1)p(J) units of work on H1 and H2.

In conclusion, rwSτ

r(J ′)(H1) + p(H2) ≤ mτ flowτ (J) + (m − 1)p(J) ≤ 2mτ flowτ because

p(J) ≤ τ flowτ (J).

The waiting time of the job J in Scτ (i.e., waitcτ (J)) is at most W/mcτ , which, by

Corollary 14 and Lemma 15, is at most 2
c
flowτ (J).

Corollary 16. flowcτ(J) ≤ 3
c
flowτ (J).

11

Proof. By definition, flowcτ(J) = waitcτ(J) + busycτ(J). The corollary follows from the

facts that waitcτ(J) ≤ 2
c
flowτ (J) and busycτ (J) ≤ 1

c
flowτ (J).

The following theorem follows from Corollary 16 and that SJF is (2+2ε)-speed (1+1/ε)-

competitive.

Theorem 17. SJF is (24c)-speed (1/c)-competitive, for any c ≥ 1.

6 2-speed SRPT on a single processor

In the previous sections we have analyzed SRPT and SJF in the multiprocessor setting. In

this section, we show that on a single processor, SRPT admits a better analysis than that

in Section 3; precisely, we show that SRPT is indeed 2-speed 1-competitive. The analysis

takes a similar approach as before. First, we attempt to bound the total processing time

of finished x-small jobs, yet based on one 2-speed processor, we can only derive a weaker

bound, namely, at any time t ≥ 0 and for any x > 0, p(Ft(x)) + x > p(F ∗
t (x)) (see

Lemma 19). This weaker result is still sufficient for establishing a one-to-one mapping

between the finished x-small jobs of OPT and that of 2-speed SRPT exists (Lemma 20).

Following the same argument as in the proof of Theorem 8, we can then conclude that

SRPT is 2-speed 1-competitive.

Consider the schedule S defined by 2-speed SRPT. The following lemma helps to

establish the bound in Lemma 19.

Lemma 18. Let J be a job with p(J) = x. Suppose that S does not complete J at time

t ≥ r(J) + x and t′ < r(J) is the latest time in S that there is no unfinished x-small job.

Then during [t′, t], S schedules at least 2(t − t′) − x units of work on x-small jobs; and

p(Ft(x)) + x > p(Ft′(x)) + t − t′.

Proof. Throughout [t′, t], there is at least one unfinished x-small job. With a single

processor, any x-large jobs released after t′ would not be processed during [t′, t]; in other

words, during [t′, t], S can only schedule unfinished x-small jobs or jobs in Shrinkt′(x).

Since, by Lemma 1, |Shrinkt′(x)| ≤ 1, during [t′, t], the work scheduled by S on x-small

jobs is at least 2(t − t′) − x.

Since, by Lemma 3, wt(Qt(x)) < x, during [t′, t], the work scheduled by S on x-small

jobs that are completed by time t is strictly more than 2(t−t′)−2x. Consider jobs in Ft(x)

but not in Ft′(x). They are all x-small jobs scheduled by S to completion during [t′, t],

and their total processing time is at least the work scheduled by S on them during [t′, t],

i.e., strictly more than 2(t− t′)− 2x. Thus, p(Ft(x))+x > p(Ft′(x))+2(t− t′)− 2x+x ≥

p(Ft′(x)) + t − t′ as t − t′ ≥ x.

Lemma 19. At any time t ≥ 0 and for any x > 0, p(Ft(x)) + x > p(F ∗
t (x)).

12

Proof. We prove the lemma by contradiction. Suppose that t is the earliest time such

that at time t, there is a smallest x > 0 such that p(Ft(x))+x ≤ p(F ∗
t (x)). There must be

an x-small job J with p(J) = x such that J is finished in OPT at time t but not finished

in S. Let t′ < r(J) be the latest time in S that there is no unfinished x-small job. Note

that t − t′ > t − r(J) ≥ x. By Lemma 18, p(Ft(x)) + x > p(Ft′(x)) + t − t′.

On the other hand, since at time t′ there is no unfinished x-small job, p(Ft′(x)) =

p(Ψt′(x)) where Ψt′(x) denotes the set of x-small jobs released before time t′. Using a

property of F ∗
t (x) that p(F ∗

t (x)) ≤ p(Ψt′(x))+t−t′, we have p(F ∗
t (x)) ≤ p(Ft′(x))+t−t′ <

p(Ft(x)) + x, which is a contradiction.

Lemma 20. Consider any time t ≥ 0. Assume that p(Ft(x)) + x > p(F ∗
t (x)), for any

x > 0. Then there is a one-to-one mapping between F ∗
t and Ft such that each job J∗ ∈ F ∗

t

can be mapped to a unique job J ∈ Ft with p(J∗) ≥ p(J).

Proof. Suppose that the processing times of the jobs in F ∗
t have d distinct values, denoted

by x1 < x2 < · · · < xd. We construct a mapping from F ∗
t to Ft incrementally, each time

we consider jobs in F ∗
t with the same processing time.

Consider all jobs in F ∗
t that have the smallest processing time (i.e., equal to x1). Given

that p(Ft(x1))+x1 > p(F ∗
t (x1)), Ft(x1) contains strictly more than p(F ∗

t (x1))/x1−1 jobs,

which is the number of jobs in F ∗
t (x1) minus 1. Since both the number of jobs in Ft(x1)

and F ∗
t (x1) are integers, Ft(x1) must contain at least as many jobs as F ∗

t (x1). Thus, each

job in F ∗
t (x1) can be mapped to a unique job in Ft(x1) with processing time at most x1.

Assume that for some k ≥ 1, we have constructed a mapping from F ∗
t (xk) to Ft as

required by Lemma 20. Next, we consider jobs in F ∗
t with processing time xk+1. Let

Y ⊂ Ft be the set of jobs to which jobs in F ∗
t (xk) are mapped. As each job in F ∗

t (xk) is

mapped to a job with the same or shorter processing time, we have p(F ∗
t (xk)) ≥ p(Y).

The number of jobs in F ∗
t with processing time xk+1, denoted by K, is exactly

p(F ∗
t (xk+1)) − p(F ∗

t (xk))

xk+1
.

On the other hand, the number of unmapped jobs in Ft(xk+1), denoted by U , is at least

p(Ft(xk+1)) − p(Y)

xk+1

>
p(F ∗

t (xk+1)) − p(F ∗
t (xk))

xk+1

− 1

because p(Ft(xk+1)) + xk+1 > p(F ∗
t (xk+1)) and p(F ∗

t (xk)) ≥ p(Y). Since both K and U

are integers, we have U ≥ K. Thus, each job in F ∗
t with processing time xk+1 can be

mapped to a unique job in Ft with the same or shorter processing time.

Following the same argument as in the proof of Theorem 8, we have the following

theorem.

Theorem 21. SRPT is 2-speed 1-competitive for minimizing total stretch on a single

processor.

13

7 Concluding remarks

In this paper we have studied online job scheduling on multiprocessors and showed that,

with respect to total stretch, SRPT is 5-speed 1-competitive and not c-speed 1-competitive

for any c < 1.5. An interesting direction is to close the gap between the speed requirement

for SRPT to be 1-competitive. We also show that SJF is (24c)-speed (1/c)-competitive,

for any c ≥ 1. We believe that SRPT also admits a similar result as SJF, and, in

particular, we conjecture that SRPT is (10c)-speed (1/c)-competitive for large enough c

(say, c ≥ 3). SJF is simpler than SRPT in terms of implementation. Intuitively, SRPT is

more adaptive than SJF in the sense that SRPT also takes into account the work that has

already been done on the jobs. A job that has been processed would get a higher priority,

thus, the set of unfinished small jobs could be minimized. SJF does not have this merit.

Our results that SRPT is 5-speed 1-competitive while SJF is 24-speed 1-competitive on

multiprocessors also suggest this is the case.

It is also interesting to analyze the performance of SRPT and SJF when the online

algorithm is given extra processors instead of extra speed, and to determine whether

1-competitiveness can be achieved. Another open problem is to derive a c-speed 1-

competitive online algorithm for minimizing weighted flow time on multiprocessors. Note

that both SRPT and SJF require job migration. A further direction is to consider non-

migratory algorithms, i.e., once a job is assigned to a processor, it cannot be migrated to

other processors, though it may be preempted.

References

[1] N. Avrahami and Y. Azar. Minimizing total flow time and total completion time

with immediate dispatching. In Symposium on Parallelism in Algorithms and Archi-

tectures, pages 11–18, 2003.

[2] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York,, 1974.

[3] N. Bansal and K. Pruhs. Server scheduling in the Lp norm: a rising tide lifts all boat.

In Proceedings of Symposium on Theory of Computing, pages 242–250, 2003.

[4] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted

flow time and deadline scheduling. In RANDOM-APPROX, pages 36–47, 2001.

[5] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average

stretch without migration. In Proceedings of Symposium of Discrete Algorithms,

pages 548–557, 2000.

[6] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics

for scheduling continuous job streams. In Proceedings of Symposium of Discrete

Algorithms, pages 270–279, 1998.

14

[7] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch

scheduling. In Proceedings of Symposium of Discrete Algorithms, pages 762–771, 2002.

[8] M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to load

balancing. J. Scheduling, 3(5):273–288, 2000.

[9] H. L. Chan, T. W. Lam, and K. K. To. Non-migratory online deadline scheduling on

multiprocessors. In Proceedings of Symposium of Discrete Algorithms, pages 970–979,

2004.

[10] W. T. Chan, T. W. Lam, H. F. Ting, and P. W. H. Wong. A unified analysis of

hot video schedulers. In Proceedings of Symposium on Theory of Computing, pages

179–188, 2002.

[11] C. Chekuri, A. Goel, S. Khanna, and A. Kumar. Multi-processor scheduling to

minimize flow time with ε resource augmentation. In Proceedings of Symposium on

Theory of Computing, pages 363–372, 2004.

[12] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time.

In Proceedings of Symposium on Theory of Computing, pages 84–93, 2001.

[13] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý, and N. Vakha-

nia. Preemptive scheduling in overloaded systems. In International Colloquium on

Automata, Languages and Programming, pages 800–811, 2002.

[14] J. Edmonds. Scheduling in the dark. In Proceedings of Symposium on Theory of

Computing, pages 179–188, 1999.

[15] B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. In ESA,

pages 235–246, 1998.

[16] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM,

47(4):617–643, 2000.

[17] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In

Proceedings of Symposium on Theory of Computing, pages 110–119, 1997.

[18] J. McCullough and E. Torng. SRPT optimally utilizes faster machines to minimize

flow time. In Proceedings of Symposium of Discrete Algorithms, pages 350–358, 2004.

[19] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Online scheduling to

minimize average stretch. In Proceedings of Symposium on Foundations of Computer

Science, pages 433–442, 1999.

[20] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via

resource augmentation (extended abstract). In Proceedings of Symposium on Theory

of Computing, pages 140–149, 1997.

15

[21] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Leung, editor, Handbook of

Scheduling: Algorithms, Models and Performance Analysis, pages 15–1–15–41. CRC

Press, 2004.

16

