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Abstract. Traditional scheduling assumes that the processing time of
a job is fixed. Yet there are numerous situations that the processing
time increases (deteriorates) as the start time increases. Examples in-
clude scheduling cleaning or maintenance, fire fighting, steel production
and financial management. Scheduling of deteriorating jobs was first in-
troduced on a single machine by Browne and Yechiali, and Gupta and
Gupta independently. In particular, lots of work has been devoted to
jobs with linear deterioration. The processing time pj of job Jj is a lin-
ear function of its start time sj , precisely, pj = aj + bjsj , where aj is
the normal or basic processing time and bj is the deteriorating rate. The
objective is to minimize the makespan of the schedule.

We first consider simple linear deterioration, i.e., pj = bjsj . It has
been shown that on m parallel machines, in the online-list model, LS

(List Scheduling) is (1+ bmax)
1− 1

m -competitive. We extend the study to
the online-time model where each job is associated with a release time.
We show that for two machines, no deterministic online algorithm is
better than (1 + bmax)-competitive, implying that the problem is more
difficult in the online-time model than in the online-list model. We also
show that LS is (1+bmax)

2(1− 1
m

)-competitive, meaning that it is optimal
when m = 2.

1 Introduction

Makespan scheduling of deteriorating jobs. Scheduling jobs (with fixed pro-
cessing time) on single or parallel machines is a classical problem [24]. Yet, there
are numerous situations that the processing time increases (deteriorates) as the
start time increases. For example, to schedule maintenance or cleaning, a delay
often requires additional efforts to accomplish the task. Other examples are found
in fire fighting, steel production and financial management [15, 21]. Scheduling
of deteriorating jobs was first introduced by Browne and Yechiali [3], and Gupta
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and Gupta [11] independently. Both considered minimizing makespan on a single
machine. In [3], the processing time of a job is a monotone linear function of
its start time while non-linear functions are considered in [11]. Since then, the
problem has attracted a lot of attention, and has been studied in other time
dependent models. Comprehensive surveys can be found in [1, 6, 9], which also
discussed other objective functions.

Linear deterioration. We focus on jobs with linear deterioration, which has
been studied in more detail due to its simplicity while capturing the essence of
real life situations. The processing time of a job is a monotone linear function
of its start time. Precisely, the processing time pj of a job Jj is expressed as
pj = aj + bjsj , where aj ≥ 0 is the “normal” or “basic” processing time, bj > 0
is the deteriorating rate, and sj is the start time. As the start time gets larger,
the actual processing time also gets larger.

Linear deterioration is further said to be simple if aj = 0, i.e., pj = bjsj . In
this case, in order to avoid trivial solution, it is natural to assume that the start
time of the first job is t0 > 0 since a start time of zero means that the processing
time of all jobs is zero. Mosheiov [20, 21] justified simple linear deterioration as
follows: as the number of jobs increases, the start time of jobs gets larger, and
the actual processing time of infinitely many jobs is no longer affected by the
normal processing time but only by the deteriorating rate.

Single and parallel machine scheduling. Non-preemptive scheduling of jobs
with linear deterioration has been studied in both single and parallel machines
settings.4 The study first focuses on a single machine and all jobs are assumed
to be available for processing at the same time. Gupta and Gupta [11] observed
that with linear deterioration, it is optimal to process jobs in ascending order of
aj/bj . With simple linear deteriorating rate, the makespan is indeed independent
of the order of processing [21]5. On parallel machines, the problem becomes
intractable; it is NP-hard for two machines and strongly NP-hard formmachines
because of the complexity of the corresponding problems with fixed processing
time [7]. Kang and Ng [13] proposed an FPTAS. For simple linear deterioration,
Kononov [14] and Mosheiov [22] independently showed that the problem is NP-
hard, and Ren and Kang [26] proposed an FPTAS.

Release times and online algorithms. The above results assume that all jobs
are available at the same time and full job information (aj and bj) is known in
advance. In practice, jobs may be released at arbitrary times. We may also have
to make decisions based on the jobs currently presented without information
of future jobs. Pruhs, Sgall and Torng [25] formalized two online models. In
the online-list model, jobs are available to be processed at the beginning but
are presented one by one. Each job is to be allocated to a machine and a time
period to execute before the next job is presented. Such allocation cannot be
changed once it is made. In the online-time model, jobs are released at arbitrary
times and a job is only known at its release time. The performance of online
algorithms is typically measured by competitive analysis [2]. An online algorithm
is c-competitive if for any input instance, its cost is no more than c times that
of the optimal offline algorithm.

4 Preemptive scheduling of linear deteriorating jobs has been studied on single ma-
chine [23].

5 The makespan of running jobs J1, · · · Jn equals t0(1 + b1) · · · (1 + bn).
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For online parallel machine scheduling with fixed processing time, Graham [10]
has proposed the List Scheduling (LS) algorithm that schedules each job in turn
to the machine that can complete the job the earliest. He showed that LS is
(2 − 1

m )-competitive. Online algorithms and jobs with release times have been
studied extensively for fixed processing time [25]. Yet, not much is known for
deteriorating jobs with release times, let alone online algorithms.

For linear deteriorating jobs, jobs with release times have been studied in [5,
19]. In particular, it is explained in [19] in the application of steel production
how jobs with release time and deteriorating rate apply in the scenario. Cheng
and Ding [5] studied the complexity of the problem with release times, showing
that on a single machine it is strongly NP-hard for identical normal processing
time a or identical deteriorating rate b. Lee, Wu and Chung [19] proposed some
heuristics for the case of identical deteriorating rate and evaluated them by
experiments. The only work on online scheduling of deteriorating jobs that we are
aware of is by Cheng and Sun [4]. They considered parallel machine scheduling
of jobs with simple linear deterioration and the online-list model, showing that
LS is (1+bmax)

1− 1
m -competitive, where bmax is the maximum deteriorating rate.

As we will show later, this is the best possible for any deterministic online-list
algorithms. Several questions arise immediately following the work of [4].

– Intuitively, the problem becomes more difficult with arbitrary release times.
In particular, for simple linear deterioration, can we show a lower bound
larger than (1 + bmax)

1− 1
m ? Furthermore, what is the performance of LS for

simple linear deterioration when jobs have arbitrary release times?
– What is the performance of LS or other online algorithms for other linear

deterioration functions like pj = aj + bsj , pj = a + bjsj , and pj = aj + bjsj .

Availability constraints. We further consider the scenario when a machine
is not always available [16–18]. This may arise due to maintenance or when
the machine is reserved for other purposes. When a job is interrupted by an
unavailable period, it may be resumed later or it may not be resumed and has
to restart again. We focus on non-resumable availability constraint.

This problem has been studied in single machine scheduling of simple linear
deteriorating jobs. Gawiejnowicz [8] proved that the problem is NP-hard for one
unavailable period and strongly NP-hard for an arbitrary number of unavailable
periods, while an FPTAS has been proposed for one unavailable period [12].
As far as we know, the only work on online algorithms shows that LS is an
optimal online-list algorithm for one unavailable period [12], with a competitive
ratio B/t0 where B > t0 is the beginning time of the unavailable period. An
immediate question is to extend the study to parallel machines.

Our contribution. In this paper, we take one step forward to answer some of
the above questions. The main results are for simple linear deterioration, where
we first consider jobs with arbitrary release times. When scheduling on parallel
machines, we show that the problem with arbitrary times is more difficult: for
two machines, we give a lower bound of 1+ bmax on the competitive ratio, which
is strictly larger than the bound (1 + bmax)

1/2 for the online-list model. We also

show that the competitive ratio of LS is between 1+bmax and (1+bmax)
2(1− 1

m
) for

m machines, while the ratio of RR (Round Robin) can be unbounded. Together
with the general lower bound, it implies that for two machines, LS is optimal
with competitive ratio 1 + bmax.
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We then consider scheduling on two machines where one of them is unavail-
able during the interval [B,F ], with t0 < B < F . For the online-list model,
we show that a modified LS algorithm is optimal with a competitive ratio of
min{

√

B/t0, 1 + bmax}.

Another linear deterioration function we consider is with identical deterio-
rating rate but different normal processing times, i.e., pj = aj + bsj . In this
case, we focus on the online-list model. Let amax and amin be the maximum and
minimum aj , respectively, and α = amax

amin
. We show that no online-list algorithm

is better than α-competitive, and show that Round Robin (RR) achieves this
competitive ratio. We also show that LS is α-competitive in a special case.

Technically speaking, the lower bounds for simple linear deterioration are
more technically involved. The adversaries work in stages. In each stage some
jobs with small b are released, forcing the online algorithm to schedule jobs
evenly on all machines; this is followed by a job with large b, forcing a large
completion time. On the other hand, the optimal algorithm reserves a machine
for the job with large b and then evenly distribute the remaining jobs on the
other machines to achieve the same makespan for each machine. The idea is
similar to those for fixed processing time, yet the crux is to work out the values
of b’s. To analyze the performance of LS, the key idea is to give a lower bound
on the makespan of the optimal algorithm in terms of the completion time of
the machine having the makespan in LS.

Organization of the paper. Section 2 gives some notations and definitions. In
Section 3, we consider varying deteriorating rates while in Section 4, we consider
varying normal processing times. Finally, we conclude in Section 5.

2 Preliminaries

We are to schedule a set of n jobs J = {J1, J2, . . . , Jn} onto m machines
M1,M2, . . . ,Mm. For every job Jj , we denote by rj and pj the release time
and processing time, respectively. We assume that the jobs are indexed in in-
creasing order of release time, i.e., rj ≤ rj+1. The processing time pj depends
on the start time sj when the job starts being executed by a processor, i.e., pj
differs with different schedules. In particular, we consider linear deterioration in
which jobs are characterized by a normal processing time aj ≥ 0 and a deterio-
rating rate bj > 0 such that pj = aj + bjsj . When the normal processing time is
identical, it is called simple linear deterioration. Denote by bmax the maximum
of bj , amax and amin the maximum and minimum of aj , and α = amax/amin.

Jobs arrive online and the information about the jobs are only known on
arrival. A schedule is to dispatch the jobs in J on machines and determine when
to run the jobs. Preemption is not allowed. Consider a schedule S. For 1 ≤ j ≤ n,
the completion time of job Jj in S is denoted by cj(S). For any 1 ≤ k ≤ m, the set
of jobs dispatched to Mk by S is denoted by J (k)(S). We simply use J (k) when

the context is clear. The makespan of machine Mk, denoted by C
(k)
max(S), is the

maximum completion time of the jobs on Mk by S. The makespan of S, denoted

by Cmax(S), is the maximum of the makespan over all machines. I.e., C
(k)
max(S) =

maxj∈J (k)(S){cj(S)} and Cmax(S) = max1≤k≤m{C
(k)
max(S)}. The objective of

the problem is to minimize the makespan of the schedule produced.
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We also consider the case when there is an availability constraint. In this
case, we consider only two machines and assume that machine M1 has a known
unavailable period [B,F ], where t0 < B < F . The semi-online algorithm we
propose requires bmax is known in advance.

Round Robin (RR). Jobs are inserted into a list in increasing order of arrival.
The first job is dispatched to the first machine, and the next job is dispatched
to the next machine, i.e., Jj is dispatched to Mk where k = ((j−1) mod m)+1.

List Scheduling (LS). Jobs are inserted into a list in increasing order of ar-
rival. Whenever a machine becomes idle, the next job in the job list is dispatched
to the machine.

OPT. We denote the optimal offline algorithm (and its schedule) by OPT.

3 Simple linear deterioration pj = bjsj

In this section, we consider jobs with simple linear deteriorating rate, pj = bjsj ,
i.e., aj = 0. As we assume the normal processing time aj = 0 for all j, it is natural
to assume that the start time of the schedule is t0 > 0 instead of 0, otherwise,
pj would all be zero. We consider two scenarios. In Section 3.1, we consider
scheduling jobs with arbitrary release times on m machines. In Section 3.2, we
consider the case when one of the machines may be unavailable for a certain
period of time. In particular, we consider the special case with two machines
and all jobs are available at t0.

3.1 Online-time model: Scheduling jobs with arbitrary release times

In this section, we consider jobs with arbitrary release time rj . We first make
some simple observations (proof in full paper).

Property 1. Consider scheduling of jobs with pj = bjsj .

(i) The completion time of any job Jj , cj = sj(1 + bj).
(ii) Consider any job set J where r denotes the earliest release time of jobs in

J . The makespan of scheduling these jobs on a single machine is at least
r
∏

j∈J (1 + bj).
(iii) Suppose J1, J2, · · · , Jn are indexed in increasing order of release times such

that rj ≤ rj+1. The makespan of any m-machine schedule is at least
∏

1≤k≤m

r
1
m

k

∏

1≤j≤n

(1 + bj)
1
m .

Lower bounds. We prove several lower bounds showing that RR is not com-
petitive (proof in full paper), and that the problem with arbitrary release times
admits a larger competitive ratio than that for the online-list model.

Lemma 1. Consider simple linear deteriorating jobs. The competitive ratio of
RR is unbounded. This also holds for the online-list model.

Lemma 2. Consider simple linear deteriorating jobs with arbitrary release times.
The competitive ratio of LS is at least (1 + bmax).
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LS

OPT
J1 J1 J1

J1J1J1

J2J2

J2J2

J3

J3

t0 t1 t2

M1

M1

(i) (ii) (iii)

Fig. 1. The first three stages of the adversary for LS on three machines. The deterio-
rating rates b1, b2 and b3 of J1, J2 and J3 satisfy 1 + b1 = (1 + b)3, 1 + b2 = (1 + b)5,
and 1+ b3 = (1+ b)7. Note that the machines in OPT are busy all the time while those
in LS may be idle. (i) In Stage 1, jobs are released at t0. (ii) In Stage 2, newly arriving
jobs have a release time of t1 = t0(1 + b1) and cannot be scheduled earlier on M2 and
M3 in LS. (iii) In Stage 3, the release time t2 = t1(1+ b2). (Note that the length of the
jobs in the figure reflects the value of deteriorating rates but not the actual processing
time, which is increasing as start time increases.)

Proof (Sketch). The adversary works in stages and jobs are released at time ti in
Stage i, with t0 > 0. In each stage, the adversary releases some jobs with deteri-
orating rate b at time ti. LS would schedule these jobs evenly on the machines.
Then one job of a large deteriorating rate bi is released at ti and no matter
which machine LS schedules this job the completion time is big. On the other
hand, the optimal offline algorithm OPT can reserve one machine for the job
with large deteriorating rate and schedule the jobs with small deteriorating rate
on the remaining machines. This introduces a difference in the latest completion
time between LS and OPT in the current stage. The idea is similar to traditional
scheduling with fixed processing time and the main issue is to choose appropriate
bi. Figure 1 shows the first three stages of the adversary. As to be shown in the
full paper, we define a sequence bi such that the difference between LS and OPT
keeps increasing, and finally leading to the competitive ratio stated. ⊓⊔

The first stage of the above adversary can be used to show a lower bound on
any deterministic algorithm for the online-list model (proof in full paper).

Lemma 3. Consider simple linear deteriorating jobs. No deterministic online
algorithm is better than (1+bmax)

1− 1
m -competitive. This also holds for the online-

list model.

Next we consider two machines and extend the adversary in Lemma 2 to show
that when jobs have arbitrary release times, no deterministic online algorithm
is better than (1+ bmax)-competitive. The main difference is that after releasing
jobs of deteriorating rate b, the online algorithm not necessarily schedules these
jobs evenly between the two machines. Therefore, before the adversary releases
a job of deteriorating rate bk, more jobs are released to maintain the same
completion time on both machines and the number and deteriorating rate of
these intermediate jobs vary according to how the online algorithm schedule the
set of jobs of deteriorating rate b.

Theorem 1. Consider two-machine scheduling of jobs with arbitrary release
times and simple linear deteriorating rates. No deterministic online algorithm
is better than (1 + bmax)-competitive.
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Upper bound for LS. We prove that LS is at most (1 + bmax)
2(1− 1

m
)-

competitive when jobs have arbitrary release times. First of all, we claim that
without loss of generality, we can assume that at any time in the LS schedule,
not all machines are idle. Otherwise, suppose t is the latest time such that all
machines are idle. As LS is not idle whenever there are available jobs, this means
that there is a subset of jobs J ′ ⊆ J , all of which have release times strictly
after t, and J − J ′ are completed by LS before t. The makespan of LS on J ′

would remain the same as on J . On the other hand, the makespan of OPT on
J ′ is also the same as on J since there is a possible schedule to complete all
the jobs in J − J ′ before t. Therefore, we can make the following assumption
without affecting the competitive ratio of LS.

Observation 2 Without loss of generality, we may assume that at any time in
a LS schedule, not all machines are idle.

Let ℓ be the index of a job with completion time Cmax(LS); break ties arbi-
trarily. Let Mp be the machine to which LS schedules Jℓ. Because of the way LS
schedules job, we have the following property about sℓ(LS), the start time of Jℓ.

Property 2. (i) sℓ(LS) = Cp
max(LS)/(1+bℓ). (ii) sℓ(LS) ≤ min1≤k≤m,k 6=p{C

(k)
max(LS)}.

To analyze the performance of LS, we extend the analysis in [4] first to input
such that there is no idle time in the LS schedule, showing that LS is (1 +

bmax)
1− 1

m -competitive. In the general case when LS schedule may contain idle
time, we use Lemma 2 to upper bound the makespan of LS and use an averaging
argument to lower bound the makespan of OPT. The following theorem states
the competitive ratio of LS (proof in full paper).

Theorem 3. Consider m-machine scheduling of jobs with arbitrary release times
and simple linear deteriorating rate, LS is (1 + bmax)

2(1− 1
m

)-competitive.

Corollary 1. For two machine scheduling of jobs with arbitrary release times
and simple linear deteriorating rate, LS is an optimal online algorithm with
competitive ratio 1 + bmax.

3.2 Online-list model: Two machine scheduling with availability

constraint

In this section, we schedule jobs on two machines M1 and M2, where M1 is
unavailable during the period [B,F ]. In particular, we consider non-resumable
availability constraint, i.e., if a job is partly processed on M1 before B, it has to
be restarted from the beginning when M1 becomes available at F . We consider
jobs that are available at t0, and have simple linear deteriorating rate. The
online algorithm has to schedule a job as it is given, before the next job is
presented, and the decision cannot be revoked. Furthermore, we assume that
the online algorithm knows the maximum deteriorating rate bmax in advance,
so we are considering semi-online algorithm. We first give a lower bound of
min{

√

B/t0, 1 + bmax} on the competitive ratio. Then, we give a modified LS

algorithm and show that it is min{
√

B/t0, 1+ bmax}-competitive, implying that
the algorithm is optimal.
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It has been observed that on a machine that is entirely available, scheduling
jobs with whatever order gives the same makespan. However, this is not the case
if the machine is unavailable at some time. For example, given two jobs J1 and
J2 with deteriorating rate b1 and b2 such that 1 + b1 = 1+ ǫ and 1+ b2 = B/t0.
Processing J1 before J2 leads to a makespan of F (1 + b2) = FB/t0 since J2
cannot be completed before B and has to be started at F . Processing J2 before
J1 leads to a makespan of F (1 + ǫ).

Property 3. On the machine with unavailability, scheduling jobs in different or-
der may result in different makespan.

Lower bounds. First, when t0(1 + bmax) ≤ B, we show in Lemma 4 that
no deterministic online-list algorithm is better than min{

√

B/t0, 1 + bmax}-

competitive. We present two adversaries, one for
√

B/t0 < 1+ bmax and one for
√

B/t0 ≥ 1+ bmax. Second, when t0(1+ bmax) > B, we show in Lemma 5 (proof
in full paper) that no deterministic online algorithm is better than (1 + bmax)-
competitive. Then in Section 3.2, we give matching upper bounds.

Lemma 4. Suppose one of the two machines is unavailable during [B,F ] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) ≤ B, no deter-
ministic online-list algorithm is better than min{

√

B/t0, 1 + bmax}-competitive.

Proof (Sketch). Consider any online algorithm A. We show here an adversary for
the case

√

B/t0 ≥ 1+bmax. The case
√

B/t0 < 1+bmax is given in the full paper.
The adversary first gives six jobs of the same deteriorating rate b1 such that
1 + b1 = (B/t0)

1/4. If A does not schedule three jobs on each machine, then the
adversary stops. Otherwise, the adversary then gives two jobs of deteriorating
rate b2 such that 1 + b2 = (1 + ǫ)(B/t0)

1/4, for some small ǫ. In both cases, one
can show that the ratio can be made arbitrarily close to 1 + bmax. ⊓⊔

Lemma 5. Suppose one of the two machines is unavailable during [B,F ] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) > B, no deter-
ministic online-list algorithm is better than (1 + bmax)-competitive.

Upper bound. We modify the LS algorithm to cater for the unavailability
period on M1 and we call the algorithm MLS. MLS distinguishes the cases of B
being small and large: t0(1 + bmax) ≤ B and t0(1 + bmax) > B.

Modified LS (MLS). If t0(1 + bmax) ≤ B, the interval [t0, t0(1 + bmax)] on
M1 is reserved to process the first job with deteriorating rate bmax; otherwise,
no interval is reserved. Apart from the job for which a time interval is reserved,
a given job is scheduled on the machine that results in the minimum completion
time. This includes three options: scheduling on M1 before B (if the job can be
completed before B), scheduling on M1 after F , and scheduling on M2.

Let Jℓ be the job with the maximum completion time by MLS and Mp be
the machine MLS schedules Jℓ. Note that Property 2 (i) remains valid for MLS
but (ii) only holds under the condition that sℓ > F .

Property 4. (i) sℓ(MLS) = C
(p)
max(MLS)/(1 + bℓ). (ii) If sℓ(MLS) > F , then

sℓ(MLS) ≤ C
(k)
max(MLS), where k 6= p.
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Furthermore, we give a lower bound on Cmax(OPT) when sℓ ≥ B (Property 5,
proof in full paper) Let CB be the latest completion time of the MLS schedule
on M1 before B. This property is used in Lemmas 6 and 7.

Property 5. If sℓ(MLS) ≥ B, then Cmax(OPT) ≥ sℓ(MLS)
√

(1 + bℓ)
CB

B > sℓ(MLS).

We then proceed to analyze the performance of MLS, showing that the upper
bounds match the lower bounds in Lemmas 4 and 5.

Lemma 6. Suppose one of the two machines is unavailable during [B,F ] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) ≤ B, MLS is a
semi-online-list algorithm and is min{

√

B/t0, 1 + bmax}-competitive.

Proof. Given any job set J , we consider the case sℓ ≥ B here and give the proof
of the case sℓ < B in the full paper

According to how MLS schedules jobs, Jℓ cannot be scheduled on M1 at CB ,
implying that CB(1 + bℓ) > B. Furthermore, since we are considering the case
t0(1+bmax) ≤ B, it means that MLS reserves the interval [t0, t0(1+bmax)] for the
first job with bmax, and hence, t0(1+bmax) ≤ CB . We can then obtain two bounds
on the ratio Cmax(MLS)/Cmax(OPT). First, by Property 5, Cmax(OPT) ≥ sℓ.

Cmax(MLS)

Cmax(OPT)
≤

sℓ(1 + bℓ)

sℓ
≤ 1 + bmax .

Furthermore, by Property 5, Cmax(OPT) ≥ sℓ

√

(1 + bℓ)
CB

B .

Cmax(MLS)

Cmax(OPT)
≤

sℓ(1 + bℓ)

sℓ

√

(1 + bℓ)
CB

B

=
√

1 + bℓ
√

B/CB ≤
√

1 + bmax

√

B/CB ≤
√

B/t0 ,

where the last inequality is a consequence of t0(1 + bmax) ≤ CB . Therefore, the
ratio is at most min{

√

B/t0, 1 + bmax} as required. ⊓⊔

The proof of Lemma 7 is given in the full paper.

Lemma 7. Suppose one of the two machines is unavailable during [B,F ] and
jobs have simple linear deteriorating rates. When t0(1 + bmax) > B, MLS is a
semi-online-list algorithm and is (1 + bmax)-competitive.

By Lemmas 4, 5, 6, and 7, we have the following corollary.

Corollary 2. Consider two machines one of which is unavailable during [B,F ]
and jobs with simple linear deteriorating rates. MLS is an optimal semi-online-
list algorithm.

4 Online-list model: Fixed deteriorating rate and varying
normal processing time pj = aj + b sj

In this section, we consider jobs with fixed deteriorating rate but varying normal
processing time. We focus on the online-list model in which jobs are presented
one by one. When a job is given, it is available for process, then the online
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algorithm has to dispatch the job to a machine and specify the period of time to
process the job. This decision has to be made before the next job is given, and
cannot be changed once it is made. The machines are available for processing
starting from time 0.

Recall that J (k)(S) denote the set of jobs dispatched on machine Mk by
schedule S and n(k)(S) is the size of J (k)(S). Suppose J (k)(S) = {Jk,1, Jk,2, · · · ,
Jk,n(k)}. The completion time of Jk,1 denoted by ck,1 equals to ak,1. For the

second job, ck,2 = ak,2 + ak,1(1 + b). In general, for any 1 ≤ j ≤ n(k), the
completion time of the j-th job is

ck,j =
∑

1≤i≤j

ak,i(1 + b)j−i .

Therefore, given a set of jobs on a particular machine, the optimal offline schedule
is to schedule jobs in increasing order of normal processing time aj . Recall that
amax and amin denote the maximum and minimum value of aj , and α denotes
the ratio amax

amin
.

4.1 Lower bounds

In this section, we give a lower bound on any online-list algorithm.

Theorem 4. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, the competitive ratio of any online-list algorithm is no
better than α.

Proof (Sketch). We present the adversary and leaves the detail analysis in the
full paper. Consider any online-list algorithm A. The adversary first releases
mq jobs all with normal processing time a1, for some positive integer q. If A
schedules q+1 or more jobs on one of the machines, the adversary stops releasing
jobs. Otherwise, q jobs are dispatched on each machine. The adversary releases
another mq jobs with normal processing time a2 < a1. In both cases, we can
show that Cmax(A)/Cmax(OPT) can be made arbitrarily close to α. ⊓⊔

4.2 Upper bounds

In this section, we derive upper bounds on the performance of online algorithms
(proofs in full paper). First of all, we observe that if there is only one machine,
LS is at most α-competitive. We can then extend this proof to show that RR is
α-competitive for parallel machines.

Lemma 8. Consider the online-list model with jobs having fixed deteriorating
rate. On a single machine, the competitive ratio of LS is at most α.

When we consider parallel machines, we notice that for any schedule, the
machine with the maximum number of jobs has at least ⌈ n

m⌉ jobs. On the other
hand, the algorithm RR schedules at most ⌈ n

m⌉ jobs to any machine. Using the
same argument as Lemma 8, we have

Cmax(RR)

Cmax(OPT)
≤

amax

∑

1≤j≤⌈ n

m
⌉(1 + b)⌈

n

m
⌉−j

amin

∑

1≤j≤⌈ n

m
⌉(1 + b)⌈

n

m
⌉−j

= α .

Then we have the following theorem.
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Theorem 5. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, the competitive ratio of RR is at most α.

Notice that the maximum number of jobs LS schedules to a machine may be
more than ⌈ n

m⌉. Nevertheless, the next lemma asserts that under the condition
that α ≤ 1 + b, a machine processing more jobs always has a larger makespan.
In this case, LS schedules at most ⌈ n

m⌉ jobs to any machine, implying that LS
is α-competitive (Corollary 3).

Lemma 9. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, when α ≤ 1 + b, the makespan of a machine processing
more jobs is larger than that of a machine processing fewer jobs.

Corollary 3. Consider the online-list model with jobs having fixed deteriorating
rate. On m machines, when α ≤ 1+ b, the competitive ratio of LS is at most α.

5 Summary and future work

In this paper, we study online parallel machine scheduling of jobs with linear
deteriorating rate. Two linear deterioration functions have been considered. For
pj = bjsj and jobs with release times, we show that LS is (1 + bmax)

2(1− 1
m

)-
competitive, where bmax is the maximum deteriorating rate. We also show that
on m machines, no online algorithm is better than (1 + bmax)

1− 1
m -competitive;

and on two machines, no online algorithm is better than (1+ bmax)-competitive.
We believe it is possible to extend the adversary for two machines tommachines.
An obvious open question to close the gap between the upper and lower bounds.

As for the study of availability constraint, we have given an optimal online-
list algorithm when there are two machines one of which has an unavailable
period. Extensions include considering more than two machines, more than one
unavailable periods, and/or more than one machines being unavailable. It is
also interesting to extend the study to the online-time model where jobs have
arbitrary release times.

For the linear deterioration function pj = aj + bsj , we give a lower bound
and show that RR achieves this competitive ratio. We believe LS also achieves
this ratio but we manage to show it for a special case. An immediate question
is to determine the competitive ratio of LS for all cases. Again it is interesting
to extend the study to the online-time model.

Another direction is to consider more general functions like pj = aj + bjsj ,
non-linear deterioration, or other time dependent functions [9], e.g., decrease in
processing time as start time increases captures the learning effect.
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