
Multiprocessor Speed Scaling for Jobs
with Arbitrary Sizes and Deadlines!

Paul C. Bell1 and Prudence W.H. Wong2

1 Department of Computer Science, Loughborough University.
P.Bell@lboro.ac.uk

2 Department of Computer Science, University of Liverpool.
pwong@liverpool.ac.uk

Abstract. In this paper we study energy efficient deadline scheduling on
multiprocessors in which the processors consumes power at a rate of sα

when running at speed s, where α ≥ 2. The problem is to dispatch jobs
to processors and determine the speed and jobs to run for each processor
so as to complete all jobs by their deadlines using the minimum energy.
The problem has been well studied for the single processor case. For the
multiprocessor setting, constant competitive online algorithms for special
cases of unit size jobs or arbitrary size jobs with agreeable deadlines have
been proposed [4]. A randomized algorithm has been proposed for jobs of
arbitrary sizes and arbitrary deadlines [13]. We propose a deterministic
online algorithm for the general setting and show that it is O(logα P)-
competitive, where P is the ratio of the maximum and minimum job
size.

1 Introduction

Energy efficient deadline scheduling. Energy consumption has become an im-
portant concern in the design of modern processors, not only for battery-operated
mobile devices with single processors but also for server farms or laptops with
multi-core processors. A popular technology to reduce energy usage is dynamic
speed scaling (see e.g., [4, 7, 8, 21]) where the processor can vary its speed dy-
namically. The power consumption is modelled by sα when the processor runs at
speed s, where α is typically 2 or 3 [11, 20]. Running a job slower saves energy,
yet it takes longer to finish the job. The challenge arises from the conflicting
objectives of providing good “quality of service” (QoS) and conserving energy.
Deadline feasibility is a common QoS measure for job scheduling. Jobs with ar-
bitrary sizes and deadlines arrive at unpredictable times and they are to be run
on some processor. Preemption is allowed with no penalty.

The study of speed scaling was initiated by Yao et al. [21]. They studied
deadline scheduling on a single processor in which jobs with arbitrary sizes and
deadlines arrive online and the aim is to finish all jobs by their deadlines using the
minimum amount of energy. The decision at any time is to determine which job

" This work is partially supported by EPSRC Grant EP/E028276/1.

2 P. Bell and P. Wong

to run and at what speed. They gave an optimal offline algorithm and a simple
online algorithm AVR which is 2α−1αα-competitive and they also proposed an
online algorithm OA. Bansal, Kimbrel and Pruhs [8] later showed that OA is
αα-competitive. They also gave a 2(α/(α−1))αeα-competitive algorithm, which
is called the BKP algorithm and is better than OA when α > 5. The result is
further improved to 4α/(2

√
eα)-competitive by the qOA algorithm [7].

The problem of energy efficient scheduling has also been studied for other
QoS measures. The problem of minimizing flow time and energy has attracted
a lot of attention [3, 5, 6, 9, 13, 18, 19]. Energy efficient scheduling has also been
extended to the setting with sleep states [14,16,17]. The literature also contains
results on other aspects of energy efficient scheduling, see [1, 2, 15].

Energy efficient multiprocessor scheduling. The problem of energy efficient
deadline scheduling becomes NP-hard in the multiprocessor setting, even when
all the jobs have the same arrival times and deadlines. In the multiprocessor set-
ting, in addition to determining processor speeds, a job dispatching algorithm is
required to assign jobs to processors. Albers et al. [4] have extended the study
to the multiprocessor setting and they study the special cases of unit-size jobs
or jobs with agreeable deadlines (jobs arriving earlier have earlier deadlines).
If jobs have unit-size and agreeable deadlines, Round Robin (RR) is optimal.
For the case of unit-sized jobs with arbitrary deadlines or arbitrary-sized jobs
with agreeable deadlines, they gave an αα24α-competitive algorithm. Their algo-
rithm, called Classified Round Robin (CRR) first classifies jobs according to the
density of the job (the ratio of the job size to the duration between arrival and
deadline), and then schedules jobs in each class independently using RR. All jobs
(of different classes) dispatched on a processor are run at a speed determined by
AVR. The case for jobs of arbitrary sizes and arbitrary deadlines is left as an
open question.

Recently, Greiner, Nonner and Souza [13] have shown that any β-competitive
algorithm for a single processor yields a randomized βBα-competitive algorithm,
where Bα is the αth Bell number [10] and this result holds for jobs of arbitrary
size and arbitrary deadlines. This means that the existing algorithms [7, 8, 21]
for single processors lead to randomized online algorithms in the multiprocessor
setting. Yet it is still an open question to have a competitive deterministic algo-
rithm for the general case of jobs with arbitrary sizes and arbitrary deadlines.

Our contribution. In this paper we study the generalized problems in the
multiprocessor setting where jobs have arbitrary sizes and arbitrary deadlines
and give a deterministic online algorithm. We first show that the Classified
Round Robin algorithm (CRR) [4] does not scale well when jobs have arbitrary
sizes and deadlines. The competitive ratio is at least mα−1, where m is the
number of processors. We then consider a natural extension of CRR and propose
a non-migratory deterministic job dispatching algorithm, called Dual-Classified
Round Robin (DCRR), which classifies jobs in terms of both density and sizes.
We show that DCRR coupled with AVR is 24α(logα P + αα2α−1)-competitive
where P is the ratio between the maximum and minimum job size. Note that

Multiprocessor Speed Scaling 3

the competitive ratio is independent of m and holds even against an optimal
migratory offline algorithm.

Roughly speaking, to analyze the performance of DCRR, we round the den-
sity and size of a job to the boundaries that define the classes, and show that
the performance on the general set is no more than a constant factor of that on
such a “nice” job set. This idea is similar to the proof in [4], which rounds only
the density of the jobs. We further show that for a nice job set, the classification
of DCRR means that the jobs in the same class satisfy the property of agree-
able deadlines, making the analysis easier. We are then able to show that the
competitive ratio of DCRR depends on the number of classes, which is related
to logP .

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we define the problem and give some preliminary results. In Section 3,
we review an existing algorithm CRR and show that it does not work well for
jobs of arbitrary sizes and deadlines. In Section 4, we describe and analyze our
algorithm DCRR. Finally, we conclude in Section 5.

2 Preliminaries

We are to schedule a set of jobs onto m processors M0, M1, · · · , Mm−1. Pre-
emption is allowed without penalty. The speed of each processor can be varied.
When running at speed s, a processor processes s units of work and consumes
sα units of energy in each time unit, where α ≥ 2.

We denote the release time, deadline and size of a job j as r(j), d(j), and
w(j), respectively. The span of job j is span(j) = d(j) − r(j) and the density

den(j) = w(j)
d(j)−r(j) . A job j is called active at time t if r(j) ≤ t ≤ d(j).

The problem is to dispatch the jobs to processors, and for each processor, to
determine which job and at what speed to run at any time. The objective is to
complete all jobs by their deadlines using the minimum energy.

Consider any job set J . For any algorithm A, we overload the symbol
A(J) to mean both the schedule of A on J and the energy required by
the schedule. Let OPT1 and OPTm denote the optimal schedule on a sin-
gle processor and m processors, respectively. In [4], it has been shown that
OPT1(J)/mα−1 ≤ OPTm(J). We further lower bound the value OPTm(J).
At any time t, the speed of AVR on a processor is the sum of the densities of
all active jobs at t scheduled on this processor. It has been shown in [21] that
AVR1(J) ≤ αα2α−1OPT1(J), implying AVR1(J) ≤ αα2α−1mα−1OPTm(J).
Let MIN(J) be the minimum energy to run each job of J independently of
other jobs, i.e., MIN(J) =

∑

j∈J (den(j))αspan(j). Then, we have MIN(J) ≤
OPTm(J). We summarize these bounds on OPTm(J) in the following lemma.

Lemma 1 ([4]). Consider any job set J . (a) OPTm(J) ≥ OPT1(J)/mα−1.
(b) (i) MIN(J) ≤ OPTm(J); (ii) AVR1(J) ≤ αα2α−1mα−1OPTm(J).

4 P. Bell and P. Wong

M0
M0

M1

M1

M2

Mm−1

Mm−1

(a) (b)

Fig. 1. In the adversary, all jobs have density 1. The span and size of the m large jobs
is k and the m2 −m small jobs is ε. (a) CRR schedules all the large jobs to processor
M0 and m small jobs to each of M1, · · · ,Mm−1. (b) The optimal schedule dispatches
one large job and m− 1 small jobs to each processor.

3 Classified Round Robin (CRR)

In this section, we review the algorithm CRR which is αα24α-competitive for
the special case in which jobs are of unit size, or jobs are of arbitrary sizes but
agreeable deadlines [4]. We show that CRR is no longer constant competitive
when the jobs have arbitrary sizes and arbitrary deadlines.

Let ∆ be the maximum density of the jobs in J . CRR classifies jobs with
density ∆ into density-class-0, and jobs with density in [∆/2k, ∆/2k−1) into
density-class-k, for some positive integer k. Jobs within each class are dispatched
to processors by round-robin independently. For each processor, the speed is
the sum of the densities of the unfinished jobs dispatched to that processor
(i.e., AVR) and the processor processes these jobs by splitting the speed equally
among them.

The following theorem shows a lower bound for CRR when jobs are of ar-
bitrary sizes and deadlines. Figure 1 shows the CRR schedule and the optimal
schedule for the adversary.

Theorem 1. For arbitrary size jobs with arbitrary deadlines, CRR has a com-
petitive ratio of at least mα−1.

Proof. Let ε > 0 be a small positive value and k > 0 be an arbitrary large value.
Given m processors, define a job set J of m2 jobs such that for any 1 ≤ i ≤ m2,
the release time of job ji is iε. For all jobs ji with i mod m %= 0, we set the span
of the job to be ε. For all jobs ji with i mod m = 0, we set the span of the jobs
to be k. We further set the sizes of all jobs to be the same as their span, in other
words, all jobs have density 1.

Algorithm CRR classifies all m2 jobs into the same class C0 since they have
the same density and dispatches jobs according to round robin by their release
time. Thus the first processor receives the m jobs of large span k and large size

Multiprocessor Speed Scaling 5

k. The energy used by the first processor is therefore kmα as ε → 0 and the
energy of the remaining processors approaches 0.

On the other hand, we can dispatch one large span job and m− 1 small span
jobs to each processor. As ε tends to 0, the energy used by each processor is k
and the total energy of the schedule is km. Therefore, the competitive ratio of
CRR is at least mα−1. '(

We note that even if we classify jobs according to their sizes, such a classifi-
cation plus round robin still does not perform well. We give a similar adversary
with m2 jobs of the same size, m of them having a small span (thus large density)
and the rest with very large span. One job of small span arrives followed by m−1
large span jobs and this repeats for m times. Then CRR assigns all the small
span jobs to the same processor, dominating the energy used by the algorithm.
The optimal offline algorithm can dispatch one small span job to each processor,
distributing the energy used much better and thus the same lower bound can be
obtained.

4 Dual-Classified Round Robin (DCRR)

4.1 The Algorithm

We now describe our algorithm DCRR (Dual-Classified Round Robin). In addi-
tion to classifying jobs into density classes, DCRR also classifies jobs according
to sizes. Let Γ be the maximum job size of a job set J . Jobs with size in
(Γ/2h+1, Γ/2h] are classified into size-class-h, for some integer h ≥ 0 (note the
difference from the definition of density-classes). We then define the set Ck,h to
be the set of jobs in density-class-k and size-class-h. For simplicity, we assume
that ∆ and Γ are known in advance.3 With the definition of Ck,h, DCRR dis-
patches jobs in the same Ck,h in a round robin manner, independent of other
classes. Then all jobs (of different classes) dispatched to the same processor are
run using a speed determined by AVR (see Algorithm 1.1).

4.2 Framework of the Analysis and Nice Job Sets.

To analyze the performance of DCRR, we transform job set J to a nice job
set J ∗ (to be defined) and show that such a transformation only increases the
energy usage modestly. Furthermore, we show that for a nice job set J ∗, we
can bound DCRR(J ∗) by OPTm(J ∗) and in turn by OPTm(J). Then we can
establish the competitive ratio of DCRR.

A job set J ∗ is said to be a nice job set if every job j∗ in J ∗ satisfies the
following properties.

3 If ∆ and Γ are not known in advance, the class definition could be modified slightly.
Specifically, the first job which arrives will define the initial density and size classes
∆′ and Γ ′. New jobs may have larger sizes or density than these ∆′ and Γ ′ and
thus we may have classes with a negative index, but the analysis can be seen to still
hold and increasing the competitive ratio by at most a factor of 2, see [4] for further
details.

6 P. Bell and P. Wong

Algorithm 1.1. Algorithm DCRR
Let ∆ and Γ be (respectively) the maximum density and maximum size of all jobs.

Classification: A job is classified into Ck,h if its density is in [∆/2k,∆/2k−1) and
its size is in (Γ/2h+1, Γ/2h].

Job dispatching: Jobs of the same class Ck,h are dispatched (upon their arrival) to
the m processors using a round-robin strategy, i.e., the i-th job in Ck,h is dispatched
to processor-(i mod m), and different classes are handled independently.

Speed running: The speed of each processor is determined by AVR on the jobs
dispatched to that processor and the speed is split equally among these jobs (note
that this gives a feasible schedule).

– The density den(j∗) = ∆/2k, for some positive integer k.
– The size w(j∗) = Γ/2h, for some positive integer h.

Given a job set J , we transform each job j ∈ J into a job j∗ as follows.
Suppose j is in class Ck,h.

– We set the release time of j∗ to be the same as j, i.e., r(j∗) = r(j).
– We round up the size of j to the maximum in the class Ck,h, i.e., w(j∗) =

Γ/2h. Then, we have w(j) ≤ w(j∗) ≤ 2w(j).
– We round down the density of j to the minimum in the class Ck,h, i.e.,

den(j∗) = ∆/2k. Then, we have den(j)/2 ≤ den(j∗) ≤ den(j).

– Effectively, we set the deadline d(j∗) = r(j∗) + (Γ
2h · 2k

∆).

In other words, job densities only decrease and sizes only increase. The following
lemma relates the optimal schedule for J and J ∗, as well as the DCRR schedule
for J and J ∗. The implication of the lemma is that we can focus on analyzing
the performance of DCRR on nice job set J ∗.

Lemma 2. For any job set J and its corresponding nice job set J ∗, we have
(a) 2αOPTm(J) ≥ OPTm(J ∗); (b) DCRR(J) ≤ 2αDCRR(J ∗).

Proof. (a) We construct from OPTm(J) a feasible schedule S for J ∗, and show
that this increases the energy slightly. The dispatching of S follows the dis-
patching of OPTm(J). For any processor, at any time t, S runs at double the
speed that OPTm(J) does. S is feasible for J ∗ because w(j∗) ≤ 2w(j) and
span(j) ≤ span(j∗), the latter implies that whenever j is run, it is within the
span of j∗. Because of the double speed, S = 2αOPTm(J). As S is a feasible
schedule for J ∗, we have S ≥ OPTm(J ∗). Then the statement follows.

(b) First we notice that a job j and its corresponding j∗ belong to the same
class. The release time of j∗ is also kept the same as j. Therefore, j∗ will be
dispatched to the same processor as j. In the schedule of DCRR(J ∗), at any time
when the job j∗ is active, it contributes den(j∗) to the speed of that processor.
If we consider a schedule S′ that runs double the speed at any time and on any
processor as AVR(J ∗) does, the job j∗ contributes 2 × den(j∗) to the speed.
As for energy usage, S′ = 2αDCRR(J ∗). On the other hand, in DCRR(J), at

Multiprocessor Speed Scaling 7

any time that j is active, it contributes den(j) to the speed of that processor.
Since 2 den(j∗) ≥ den(j) and span(j∗) > span(j), for any processor, the schedule
S′ runs at least the same speed as DCRR(J), and probably higher. Therefore,
S′ ≥ DCRR(J), and the statement follows. '(

4.3 Analysis of DCRR

With Lemma 2, the analysis of DCRR on a general job set J can be done via the
analysis of DCRR on J ∗. Recall that MIN(J) is the minimum energy to run each
job of J independently of other jobs, i.e., MIN(J) =

∑

j∈J (den(j))αspan(j).
First, we show in Lemma 3 a property about how DCRR dispatches jobs in
a class to the m processors. Then, in Lemma 4, we relate the sum of energy
usage of AVR on jobs DCRR dispatched to each machine with MIN(J) and
AVR1(J). Finally, together with Lemma 2, we can then conclude in Theorem 2
the competitive ratio of DCRR.

The following is a modification to a lemma from [4]. Since all spans within a
class are identical, they have agreeable deadlines and the same proof follows as
is shown in [4].

Lemma 3. For any time t, DCRR assigns to each processor at most
+Ck,h(t)/m, jobs from J ∗, where Ck,h(t) is the set of jobs from Ck,h active
at time t.

Let J ∗
i be the subset of J ∗ that is dispatched to processor i by DCRR.

Then DCRR(J ∗) =
∑

1≤i≤m AVR1(J ∗
i). We now relate

∑

1≤i≤m AVR1(J ∗
i)

with MIN(J ∗) and AVR1(J ∗).

Lemma 4. For any nice job set J ∗, the following inequality holds

∑

1≤i≤m

AVR1(J ∗
i) ≤ 22α((logα P ∗)MIN(J ∗) + AVR1(J ∗)/mα−1)

where P ∗ = max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} .

Proof. We adapt the proof of CRR in [4]. Let Ck,h,i(t) for 1 ≤ i ≤ m be the
set of jobs from class Ck,h assigned to processor i active at time t dispatched
by DCRR. Let si(t) denote the speed of the average rate AVR algorithm on
processor i at time t. Since the speed of AVR is the sum of densities of all active
jobs at each time point, we see that:

si(t) =
∑

k≥0

∑

h≥0

|Ck,h,i(t)|
∆

2k
. (1)

Running jobs according to the Earliest Deadline First policy yields a feasible
schedule. Let s(t) denote the speed of AVR for the whole job set J ∗. Then
s(t) =

∑

k≥0

∑

h≥0 |Ck,h(t)|∆/2k.
Fix a time t ≥ 0 and a processor 1 ≤ i ≤ m. Let K1 be the set of job

class indices (k, h) such that |Ck,h,i(t)| = 1 and K2 be the indices (k, h) such

8 P. Bell and P. Wong

that |Ck,h,i(t)| ≥ 2. Define k1 = min{k|(k, h) ∈ K1} for some h ≥ 0 and P ∗ =
max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} . Using Equation (1) and Lemma 3, we see that

si(t) =
∑

(k,h)∈K1

∆

2k
+

∑

(k,h)∈K2

|Ck,h,i(t)|
∆

2k

≤ (logP ∗)
∆

2k1−1
+

∑

(k,h)∈K2

⌈

|Ck,h(t)|
m

⌉

∆

2k
(by Lemma 3)

≤ (logP ∗)
∆

2k1−1
+

∑

(k,h)∈K2

2|Ck,h(t)|
m

∆

2k

≤ 4 ·max

{

(logP ∗)
∆

2k1

,
s(t)

m

}

(2)

We shall integrate si(t)α first over all t when the first term of Equation (2)
is dominating to give an upper bound on required energy of:

(4 log(P ∗))α
∑

k≥0

∑

h≥0

|Ck,h ∩ J ∗
i |

(

∆

2k

)α (

2k−h Γ

∆

)

Integrating si(t)α when the second term of Equation (2) is dominating gives
(

4
m

)α
AVR1(J ∗). Summing over 1 ≤ i ≤ m shows that

∑m
i=1 AVR1(J ∗

i) ≤
4α((logα P ∗)MIN(J ∗) +m1−αAVR1(J ∗)) as required. '(

Together with Lemma 2, we can conclude the competitive ratio of DCRR in
the following theorem.

Theorem 2. For an arbitrary job set J , the competitive ratio of algorithm
DCRR is at most 24α(logα P + αα2α−1), where P is the ratio between the max-
imum and minimum job size.

Proof. By Lemma 4, we know that:
∑

1≤i≤m

AVR1(J ∗
i) ≤ 22α((logα P ∗)MIN(J ∗) + AVR1(J ∗)/mα−1).

Since MIN(J ∗) ≤ OPTm(J ∗) and AVR1(J ∗) ≤ αα2α−1mα−1OPTm(J ∗) by
Lemma 1 (b) (ii), we therefore conclude that

DCRR(J ∗) ≤
∑

1≤j≤m

AVR1(J ∗
j) ≤ 22αOPTm(J ∗)((logα P ∗) + αα2α−1).

By Lemma 2 (a) and (b) above, DCRR(J) ≤ 2αDCRR(J ∗) and OPTm(J ∗) ≤
2αOPTm(J). Then, we have

DCRR(J) ≤ 24αOPTm(J)((logα P ∗) + αα2α−1).

Note that from the proof of Lemma 4, logP ∗ is essentially the number of size
classes used by DCRR which does not change under J or J ∗, therefore logP
and logP ∗ can be taken to be equal and the theorem holds. '(

Multiprocessor Speed Scaling 9

5 Conclusion

We extend the study of energy efficient deadline scheduling on multiprocessor
to jobs with arbitrary sizes and deadlines. We analyze the performance of the
deterministic algorithm DCRR. In the proof of Theorem 2, the logP factor
comes in the case K1, yet we note that this bound is rather loose and we believe
that this can be improved. On the other hand, one may consider how DCRR
can be coupled with OA instead of AVR to improve the results. Another open
question is to consider speed bounded processors [12], in which case, not all the
jobs can be completed by their deadlines. The concern becomes to maximize the
throughput (number of jobs completed by their deadlines) and to minimize the
energy used to achieve this throughput. The problem has been considered in the
single processor setting [5,12]. It would be interesting to derive algorithms that
are competitive both in throughput and energy in the multiprocessor setting.

References

1. S. Albers. Algorithms for energy saving. In S. Albers, H. Alt, and S. Näher,
editors, Efficient Algorithms, volume 5760 of Lecture Notes in Computer Science,
pages 173–186. Springer, 2009.

2. S. Albers. Energy-efficient algorithms. Communication ACM, 53(5):86–96, 2010.
3. S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization.

ACM Transactions on Algorithms, 3(4):49, 2007.
4. S. Albers, F. Muller, and S. Schmelzer. Speed scaling on parallel processors. In

Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 289–298, 2007.

5. N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded
processors. In Proceedings of International Colloquium on Automata, Languages
and Programming (ICALP), pages 409–420, 2008.

6. N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power func-
tion. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 693–701, 2009.

7. N. Bansal, H. L. Chan, K. Pruhs, and D. Rogozhnikov-Katz. Improved bounds for
speed scaling in devices obeying the cube-root rule. In Proceedings of International
Colloquium on Automata, Languages and Programming (ICALP), to appear, 2009.

8. N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and tem-
perature. Journal of the ACM, 54(1):3, 2007.

9. N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In Proceed-
ings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–813,
2007.

10. H. W. Becker and J. Riordan. The arithmetic of Bell and Stirling numbers. Amer-
ican Journal of Mathematics, 70:385–394, 1948.

11. D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-
sunoglu, J. D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26–44, 2000.

10 P. Bell and P. Wong

12. H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak, and P. W. H. Wong.
Optimizing throughput and energy in online deadline scheduling. ACM Transac-
tions on Algorithms, 6(1):10, 2009. Preliminary version appeared in Proceedings
of Symposium on Discrete Algorithms SODA, pages 795–804, 2007.

13. G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multipro-
cessor scheduling. In Proceedings of ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 11–18, 2009.

14. X. Han, T.-W. Lam, L.-K. Lee, I. K.-K. To, and P. W.-H. Wong. Deadline schedul-
ing and power management for speed bounded processors. Theoretical Computer
Science, 411(40–42):3587–3600, 2010.

15. S. Irani and K. Pruhs. Algorithmic problems in power management. ACM SIGACT
News, 32(2):63–76, 2005.

16. S. Irani, S. Shukla, and R. K. Gupta. Algorithms for power savings. ACM Trans-
actions on Algorithms, 3(4):41, 2007.

17. T. W. Lam, L. K. Lee, H. F. Ting, I. K. K. To, and P. W. H. Wong. Sleep with
guilt and work faster to minimize flow plus energy. In Proceedings of International
Colloquium on Automata, Lanaguages and Programming (ICALP), pages 665–676,
2009.

18. T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Improved multi-
processor scheduling for flow time and energy. Journal of Scheduling. To ap-
pear http://dx.doi.org/10.1016/j.tcs.2010.05.035. Preliminary version appeared in
Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures,
pages 256–264, 2008.

19. T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling functions
for flow time scheduling based on active job count. In Proceedings of European
Symposium on Algorithms (ESA), pages 647–659, 2008.

20. T. Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52–
58, 2001.

21. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
pages 374–382, 1995.

