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Abstract. We consider the following online scheduling problem in which the input consists
of n jobs to be scheduled on identical machines of bounded capacity g (the maximum number
of jobs that can be processed simultaneously on a single machine). Each job is associated with
a release time and a completion time between which it is supposed to be processed. When
a job is released, the online algorithm has to make decision without changing it afterwards.
We consider two versions of the problem. In the minimization version, the goal is to min-
imize the total busy time of machines used to schedule all jobs. In the resource allocation
maximization version, the goal is to maximize the number of jobs that are scheduled under
a budget constraint given in terms of busy time. This is the first study on online algorithms
for these problems. We show a rather large lower bound on the competitive ratio for general
instances. This motivates us to consider special families of input instances for which we show
constant competitive algorithms. Our study has applications in power aware scheduling, cloud
computing and optimizing switching cost of optical networks.
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1 Introduction

The problem. Job scheduling on parallel machines has been widely studied (see, e.g., the surveys
in [5, 10, 29]). In particular, much attention was given to interval scheduling [21], where jobs are
given as intervals on the real line, each representing the time interval during which a job should
be processed; each job has to be processed on some machine, and it is commonly assumed that a
machine can process a single job at any given time.

In this paper we consider online interval scheduling with bounded parallelism. Formally, the input
is a set of n jobs J = {J1, . . . , Jn}. Each job, Jj , is associated with an interval [rj , cj ] during which
it should be processed. Also, given is the parallelism parameter g ≥ 1, that is the maximum number
of jobs that can be processed simultaneously by a single machine. At any given time t a machine Mi

is said to be busy if there is at least one job Jj scheduled to it such that t ∈ [rj , cj ], otherwise Mi is
said to be idle at time t. We call the time period in which a machine Mi is busy its busy period In
this work we study two optimization problems MinBusy and MaxThroughput. In MinBusy we
focus on minimizing the total busy time over all machines. Note that a solution minimizing the total
busy time may not be optimal in terms of the number of machines used. In MaxThroughput, the
resource allocation version of the problem, we are given a budget T of total machine busy time and
the objective is to maximize the number of scheduled jobs under the constraint that the total busy
time is at most T .

The input to our scheduling problems can be viewed as an interval graph, which is the intersection
graph of a set of intervals on the real line. It has one vertex for each interval in the set, and an edge
between every pair of vertices corresponding to intersecting intervals. In our setting, each vertex
corresponds to a job, and there is an edge between two jobs whose processing times overlap.

Online algorithms. We consider the online setting, in which the jobs are given one at a time. The
algorithm has to decide on whether to schedule the job (in the MaxThroughput problem) and on
which machine to schedule it. The decision cannot be changed later, upon arrival of new jobs. An
online algorithm is said to be c-competitive for MinBusy if the total busy time is at most c times
that of an optimal solution and c-competitive for MaxThroughput if the number of scheduled
jobs is at least 1/c times that of an optimal solution; in both cases, an additive constant is allowed.
When the additive constant is zero, the online algorithm is said to be strictly c-competitive and c is
called the absolute competitive ratio.

Applications. Our scheduling problems can be directly interpreted as power-aware scheduling
problems in cluster systems. These problems focus on minimizing the power consumption of a set of
machines (see, e.g., [32] and references therein) measured by the amount of time the machines are
switched on and processing, i.e. the total busy time. It is common that a machine has a bound on
the number of jobs that can be processed at any given time.

Another application of the studied problems comes from cloud computing (see, e.g., [27, 31]).
Commercial cloud computing provides computing resources with specified computing units. Clients
with computation tasks require certain computing units of computing resources over a period of time.
Clients are charged in a way proportional to the total amount of computing time of the computing
resource. The clients would like to minimize the charges they have to pay (i.e. minimize the amount
of computing time used) or maximize the amount of tasks they can compute with a budget on the
charge. This is in analogy to our minimization and maximization problems, respectively.

Our study is also motivated by problems in optical network design (see, e.g., [9, 12, 13]).
Optical wavelength-division multiplexing (WDM) is the leading technology that enables us to deal
with the enormous growth of traffic in communication networks, like the Internet. In an optical
network, communication between nodes is realized by lightpaths, each f which is assigned a certain
color. As the energy of the signal along a lightpath decreases, regenerators are needed in order
to regenerate the signal, thus the associated hardware cost is proportional to the length of the
lightpaths. Furthermore, connections can be “groomed” so that a regenerator placed at some node
v and operating at some color λ can be shared by at most g connections colored λ and traversing
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v. This is known as traffic grooming. The regenerator optimization problem on the path topology
is in analogy to our scheduling problem in the sense that the regenerator cost measured in terms
of length of lightpaths corresponds to the busy time while grooming corresponds to the machine
capacity.

In the above three applications, it is natural to consider online version of the problem where jobs
arrive at arbitrary time and decisions have to be made straightaway (see e.g., [25, 27,31]).

Related work. Some of the earlier work on interval scheduling considers the problem of scheduling
a feasible subset of jobs with maximum total weight, i.e., a maximum weight independent set (see,
e.g., [2] and surveys in [18,19]). There is wide literature on real-time scheduling, where each job has
to be processed on some machine during a time interval between its release time and due date. There
are also studies on real-time scheduling, where each machine has some capacity and each job has a
demand of a certain machine capacity; however, to the best of our knowledge, all of this prior work
refers to different flavor of the model than the one presented here (see, e.g., [2, 6, 8, 28]). Interval
scheduling has been studied in the context of online algorithms and competitive analysis [20,22]. It
is also common to consider both minimization and maximization versions of the same scheduling
problem, see e.g., [3] but in that model the machines have unit capacity.

Our study also relates to batch scheduling of conflicting jobs, where the conflicts are given as an
interval graph. In p-batch scheduling model (see, e.g., Chapter 8 in [5]) a set of jobs can be processed
jointly. All the jobs in the batch start simultaneously, and the completion time of a batch is the last
completion time of any job in the batch. (For known results on batch scheduling, see, e.g., [5].) Our
scheduling problem differs from batch scheduling in several aspects. In our problems, each machine
can process g jobs simultaneously, for some g ≥ 1, the jobs need not be partitioned to batches,
i.e., each job can start at different time. Also, while in known batch scheduling problems the set of
machines is given, we assume that any number of machines can be used for the solution. Finally,
while common measures in batch scheduling refer to the maximum completion time of a batch, or a
function of the completion times of the jobs, we consider the total busy times of the machines.

The complexity of MinBusy was studied in [33], which showed that the problem is NP-Hard al-
ready for g = 2. The work [14] considered the problem where jobs are given as intervals on the
line with unit demand. For this version of the problem it gives a 4-approximation algorithm for
general inputs, and better bounds for some subclasses of inputs. In particular, 2-approximation al-
gorithms were given for instances where no job interval is properly contained in another (“proper”
instance), and instances where any two job intervals intersect, i.e., the input forms a clique (see
same approximation but different algorithm and analysis in [15]). The work [17] extends the results
of [14], considering the case where each job has a different demand on machine capacity and possibly
has some slack time. The work [26] improves upon [14] on some subclasses of inputs and initiates
the study of MaxThroughput for which a 6-approximation is proposed for clique instances and a
polynomial time algorithm is proposed for “proper” clique instances. These special instances have
been considered in [17,26], though under the off-line setting.

Our contribution. We study deterministic online busy time optimization (both minimization and
maximization variants). For the MinBusy problem we first show that g is a lower bound for the
competitive ratio of any online algorithm. We therefore consider special instances. One special set of
instances we consider is the clique instances where any two job intervals intersect, and the one-sided
clique instances where all jobs have the same release time or same completion time. Specifically, we
show the following:

– Lower and upper bounds of 2 and (1 + ϕ) respectively, where ϕ = (1 +
√
5)/2 is the Golden

Ratio, for one sided clique instances, and extension to the clique instances with a blow up of 2
in the ratio.

– A 5-competitive online algorithm for one sided clique instances.

For the MaxThroughput problem we first show that no online algorithm is better than (gT/2)-
competitive. We therefore consider special instances, for which we show the following:
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– Asymptotic and absolute competitive ratios of at least 2 and at least 2 − 2
g+1 , respectively, for

feasible one sided clique instances.
– A constant competitive online algorithm with ratio depending on g, but at most 9/2, for feasible

one-sided clique instances.

Organization of the paper. In Section 2 we present some preliminaries. We consider online busying
time minimization and maximization in Sections 3 and 4, respectively. We then conclude in Section 5
with some open problems and further research directions. Most proofs are sketched or moved to the
Appendix in this Extended Abstract.

2 Notations and preliminaries

Unless otherwise specified, we use lower case letters for indices and specific times, and upper case
letters for jobs, time intervals and machines. Moreover, we use calligraphic characters for sets (of
jobs, intervals and machines).

The input consists of a set of machines M = {M1,M2, · · · , }, an integer g representing the
machine parallelism bound, and a set of jobs J = {J1, J2, · · · , Jn} each of which is associated with
an interval [rJ , cJ ] during which it is supposed to be processed, where rJ and cJ denote the relese
time and completion time of the job, respectively. We use jobs and time intervals interchangably
throughout the paper. We assume that the given set M of machines is infinite as we do not aim at
optimizing the number of machines. We are to decide a schedule to assign jobs to the machines.

To define the objective of the problem, we first define the notion of length and span of intervals.

Given a time interval I = [rI , cI ], the length of I is len(I)
def
= cI − rI . The notion extends to a set I

of intervals; namely the length of I is len(I) = ∑
I∈I len(I). Two intervals are said to be overlapping

if their intersection contains more than one point. For example, the two intervals [1,2] and [2,3]

are considered to be non-overlapping. For a set I of intervals we define SPAN(I) def
= ∪I∈II and

span(I) def
= len(SPAN(I)) We refer to both of them as the span of a set of interval, when the intention

is clear from the context. For example, if I = {[1, 3], [2, 4], [5, 6]}, then SPAN(I) = {[1, 4], [5, 6]}
span(I) = 4, and len(I) = 5. Note that span(I) ≤ len(I) and equality holds if and only if I is a set
of pairwise non-overlapping intervals.

A (partial) schedule is a (partial) function from the set of jobs J to the set of machines M. A
schedule is said to be valid if every machine processes at most g jobs at any given time. In this
definition a job [rJ , cJ ] is considered as not being processed at time cJ . For instance, a machine
processing jobs [1, 2], [2, 3], [1, 3] is considered to be processing two jobs at time 2. Note that this is
consistent with the definition of the notion overlapping intervals, and equivalent to saying that the
intervals do not contain their completion time, i.e. are half-open intervals.

Given a (partial) schedule s : J 7→ M, we denote by J s
i the set of jobs assigned to machine Mi

by schedule s, i.e. J s
i

def
= s−1(Mi). The cost of machine Mi in this schedule is the length of its busy

interval, i.e. busysi
def
= span(J s

i ). We further denote the set of jobs scheduled by s as J s def
= ∪iJ s

i .

The cost of schedule s is costs
def
=

∑
i busy

s
i , and its throughput is tputs

def
= |J s|. When there is no

ambiguity on the schedule in concern, we omit the superscripts (e.g. we use Ji for J s
i , etc.).

We consider two variants of the problem: MinBusy is the problem of minimizing the total cost
of scheduling all the jobs, and MaxThroughput is the problem of maximizing the throughput of
the schedule subject to a budget given in terms of total busy time. These two problems are formally
defined as follows:
MinBusy

Input: (M,J , g), where M is an infinite set of machines, J is a set of jobs (i.e. time intervals),
and g is the parallelism bound.
Output: A valid schedule s : J 7→ M.
Objective: Minimize costs.
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MaxThroughput

Input: (M,J , g, T ) where M is an infinite set of machines, J is a set of jobs, g is the parallelism
bound, and T is a budget given in terms of total busy time.
Output: A valid partial schedule s : J 7→ M such that costs ≤ T .
Objective: Maximize tputs.

Without loss of generality, we assume that each machine is busy over a contiguous time interval.
Note that the definition of busy time measures the time that a machine is actually processing
some job. If a machine is busy over several contiguous time interval, then we can replace it with
several machines that satisfy the assumption, changing neither the feasibility nor the measure of the
schedule. For example, if a machine is busy over [1, 2] and [3, 4], we can replace this machine with
two machines, one busy over [1, 2], the other over [3, 4] and this does not change the total busy time.

Special cases A set of jobs J is a clique set if there is a time t common to all the jobs in J .
This happens if and only if the corresponding interval graph is a clique. When J is a clique set we
call the corresponding instance ((M,J , g) or (M,J , g, T )) a clique instance. A clique instance in
which all jobs have the same release time or the same completion time is termed a one-sided clique
instance.

A set of jobs J is proper if no job in the set properly includes another. Note that in this case for
two jobs J, J ′ ∈ J , rJ ≤ rJ ′ if and only if cJ ≤ cJ ′ . We denote this fact as J ≤ J ′ and w.l.o.g. we
assume the jobs are numbered in a such a way that J1 ≤ J2 ≤ . . . ≤ Jn.

Online algorithms When a job is given, an online algorithm has to assign it to a machine or
reject it with no future knowledge of jobs to be given. We consider deterministic online algorithms
and analyze the performance by competitive analysis [4]. We denote by s∗ an optimal schedule (for
MinBusy or MaxThroughput). The cost of s∗ is denoted by cost∗ and its throughput by tput∗.
An online algorithm A for MinBusy is c-competitive, for c ≥ 1, if there exists a constant b ≥ 0 such
that for all input instances, its cost is at most c·cost∗+b. For MaxThroughput, A is c-competitive,
for c ≥ 1, if there exists a constant b ≥ 0 such that for all input instances, its benefit is at least
(1/c) · tput∗ − b. Note that in both cases, the competitive ratio is ≥ 1. When the additive constant
b is zero, A is said to be strictly c-competitive and c is its absolute competitive ratio.

Basic observations Consider MinBusy in which we schedule all jobs in J . The following obser-
vation gives two immediate lower bounds for the cost of any schedule of MinBusy.

Observation 1 For any instance (M,J , g) of MinBusy and a valid schedule s for it, the following
bounds hold:

– the parallelism bound: costs ≥ len(J )
g ,

– the span bound: costs ≥ span(J ),

– the length bound: costs ≤ len(J ).

The parallelism bound holds since a machine can process at most g jobs at any time. The span
bound holds because at any time t ∈ SPAN(J ), at least one machine is busy. The length bound
holds because len(J ) is the total busy time if each job is allocated a distinct machine.

By the parallelism bound and length bound, the following holds.

Proposition 1. For MinBusy, any online algorithm is strictly g-competitive.

The following relationship between MinBusy and MaxThroughput is observed in [26] For the
sake of completeness, we give the proof in Appendix B.1.

Proposition 2 ( [26]). There is a polynomial time reduction from the MinBusy problem to the
MaxThroughput problem.
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3 Cost Minimization - MinBusy problem

3.1 General Instances

We consider general instances for MinBusy. We show a lower bound for any online algorithm
(Theorem 2) and present a greedy algorithm (Theorem 3).

Lower Bound We first describe a lower bound of 2 on any algorithm Alg. The adversary releases
jobs with release and completion time in the interval [0, T ], for some arbitrarily large T . Let k be
an integer, r = 0 be the release time of the jobs to be released, t = T be the remaining time to be
considered, and ℓ = t/kg−1 be a parameter of the length of jobs to be released.

We first release a job of length t at time r and suppose Alg assigns the job to machine M . We
then release jobs of lengths ℓ, ℓk, ℓk2, · · · , all at time r, until a machine different from M is used.
Suppose this job is of length ℓkj (note that j ≤ g − 1). Then we set parameters r′ = ℓkj , t′ = t− r
and ℓ′ = t′/kg−1. We then release paths of length ℓ′, ℓ′k, · · · with release time at r′, until a machine
different from M is used. Repeat until a machine different from M is used for the whole interval
[0, T ].

With this adversary, costs ≥ 2T : T for the very first job, and T for the paths not assigned to M .
One can use the same machine for all jobs except for the shortest ones, and cost∗ ≤ T (1 + 1/kg−1).
An arbitrarily large k implies that the competitive ratio of Alg is no better than 2. By extending
this idea we prove the following theorem in Appendix B.2

Theorem 2. For MinBusy, no online algorithm has an absolute competitive ratio better than g.

Upper Bound With Proposition 1 and Theorem 2, the competitive ratio is tight in terms of
g. Yet the adversary in Theorem 2 makes use of jobs of many different lengths. In particular the
adversary needs to generate jobs of length kg

2

, requiring kg
2 ≤ T , i.e. g ≤

√
logk T . When this

is not the case, we have a better result: Algorithm BucketFirstFit achieves a competitive ratio
depending on the span of the longest job. BucketFirstFit classifies jobs according to their lengths
and assigns jobs in a First-Fit manner for each class independently.

Algorithm 1 BucketFirstFit

1: Classify the jobs into buckets: a job of length in [2k, 2k+1 − 1] belongs to bucket k, for k ≥ 1.
2: Assign machine to jobs in each bucket in a First-Fit manner independently of other buckets.
3: When a job J in bucket k arrives
4: for each machine M already assigned a job from bucket k do
5: if it is valid to assign J to M then
6: Assign J to M . return
7: end if
8: end for
9: Assign J to a new machine.

To analyze BucketFirstFit we adapt the proof of Theorem 2.5 in [14], which asserts that if jobs
are assigned to machines in descending order of length, a job J assigned M preventing a set of jobs
Q from using machine M would imply span(Q) ≤ 3 · len(J) and using this result, the performance
ratio of this procedure can be shown to be at most 4. When the jobs are not in descending order
but have a max-min span ratio at most 2 (like a particular bucket in BucketFirstFit), one can
then show that span(Q) ≤ 5 · len(J) and the performance ratio becomes 6. We then have Lemma 1
which further implies Theorem 3.

Lemma 1. Let J k be the set of jobs of bucket k and s be a schedule returned by BucketFirstFit.
Then costs(J k) ≤ 6cost∗(J k).
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Theorem 3. For MinBusy, BucketFirstFit is (6 log spanmax)-competitive where spanmax is the
maximum span of a job.

Finally we note that the constant 6 above can be improved to 5 by modifying the algorithm to work
with powers of 4 instead of powers of 2. Generally if the algorithm divides the lightpaths into buckets
according to powers of some α > 1 (like Algorithm 2 below), at each bucket we get a ratio of 2α+2
and therefore an overall competitive ratio of (2α + 2) logα spanmax = 2 α+1

logα log spanmax. Choosing

α = 4 brings the value of the coefficient to the minimum of 2 4+1
log 4 = 5.

3.2 One-Sided Clique Instances

Upper bound We consider one-sided clique instances and present the GreedyBucket algorithm
(Algorithm 2). We show that it is strictly (1 + ϕ)-competitive where ϕ = (1 +

√
5)/2 is the Golden

Ratio. Without loss of generality, we assume that all jobs have the same release time.
GreedyBucket depends on a parameter α > 1 to be determined in the sequel. A job J is

categorized to a bucket according to len(J): the bucket of a job J ∈ J is the minimum value of i
such that len(J) ≤ αi. For i ≥ 1, bucket i consists of jobs J such that αi−1 < len(J) ≤ αi.

Algorithm 2 GreedyBucket(α)

1: Determine the bucket i of the input job J according to the parameter α.
2: If bucket i has no current machine, then use a new machine and make it the current machine of bucket i.
3: If there are already g jobs assigned to the current machine of bucket i, then use a new machine and

make it the current machine of bucket i.
4: s(J)← the current machine of bucket i.

The correctness of GreedyBucket stems from the validation in Step 3. We proceed with its
competitive analysis. Let qi · g + ri be the number of jobs in bucket i where 0 ≤ ri < g. Let m be
the non-empty bucket with biggest index and let ℓ be the biggest index such that rℓ > 0. Clearly,
bucket ℓ is non-empty (otherwise rℓ = 0), thus ℓ ≤ m. Let L be the span of the longest job in bucket
ℓ, thus αℓ−1 < L ≤ αℓ.

GreedyBucket uses distinct machines for every bucket, thus costs is the sum of the busy time
of machines in each bucket. The sum of busy time of machines in bucket i is at most (qi + 1)αi,
because at most qi + 1 machines are used each with busy time at most αi. For i > ℓ this number is
at most qiα

i (because ri = 0), and for bucket ℓ this number is at most (qℓ+1)L. Therefore we have:

costs ≤
ℓ−1∑

i=1

(qi + 1)αi + (qℓ + 1)L+
m∑

i=ℓ+1

qiα
i ≤

m∑

i=1

qiα
i +

ℓ−1∑

i=1

αi + L

<

m∑

i=1

qiα
i +

αℓ

α− 1
+ L <

m∑

i=1

qiα
i +

αℓL

(α− 1)αℓ−1
+ L

= α

m∑

i=1

qiα
i−1 +

2α− 1

α− 1
L . (1)

In Appendix B.3 we prove the following proposition.

Proposition 3.

cost∗ ≥
m∑

i=1

qiα
i−1 + L.

For α = 3+
√
5

2 we have 2α−1
α−1 = α. Then Inequality (1) can be written as costs < α

∑m
i=1 qiα

i−1+
αL ≤ α · cost∗ implying
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Theorem 4. For MinBusy, GreedyBucket(1 + ϕ) is strictly (1 + ϕ)-competitive for one-sided

clique instances, where ϕ = 1+
√
5

2 is the Golden Ratio.

Lower bound As of lower bound, we prove the following lemma in Appendix B.4.

Lemma 2. For MinBusy, no on-line algorithm has an absolute competitive ratio better than (1 +
1/x) for one-sided clique instances, where x is the root of the equation xg−1 = (x+ 1)/(x− 1).

For g = 2, this implies a lower bound of
√
2 and for larger values of g, we have an increasing

lower bound approaching 2. (see Figure 2 in Appendix A).

3.3 Clique Instances

We present the online algorithm LeftOrRight(A) for clique instances, which assumes the knowl-
edge of the time t common to all jobs, and takes as parameter an online algorithm A for one-sided
clique instances.

Algorithm 3 LeftOrRight(A)

1: Two copies of the online algorithm A are run (each using a different set of machines), Al for some jobs
on the left of the common time t and Ar for some jobs on the right.

2: When a job J with interval [rJ , cJ ] arrives, compute the lengths to the left and right to the common
time t, i.e., the two quantities t− rJ and cJ − t.

3: if t− rj ≥ cJ − t then
4: Create an input job Jl with interval [rJ , t]
5: Feed Jl to Al.
6: Assign J to the machine that Al assigns Jl

7: else
8: Create an input job Jr with interval [t, cJ ]
9: Feed Jr to Ar.
10: Assign J to the machine that Ar assigns Jr.
11: end if

The correctness of LeftOrRight(A) follows from that of A. Lemma 3 asserts that its compet-
itive ratio is at most twice that of A. Roughly speaking, the lemma stems from the fact that the
sum of the optimal cost for the sets of jobs fed to Al and Ar is at most that the optimal cost for J .
Detailed proof is given in Appendix B.5.

Lemma 3. If the competitive ratio of A for one-sided clique instances is c, then the competitive
ratio of LeftOrRight(A) for clique instances is at most 2 · c.

Corollary 1. For MinBusy and clique instances, LeftOrRight(GreedyBucket(1+ϕ)) is 2(1+

ϕ)-competitive, where ϕ = 1+
√
5

2 is the Golden Ratio.

4 Throughput Maximization - MaxThroughput problem

4.1 Basic Results

In this section we consider the MaxThroughput problem (M,J , g, T ). An input instance is said
to be feasible if there is a schedule that assigns all the jobs with total machine busy time at most T ,
i.e., tput∗ = |J |. We prove in Appendix B.6 the following proposition asserting that the problem
does not admit a small competitive ratio for general instances.

Proposition 4. No online algorithm for MaxThroughput is better than gT -competitive even with
an additive term g − 1, while there exists a strictly gT -competitive online algorithm.
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Following Proposition 4, from now on we consider only feasible one-sided clique instances. For
this case we prove in Appendix B.7 the following proposition asserting that both simple greedy
algorithm and algorithm GreedyBucket do not admit a small competitive ratio.

Proposition 5. For feasible one-sided clique instances of MaxThroughput (i) the simple greedy
algorithm is Ω(R)-competitive and (ii) GreedyBucket is Ω( R

logR )-competitive even when g = 2.

4.2 Lower Bounds for Feasible One-Sided Clique Instances

In this section we show two lower bounds on the competitive ratio of online algorithms for feasible
one-sided clique instances, one for the absolute competitive ratio for any fixed value of g and the
other for the general case (see Appendix B.8 for the proof).

Lemma 4. Let Alg be a c-competitive online algorithm for feasible one-sided clique instances, with
an additive constant b. If c(b+ 1) < g then

c ≥ 2− 4b+ 2

g + 2b+ 1
.

The condition in Lemma 4 holds when g ≫ b or b = 0, leading to Theorem 5.

Theorem 5. Consider feasible one-sided clique instances. (i) Any online algorithm has a competitive
ratio of at least 2. (ii) For any fixed value of g, any online algorithm has an absolute competitive
ratio of at least 2− 2

g+1 .

4.3 Online Algorithm for Feasible One-Sided Clique Instances

Note that the negative results in Section 4.2 do not provide any lower bound for the asymptotic
competitive ratio for fixed values of g. In this section we propose an online algorithm that achieves
a constant asymptotic competitive ratio for every fixed g. Since the given instance is feasible, we
have tput∗ = |J |.

We start by defining a few terms and notations that will prove helpful in describing the algorithm.
We categorize the input jobs into buckets according to their lengths, namely given a job J ∈ J
we define bucket(J) as the smallest non-negative integer i such that T

2i+1 < len(J) and Ji
def
=

{J ∈ J | bucket(J) = i}. In other words we have ∀J ∈ Ji,
T

2i+1 < span(J) ≤ T
2i . We also define the

following two dynamic variables (i.e. their values depend on the state of the algorithm).

– Ti: The total busy time incurred by the algorithm to schedule Ji except its first g jobs in the
order of arrival.

– T ∗
i : A set of ⌈log T ⌉ variables (one for each bucket) satisfying, (a) T ∗

i ≥ 0, (b) T ∗
i is non-

decreasing, and (c)
∑

i T
∗
i ≤ cost∗.

In the pseudo code of BalanceBudget (Algorithm 4), accept(J) stands for scheduling J with
the smallest possible machine under use in bucket i such that the schedule continued to be valid
after assigning J ; and if no such machine exists J is assigned a new machine. reject(J) means that
J is not assigned, i.e. s(J) is undefined.

The analysis of BalanceBudget proceeds as follows. We show that there exists a polynomial-
time computable function T ∗

i (of the state of the algorithm) satisfying the conditions (a)-(c). We then
show that with such T ∗

i , BalanceBudget indeed returns a valid schedule with total busy time at
most T (Lemma 5). Furthermore, we show that the throughput in every bucket by BalanceBudget

is at least a constant fraction of the number of jobs in that bucket. Then in Theorem 6 we can
conclude the competitive ratio of BalanceBudget. We start by stating Lemma 5 (see Appendix
B.10 for the proof).
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Algorithm 4 BalanceBudget

When a job J arrives do:
i← bucket(J)
if |Ji| ≤ g then

if i ≥ 3 then accept(J) ⊲ (+)
else reject(J)
end if

else
if Ti ≤ 3

4
T ∗

i would hold after accepting J then accept(J) ⊲ (*)
else reject(J)
end if

end if

Lemma 5. BalanceBudget returns a valid schedule with total busy time at most T provided
that there is a polynomial-time computable function to calculate T ∗

i satisfying the above mentioned
conditions (a)-(c).

The following claim (for proof see Appendix B.9) shows such T ∗
i stated in Lemma 5.

Claim. The function
T ∗
i

def
=

⌈
max(|Pi| − (g − 1), 0)

g

⌉
T

2i+1
(2)

satisfies all the requirements stated for T ∗
i and is polynomial time computable.

To analyze the competitiveness of BalanceBudget, let tputi be the throughput in bucket i,
i.e. the number of jobs in Ji scheduled by BalanceBudget. In each bucket i BalanceBudget

assigns tputi − g jobs to ⌈(tputi − g)/g⌉ machines each with busy time at most T/2i, therefore:

Ti ≤
⌈
tputi − g

g

⌉
T

2i
=

(⌈
tputi
g

⌉
− 1

)
T

2i
.

Using the above inequality we prove in Appendix B.9 the following claim.

Claim. For every fixed g, there exists a constant 2/9 < c(g) < 1 such that ∀i ≥ 3, tputi ≥ c(g) · |Ji|.

With the above claims and Lemma 5, we prove the following theorem in Appendix B.11.

Theorem 6. Consider MaxThroughput and feasible one-sided clique instances. For every fixed g,
BalanceBudget is a constant-competitive online algorithm where the constant depends on g and
is at most 9/2.

Note that BalanceBudget can be modified so that it gets some integer parameter β ≥ 2 to in-
dicate how many buckets from which we do not accept the first g paths (marked (+) in Algorithm 4).
In the above presentation we assumed, for simplicity that β = 3. In general the competitive ratio is
a decreasing function of β, but the additive constant of β · g increases with β.

5 Summary and Future Work

In this work we have studied online busy time optimization problems. We have shown some rather
large lower bounds for general instances, and this motivated us to consider special families of in-
stances for which we have shown better online algorithms. This is the first work that deals with
online algorithms for this setting, and, as such, it calls for a variety of open problems, as detailed
below. Some open problems are closely related to those studied in this work, including:
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– We have shown a constant competitive algorithm for one sided clique instances of the Min-

Busy problem and extended it to clique instances. Lower bounds are also given. An immediate
open question is to close the gaps between the upper and lower bounds.

– The lower bounds and algorithms for the MaxThroughput problem in one-sided clique in-
stances do not have matching counterparts. Specifically is there a constant-competitive algo-
rithm for those instances when g is not fixed? On the other hand is there a lower bound for these
instances when g is fixed?

– The lower bounds of the MaxThroughput problem for one-sided clique instances, clearly
extend to general instances. Are there better lower bounds for the general instances or is there
a constant-competitive algorithm?

More general open problems naturally arise, including:
– Consider jobs having associated benefit and maximize the total benefit of scheduled jobs.
– In this work the jobs are supposed to be processed during the whole period from start time rj

to completion time cj . We can consider jobs of other characteristics.
• One may consider jobs that also have a processing time pj and have to be processed for pj

consecutive time units during the interval [rj , cj ] (see e.g. [17, 30]).
• One may also consider malleable jobs which can be assigned several machines and the actual
processing time depends on the number of machines allocated (see e.g., [23, 30]).

As we have mentioned in Section 1, our work is closely related to power-aware scheduling, cloud
computing and optical network design. Our problems can be extended to cover more general problems
in these three applications.
Power-aware scheduling: As said, machine busy time reflects how long the processor is switched
on and how much energy is used. Energy saving can also be achieved via other mechanisms.

– Modern processors support Dynamic Voltage Scaling (DVS) (see, e.g., [16, 24, 34]), where the
processor speed can be scaled up or down. The scheduler may speed up the processor to shorten
the busy time, resulting in shorter time of processing but higher power usage per time unit. It
is interesting to derive algorithms that can make a wise tradeoff.

– We assume that we can use as many machines as we like without any overhead. In reality,
switching on a machine from a sleep state requires some energy and it may save energy to leave
a machine to idle if jobs will be scheduled on it again soon [1,7]. To take this advantage, different
optimization criteria have to be considered.

Cloud computing: The following extensions can be interpreted clearly within the context of problems
in cloud computing (see, e.g., [11, 27,31]) as presented in Section 1.

– We assume that each job requires the same amount of capacity (1/g) of a machine. An extension
is to allow a job requiring different amount of capacity and a machine can process jobs as long
as the sum of capacity requirements of its jobs is at most g [17].

– We assume that the machines have identical computing power. An extension is to have different
machines types and to allow a job to require a specified list of machines type.

– Another extension is to consider machines that can have different capacities, e.g., there are
several types of machines with capacity gk for machine type k.

Optical network design: The busy time scheduling problems have a direct application in placement
of regenerators in optical network design: In MinBusy we are given a set of paths and a grooming
factor g and the objective is to find a valid coloring for all paths with minimum number of regen-
erators. In MaxThroughput we are also given a budget T and the objective is to find a valid
coloring with at most T regenerators maximizing the number of satisfied paths. Some of our results
for MinBusy can be extended to other topologies: the result for one-sided clique instances can be
extended to tree topologies while the result for clique instances can be extended to ring topologies.

The first extension in the context of cloud computing applies also in this context: each lightpath
has a capacity (say, a multiple of 1/g), so that at most g such capacity units can be groomed together
on any particular communication line.
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Appendices

A Figures

λ3

λ2

λ1

Fig. 1. Lower bound for MinBusy: example for g = 3. Jobs with different arrow heads and thicknesses
belong to different values of d. Dashed lines show jobs for which the online algorithm uses a new machine
and the jobs that are just released before each one of them. Note: Within each such pair the shorter is of
length 1/k times the longer.
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Fig. 2. Lower bound for MinBusy on one-sided clique instances. The line x and the curve (x + 1)/(x − 1)
intersect at x = 1+

√
2 and for this value 1+1/x =

√
2. Note that xg and (x+1)/(x− 1) intersect at x ≥ 1,

implying 1 + 1/x ≤ 2.

B Omitted Proofs

B.1 Relationship of MinBusy and MaxThroughput

We observe that MaxThroughput is NP-Hard whenever MinBusy is NP-Hard.

Proposition 2. There is a polynomial time reduction from the MinBusy problem to the
MaxThroughput problem.
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Proof. Given an instance (M,J , g) of MinBusy we can perform binary search between len(J )/g
and len(J ) for the value of T by solving each time the instance (M,J , g, T ) of MaxThroughput

to find the smallest value T such that tput∗(M,J , g, T ) ≥ tput(J ), i.e. to find the value cost∗.

We note that the hardness of MaxThroughput stems from the fact that one has to decide
which subset of the jobs to schedule.

Proposition 6. If there is a polynomial-time computable set X ⊆ 2J 4 containing at least one set
J s for some optimal schedule s, and also MinBusy can be solved optimally, then MaxThroughput

can be solved optimally.

Proof. Given an instance (M,J , g, T ) of MaxThroughput, for each set J ′ ∈ X solve the instance
(J ′, g) of MinBusy. Among all sets J ′ with cost∗(J ′) ≤ T choose one with maximum throughput
and return the schedule s returned for this instance. Leave the jobs J \ J ′ unscheduled.

B.2 Proof of Theorem 2

Theorem 2. No deterministic online algorithm for MinBusy has an absolute competitive ratio
better than g.

Proof. We extend the simple adversary described in Section 3.1 and start with the same parameters
k, r, t while ℓ is now defined as t/kdg−1 where d is a new parameter initially set to 1. When Alg

assigns a new machine to a job of length ℓkj , for some j, we recursively treat ℓkj as t and ℓkj/k2g−1

as new ℓ. The exponent is 2g − 1 since at most 2g paths would force Alg to use another machine.
The adversary is described by three parameters (r, t, d), where 1 ≤ d < g is the number of machines
used by Alg. Initially, the parameters are (0, T, 1).

The adversary is described in the recursion below. See Figure 1 for an example of the input
generated by Adversary.

Algorithm 5 Adversary(r, t, d)

1: if d < g then
2: while t > 0 do
3: ℓ = t/kdg−1

4: repeat
5: Release jobs with release time r and length ℓ, ℓk, ℓk2, · · ·
6: until a new machine is used by the algorithm for a job of length ℓkj

7: Adversary(r, ℓkj , d+ 1)
8: t = t− ℓkj , r = r + ℓkj

9: end while
10: end if

With the above adversary, we have costs ≥ gT , with T for each machine the algorithm uses.
One can assign a machine to all the longest jobs in their release sequence for a busy time of T . The
total length of the remaining jobs is at most g

∑∞
i=1 T/k

i = g · T/(k − 1). Therefore, cost∗/costs ≥
g

1+g/(k−1) . Picking a large k implies the theorem. ⊓⊔

4 Also of polynomial size. This assumption holds whenever the set is represented by an explicit list of its
elements.



Online Optimization of Busy Time 15

B.3 Proof of Proposition 3

Proposition 3.

cost∗ ≥
m∑

i=ℓ+1

qiα
i−1 + L+ qℓα

ℓ−1 +

ℓ−1∑

i=1

qiα
i−1 =

m∑

i=1

qiα
i−1 + L.

Proof. Observe that s∗ can be obtained by sorting the jobs in decreasing order of lengths, and
assigning the same machine to every g consecutive jobs in this order. This can be seen as if s∗

considers the jobs in decreasing bucket index and within each bucket in decreasing length. Consider
the buckets in decreasing order. The number of jobs in bucket i for i > ℓ is a multiple of g, thus in
s∗ no machine in bucket i is available for bucket i− 1. The number of machines used is therefore qi,
and the busy time is at least αi−1 in each machine. In bucket ℓ, s∗ spends a busy time of L on the
first machine, and at least αℓ−1 for each of the subsequent qℓ machines. Note that the last machine
is available for bucket ℓ− 1. In bucket i with i < ℓ, s∗ may use the last machine of bucket i+ 1 and
needs at least qi more machines each with a busy time of at least αi−1. Note that the last machine
is possibly available for bucket i− 1. We have:

cost∗ ≥
m∑

i=ℓ+1

qiα
i−1 + L+ qℓα

ℓ−1 +

ℓ−1∑

i=1

qiα
i−1 =

m∑

i=1

qiα
i−1 + L.

⊓⊔

B.4 Proof of Lemma 2

Lemma 2. For MinBusy, no on-line algorithm has an absolute competitive ratio better than (1 +
1/x) for one-sided clique instances, where x is the root of the equation xg−1 = (x+ 1)/(x− 1).

Proof. The adversary starts by releasing jobs one by one, of lengths 1, x, x2, · · · , xg−1, with the same
release time. If and when the on-line algorithm Alg uses a second machine for a job of length xi+1 for
some 0 ≤ i < g−1, the adversary stops releasing the remaining jobs. Then cost

s

cost∗
= (xi+1+xi)/xi+1 =

(x+ 1)/x.
If Alg assigns the same machine for all these g jobs, the adversary releases one more job of length

xg−1 at the same arrival time, forcing Alg to use a different machine. In this case, costs = 2xg−1

while s∗ assigns one machine to the job of length 1 and another machine for the rest, resulting in
cost∗ = xg−1 + 1. Then, cost

s

cost∗
= 2xg−1/(xg−1 + 1).

If we set x to be the root of the equation xg−1 = (x+1)/(x−1), then 2xg−1/(xg−1+1) = 1+1/x,
implying that Alg is at least (1 + 1/x)-competitive. ⊓⊔

B.5 Proof of Lemma 3

Lemma 3. If the competitive ratio of A for one-sided clique instances is c, then the competitive
ratio of LeftOrRight(A) for clique instances is at most 2 · c.

Proof. Consider a given set J of jobs. For each job J ∈ J with interval [rJ , cJ ], let Jl be the job with
interval [rJ , t] and Jr be the job with interval [t, cJ ]. Let Jl = {Jl | J ∈ J } and Jr = {Jr | J ∈ J }.
Let J ′

l ⊆ Jl be the set of jobs that are fed to Al, and J1 be the corresponding subset of J . Similarly,
we define J ′

r and J2 for Ar.
As J ′

l ⊆ Jl, any schedule for Jl defines a schedule for J ′
l of same or smaller busy time, implying

that cost∗(J ′
l ) ≤ cost∗(Jl). Similarly, cost∗(J ′

r) ≤ cost∗(Jr). Furthermore, cost∗(J ) ≥ cost∗(Jl) +
cost∗(Jr) because these two instances have no time in common (besides t). Let sl and sr be the
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schedules returned by Al and Ar on J ′
l and J ′

r , respectively. Since A is c-competitive, costsl(J ′
l ) ≤

c · cost∗(J ′
l ) and costsr (J ′

r) ≤ c · cost∗(J ′
r), implying

costsl(J ′
l ) + costsr (J ′

r) ≤ c · (cost∗(Jl) + cost∗(Jr)) ≤ c · cost∗(J ).

For every job J , LeftOrRight(A) selects Jl or Jr (whichever longer) to feed to one of the two
copies of algorithm A. Hence, costsl(J1) ≤ 2 · costsl(J ′

l ) and costsr (J2) ≤ 2 · costsr (J ′
r). Then,

costs(J ) = costsl(J1) + costsr (J2) ≤ 2(costsl(J ′
l ) + costr (J ′

r)) ≤ 2c · cost∗(J ) .
⊓⊔

B.6 Proof of Proposition 4

Proposition 4. No online algorithm for MaxThroughput is better than gT -competitive even with
an additive term g − 1, while there exists a strictly gT -competitive online algorithm.

Proof. To simplify the discussion, we assume that time is divided into integral interval. A simple
algorithm that schedules every possible job using any machine is strictly gT -competitive because it
schedules at least one job and at most gT jobs can be scheduled.

We then show a matching lower bound. Consider any online algorithm Alg. The adversary
releases (at most) g jobs with interval [0, T ] until Alg schedules one job. Alg has to schedule at
least one of these g jobs and spends a busy time of T , otherwise, its competitive ratio is unbounded.
We then issue gT paths all with length 1, g of which with intervals [T, T + 1], g with [T + 1, T + 2],
until g with [2T − 1, 2T ]. Alg cannot schedule any of these jobs while an optimal solution would
only schedule these jobs, and the competitive ratio is gT . ⊓⊔

B.7 Proof of Proposition 5

Proposition 5. For MaxThroughput and feasible one sided clique instances, (i) the simple greedy
algorithm is Ω(T )-competitive and (ii) GreedyBucket is Ω( T

log T )-competitive when g = 2.

Proof. (i) The simple greedy algorithm simply assigns the first machine that the new job can be
assigned, i.e., the resulting schedule is still valid. The following adversary shows that the algorithm
is Ω(T )-competitive. Let g = T/2. The adversary releases g groups of jobs each with g jobs and all
with the same arrival time (one-sided clique instance). For each group, the first job has length T − g
and the next g−1 jobs has length 1. Note that this instance is feasible since one can schedule all the
long jobs in one machine with busy time T − g and the other g(g − 1) jobs in g − 1 machines with
total busy time g − 1. So the total busy time of all machines is T − 1. The simple greedy algorithm
schedules jobs in the order of groups and would schedule the same group in the same machine, Then
only two groups would be scheduled since T−g = T/2, resulting in a total busy time of T . Therefore,
the competitive ratio is at least g2/2g = T/4.

(ii) The following adversary shows that GreedyBucket is Ω( T
log T )-competitive when g = 2.

Release (log T − 1) jobs of length 2, 22, · · · , T/2 followed by 2T/3 jobs with length 1. This is a
feasible instance since one can schedule the first (log T −1) jobs in (log T −1)/2 machines with total
busy time 2T/3 and the remaining 2T/3 short jobs on T/3 machines with total busy time T/3. On
the other hand, GreedyBucket only schedules the first (log T −1) jobs each on a different machine
and two short jobs on one machine, with a total busy time of T . The competitive ratio is therefore
Ω( T

log T ). ⊓⊔
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B.8 Proof of Lemma 4

Lemma 4. For feasible one-sided clique instances, let Alg be a c-competitive online algorithm with
an additive constant b. If c(b+ 1) < g then

c ≥ 2− 4b+ 2

g + 2b+ 1
.

Proof. For any prefix of the input Alg returns a schedule s such that tputs ≥ tput∗/c − b. We
describe an adaptive adversary for Alg. Let T be a large even integer. Release c(b+1) jobs each of
length T/2 + 1, followed by g − c(b + 1) jobs each of length T/2 − 1. Alg has to schedule at least
one of the first c(b + 1) jobs, otherwise after the first c(b + 1) jobs, tputs = 0 < 1 = c(b + 1)/c − b.
We consider two cases.

Case 1. Alg uses two machines, one with busy time T/2+1 and the other T/2−1 and costs = T .
Then Alg cannot use a third machine, i.e. tputs ≤ 2g regardless of the rest of the input. The
adversary further releases g(T/2− 1) jobs with length 1. One can schedule all the jobs by assigning
the first g jobs to one machine with busy time T/2 + 1 and the rest on T/2 − 1 machines with a
total busy time of T/2 − 1. Therefore tput∗ = g + g(T/2 − 1) = gT/2, and the competitive ratio is
tput∗/(tputs + b) ≥ T

4+2b/g . For any g and b by choosing an arbitrarily large even T , c is unbounded.

Case 2. Alg uses only one machine. The adversary then releases g − c(b + 1) more jobs each
of length T/2 + 1. Alg cannot use a second machine for these jobs. Therefore tputs ≤ g. One can
schedule all jobs by assigning the same machine to the first c(b + 1) and the last g − c(b + 1) jobs
using a busy time of T/2 + 1 and leaving a busy time of T/2− 1 for the rest. The competitive ratio
is c ≥ tput∗/(tputs + b) ≥ (2g − c(b + 1))/(g + b). Then we have c(g + 2b + 1) ≥ 2g and the result
follows. ⊓⊔

B.9 Proofs of Claims in Section 4.3

We give the proofs for the two claims in Section 4.3.

Claim. The function

T ∗
i

def
=

⌈
max(|Ji| − (g − 1), 0)

g

⌉
T

2i+1
(3)

satisfies all the requirements stated for T ∗
i and is polynomial time computable.

Proof. T ∗
i is clearly polynomial time computable, non-negative, and also non-decreasing because |Ji|

is increasing. It remains to show that
∑

i T
∗
i ≤ cost∗.

An optimal solution can be obtained by sorting the jobs of J in decreasing order of length,
dividing into consecutive sets of size g with the last set possibly containing less than g jobs and
then scheduling each set using a different machine. Note that in this ordering the jobs appear in
non-decreasing order of their buckets. The jobs assigned to the same machine may span multiple
consecutive buckets. We charge the busy time cost∗ of an optimal solution to every bucket, so that
the busy time of every machine is charged to the first bucket containing a job of this machine.
Consider the optimal solution. In each bucket, at most g − 1 jobs can share a machine with jobs
of previous buckets, therefore at least max(|Ji| − (g − 1), 0) jobs are assigned machines not used in

previous buckets. This corresponds to
⌈
max(|Ji|−(g−1),0)

g

⌉
machines, and each machine has a busy

time of at least T
2i+1 . Therefore, cost

∗
i ≥ ∑

i

⌈
max(|Ji|−(g−1),0)

g

⌉
T

2i+1 =
∑

i T
∗
i . ⊓⊔

Claim. For every fixed g, there exists a constant 2/9 < c(g) < 1 such that ∀i ≥ 3, tputi ≥ c(g) · |Ji|.
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Proof. Let c < 1 a constant to be fixed later. Note that for i ≥ 3 the first g jobs are always
scheduled by BalanceBudget. If |Ji| ≤ g then tputi = |Ji| ≥ c · |Ji|, otherwise if g < |Ji| ≤ g/c
then tputi ≥ g ≥ c · |Ji|. In both cases the claim is correct.

Otherwise |Ji| > g/c and we assume, by way of contradiction, that the claim does not hold.
Consider the first step during the algorithm that the claim does not hold, i.e. tputi < c · |Ji|. Suppose
that the decision of the algorithm at this step is accept. Then the number of jobs scheduled by the
algorithm up to (but not including) this step is tputi− 1 < c · |Ji|− 1 < c(|Ji|− 1), i.e. the claim did
not hold one step before, a contradiction. Therefore the decision of the algorithm has to be reject.
In this case the value of tputi does not change from the last step. We denote by T̃i the value that Ti

would take if the decision would be accept. We have:

T̃i >
3

4
T ∗
i

T̃i ≤
(⌈

tputi + 1

g

⌉
− 1

)
T

2i

The first inequality is due to the fact that this step was reject. The second inequality is because
the number of scheduled jobs would be tputi + 1, the first g jobs do not affect Ti, and the length of
each job is at most T/2i By combining the last two inequalities with Equation (2) we conclude

tputi + 1

g
≥

⌈
tputi + 1

g

⌉
− 1 ≥ 3

8

(⌈ |Ji|+ 1

g

⌉
− 1

)
≥ 3

8

Ji − g + 1

g

tputi ≥
3

8

(
|Ji| − g − 5

3

)

On the other hand as |Ji| > g/c we have |Ji| − g − 5/3 > |Ji| (1− (1 + 5/3g)c), thus

tputi >
3

8
|Ji|

(
1−

(
1 +

5

3g

)
c

)

If c is chosen such that 3
8 (1− (1 + 5

3g )c) ≥ c then tputi > c · |Ji|, a contradiction. It is easy to verify

that this holds for any c ≤ 3g
11g+5 . The expression on the right hand side is monotonically increasing

and attains the minimum of 2/9 for g = 2. ⊓⊔

B.10 Proof of Lemma 5

Lemma 5. BalanceBudget returns a valid schedule with total busy time at most T provided that
there is a polynomial-time computable function T ∗

i satisfying the above mentioned conditions.

Proof. Clearly accept guarantees that the schedule is valid, because an existing machine is used
only if it can accommodate the new job. It remains to show that the total busy time is at most T .

Initially Ti = 0 ≤ 3
4T

∗
i . Observe that Ti increases only after an accept(J) marked with a (*)

in Algorithm 4. However in this case the algorithm ensures that Ti ≤ 3
4T

∗
i holds, thus we conclude

that for all i, Ti ≤ 3
4T

∗
i at all times during the execution of BalanceBudget.

For the first g jobs in Ji BalanceBudget uses one machine with busy time at most T/2i except
for i < 3 where none of the first g jobs are accepted and thus the busy time incurred for these jobs
is zero. For the other jobs in Ji BalanceBudget incurs a busy time of Ti ≤ 3

4T
∗
i . Therefore the

total busy time of BalanceBudget is at most costs ≤ ∑
i≥3

T
2i +

3
4

∑
T ∗
i < T

4 + 3
4T = T . The last

inequality is due to
∑

T ∗
i ≤ cost∗ ≤ T . ⊓⊔
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B.11 Proof of Theorem 6

Theorem 6. Consider MaxThroughput and feasible one-sided clique instances. For every fixed g,
BalanceBudget is a constant-competitive online algorithm where the constant depends on g and
is at most 9/2.

Proof. Assume that BalanceBudget is given an extra budget of busy time to schedule the first
g jobs of the first 3 buckets. This modification clearly does not change the value of Ti, therefore it
does not affect the execution of the algorithm besides the fact that now it schedules the first g jobs
in every bucket. Let tput′i be the throughput of the modified algorithm for bucket i. For every i ≥ 3
we have tput′i = tputi and for i < 3 we have tput′i ≤ tputi + g. For the modified algorithm the claim
in Appendix B.9 implies that ∀i ≥ 0, tput′i ≥ c(g) · |Ji|. Summing over all buckets we get

∑

i≥0

tput′i ≥ c(g)
∑

i≥0

|Ji| = c(g) · |J | = c(g) · tput∗.

On the other hand
∑

i≥0 tput
′
i ≤

∑
i≥0 tputi+3g, therefore tputs =

∑
i≥0 tputi ≥ c(g) · tput∗−3g. ⊓⊔


