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Abstract. We study the border minimization problem (BMP), which arises in
microarray synthesis to place and embed probes in the array.The synthesis is
based on a light-directed chemical process in which unintended illumination may
contaminate the quality of the experiments. Border length is a measure of the
amount of unintended illumination and the objective of BMP is to find a place-
ment and embedding of probes such that the border length is minimized. The
problem is believed to be NP-hard. In this paper we show that BMP admits
an O(

√
n log2 n)-approximation, wheren is the number of probes to be syn-

thesized. In the case where the placement is given in advance, we show that
the problem isO(log2 n)-approximable. We also study a related problem called
agreement maximization problem (AMP). In contrast to BMP, we show that AMP
admits a constant approximation even when placement is not given in advance.

1 Introduction

DNA microarrays [9] have become a very important research tool which have proved
to benefit areas including gene discovery, disease diagnosis, and multi-virus discovery.
They are used for performing a large number of hybridizationexperiments simultane-
ously. Besides their prevalent use to measure the amount of gene expression [21] in a
cell, microarray is an efficient tool for making a qualitative statement about the pres-
ence or absence of biological target sequences in a sample. ADNA microarray (“chip”)
is a plastic or glass slide which consists of thousands of (about 60,000) short DNA
sequences known asprobes. DNA microarray design raises a number of challenging
combinatorial problems, such as probe selection [10, 14, 18, 22], deposition sequence
design [17, 19] and probe placement and synthesis [3–5, 12, 15, 16]. In this paper, we
focus on the probe placement and synthesis problem.

Probes are synthesized on the microarray through the process calledvery large-scale
immobilized polymer synthesis(VLSIPS) [8]. In each step, light is selectively allowed
through amaskto exposespotsin the microarray in order to activate the nucleotides in
the spots. The patterns of the masks used and the sequence of the deposition nucleotides
in the illumination define the ultimate sequence of nucleotides of the array spot. A mask
consists of masked (blocking light) and unmasked (allowinglight) regions and induces
deposition of a particular nucleotide (A, C, G or T) at its exposed arrayspots. The
deposition sequenceD corresponding to the sequence of masks is a supersequence of
all probes in the array (see example in Figure 1).
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Fig. 1. Synthesis of a2 × 2 microarray. The deposition sequenceD = CTAC corresponds to
the sequence of four masksM1, M2, M3, andM4. The masked regions are shaded. The borders
between the masked and unmasked regions are represented by bold lines.

DNA microarray synthesis consists of two components, namely probe placement
and probe embedding. Given a set of probes to be synthesized, probe placement is
to place each probe to a unique spot in the microarray and probe embedding is the
sequence of masked and unmasked steps used in the synthesis.For example, in Figure 2,
the deposition sequence is(ACGT)3 and the sequence(a) A(−)4C(−)5T is a possible
embedding of the probe ACT, where“ − ” represents a space.

We distinguish two types of synthesis, namely,synchronousandasynchronoussyn-
thesis. In synchronous synthesis, each deposition nucleotide can only be deposited to
thei-th position of the probes for a particulari. In asynchronous synthesis, there is no
such restriction, allowing arbitrary embeddings. For example, Figure 1 shows an asyn-
chronous synthesis in whichM2 deposits a nucleotide to the second position of the
sequence CT and the first position of TA. Asynchronous synthesis is more flexible, yet
more difficult to optimize. In this paper we focus on asynchronous synthesis.

Due to diffraction, internal reflection and scattering, spots on theborder between
masked and unmasked regions are often subject to unintendedillumination [8]. This
uncertainty produces unpredicted probes that can compromise experimental results. As
microarray chip is expensive to synthesize, it is usual thatas many probes as possible are
placed in a chip (i.e., as many entries are used), while unintended illumination has to be
minimized. The magnitude of unintended illumination can bemeasured by theborder
lengthof the masks used, which is the number of borders shared between masked and
unmasked regions, e.g., in Figure 1, the border length ofM1, M3, M4 is 2 andM2 is 4.

To reduce the amount of unintended illumination, one can exploit freedom in plac-
ing probes in the microarray during probe placement and choosing different probe em-
beddings. TheBorder Minimization Problem (BMP)[12] is to find a placement of the
probes on the microarray together with their embeddings in such a way that the sum of
border lengths over all masks is minimized. It has been stated in [3, 4] that the problem
is believed to be NP-hard because of the exponential number of possible placements
(although we are not aware of an NP-hardness proof). For thisreason, we focus on
approximation algorithms for BMP in this paper.

Previous work. The BMP problem has attracted a lot of attention [3–5, 12, 15,16]
and most work is experimental in nature. As far as we know, no polynomial time ap-
proximation algorithm is known for BMP with non-trivial performance guarantee.
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Fig. 2. Different embeddings of probep = ACT into deposition sequenceD = (ACGT)3.

BMP was first formally defined by Hannenhalli et al. [12]. Theyfocused on syn-
chronous synthesis and the only concern becomes probe placement. Their algorithm
computes an approximated travelling salesman path (TSP) inthe complete graph with
nodes representing probes and edge costs representing the Hamming distance between
the probes. The TSP path is then placed on the microarray in a certain way calledthread-
ing. Experiments shows that threading is effective in reducingborder length. Since then,
other algorithms [4, 15, 16] have been proposed to improve the experimental results.

Asynchronous probe embedding was introduced by Kahng et al.[15]. They studied
a special case that the deposition sequenceD is given and the embeddings of all but one
probes are known. A polynomial time dynamic programming algorithm was proposed
to compute the optimal embedding of this single probe whose neighbors are already
embedded. This algorithm is used as the basis for several heuristics [3–5, 15, 16] that
are shown experimentally to reduce unintended illumination in terms of border length.

On the other hand, there are few theoretical results. In [15], lower bounds on the total
border length for synchronous and asynchronous BMP problemwere given, which are
based on Hamming distance, and Longest Common Subsequence (LCS), respectively.
The asynchronous dynamic programming mentioned above computes the optimal em-
bedding of a single probe in timeO(ℓ|D|), whereℓ is the length of a probe andD is the
deposition sequence. The algorithm can be extended to an exponential time algorithm
to find the optimal embedding of alln probes inO(2nℓn|D|) time.

Our contribution. In this paper, we study approximation of BMP in asynchronous
synthesis. This is the first result with proved performance guarantee. The main result
is anO(

√
n log2 n)-approximation, wheren is the number of probes in the microarray.

This is based on an approximation algorithm for the variant when the placement of
probes is given in advance (called P-BMP problem). We show that P-BMP isO(log2 n)-
approximable. We further show that if the array is one-dimensional, P-BMP can be
solved optimally in polynomial time and there is a constant approximation for BMP. On
the other hand, we show that BMP can be defined as the maximum agreement problem
(AMP) with a different objective called “agreement”. Minimizing the border length is
equivalent to maximizing the agreement. Yet we are able to deviseO(1)-approximation
algorithms for AMP regardless of whether the placement is given in advance or not.

Organization of the paper. In Section 2, we give some definitions and notations.
In Sections 3 and 4, we present and analyze approximation algorithms for BMP and
AMP, respectively. Finally we give a conclusion and discussfuture work in Section 5.



2 Preliminaries

We are given a set ofn length-ℓ probesP = {p1, p2, . . . , pn}, a
√

n × √
n array (for

simplicity, we assume that
√

n is an integer). For any sequencepi, we denote thet-th
character of a sequencepi by pi[t]. The probes inP are to be placed on the

√
n ×√

n
array. We represent this array by a grid graphG = (V, E). Two grid vertices(x1, y1)
and(x2, y2) are said to beneighborif |x1−x2|+ |y1−y2| = 1. For each vertexv ∈ V ,
we denote the set of neighbors ofv byN (v).

Placement and embedding.A placementof the probes is a bijective functionφ :
P → V that maps each probe to a unique vertex in the gridG. An embeddingof a
set of probesP into a deposition sequenceD is denoted byε = {ε1, ε2, . . . , εn}. For
1 ≤ i ≤ n, εi is a length-|D| sequence such that (1)εi[t] is eitherD[t] or a space
“ − ”; and (2) removing all spaces fromεi givespi. The hamming distance betweenεi

andεj measures the border length betweenpi andpj if they are neighbors in a certain
placement. We define this quantity as theconflictbetween the embeddings ofpi andpj ,
denoted by confε(pi, pj). Note that confε(pi, pj) ≤ 2ℓ. We define thesharebetween
the embeddings ofpi andpj as2ℓ − confε(pi, pj), and denote it by shareε(pi, pj).

Border length and agreement.The border lengthof a placementφ and an em-
beddingε is defined as the sum of conflicts between the embeddings of probes that are
neighbors in the placementφ in G:

BL(φ, ε) =
1

2

∑

pi, pj :
φ(pj) ∈ N (φ(pi))

confε(pi, pj) . (1)

The objective of the BMP problem is to find a placementφ and an embeddingε, so
that BL(φ, ε) is minimized. We denote the optimal placement and the corresponding
optimal embedding byφ∗ andε∗, respectively. We further define the counter part of
border length, theagreement, which is the sum of shares between the embeddings of
probes that are neighbors in the placementφ in G:

A(φ, ε) =
1

2

∑

pi, pj :
φ(pj) ∈ N (φ(pi))

shareε(pi, pj) (2)

TheMaximum Agreement Problem(AMP) is to find a placementφ and an embeddingε,
so that A(φ, ε) is maximized. Since A(φ, ε) = 4ℓ(n−√

n)−BL(φ, ε) , minimizing the
border length BL(φ, ε) is equivalent to maximizing the agreement A(φ, ε).

Common subsequence and common supersequence.The border length is closely
related to the common subsequence and common supersequencebetween neighbor-
ing sequences in the placement. Consider any two length-ℓ sequencesp, q. We de-
note the longest common subsequence and shortest common supersequence of two
sequencesp andq by LCS(p, q) andSCS(p, q), respectively, and the corresponding
length as|LCS(p, q)| and |SCS(p, q)|, respectively.SCS(p, q) can be obtained by
finding LCS(p, q) and inserting intop the characters inq that are not inLCS(p, q)
while preserving the order inq. Therefore,|SCS(p, q)| = 2ℓ − |LCS(p, q)|. For any
embeddingε, the maximum number of common deposition nucleotides betweenp and
q is |LCS(p, q)|, in other words, confε(p, q) ≥ 2(ℓ − |LCS(p, q)|) and shareε(p, q) ≤
2|LCS(p, q)|. We define theLCS distanceto be2(ℓ−|LCS(p, q)|), denoted by dist(p, q).
In other words, dist(p, q) is a lower bound of confε(p, q) for any embeddingε.



Multiple sequence alignment (MSA) and Weighted MSA (WMSA).As we will
see in later sections, a variant of BMP problem, named P-BMP (BMP problem in
which the placement is given), can be polynomial time reducible to WMSA. As a
consequence, we can apply the approximation results on WMSAto P-BMP, which
we can further use as a building block for the approximation for BMP. We first re-
view the MSA and WMSA problems. MSA and WMSA have been studiedexten-
sively [2, 7, 11, 20]. LetΣ be the set of characters andS = {S1, S2, . . . , Sk} be a
set ofk sequences, with maximum lengthm, overΣ. An alignment ofS is a matrix
S′ = (S′

1, S
′
2, . . . , S

′
k) such that|S′

i| = m′ and S′
i is formed by inserting spaces

into Si. For a given distance functionδ(a, b) wherea, b ∈ Σ∪{−}, thepair-wise score
of S′

i andS′
j is defined as

∑

1≤y≤m′ δ(S′
i[y], S′

j [y]). Given a weight functionw(i, j)
for the pair of sequencesSi andSj , theweighted sum-of-pair(SP) score SP(S′, w) =
1
2

∑

1≤i,j≤k w(i, j)
∑

1≤y≤m′ δ(S′
i[y], S′

j[y]). The WMSA problem is to find an align-
mentS′ such that SP(S′, w) is minimized. WMSA has been proved to be NP-complete.
An O(log2 n)-approximation algorithm [23] has been given via a reduction to the min-
imum routing cost tree problem (MRCT) [1].

Minimum routing cost tree problem (MRCT). In this problem, a graph with
weighted edges is given. For a spanning tree of the graph, therouting costbetween two
vertices is the sum of weights of the edges on the unique path between the two vertices
in the spanning tree. Therouting costof the spanning tree is defined as the sum of rout-
ing cost between every pair of two vertices. The MRCT problemis to find a spanning
tree whose routing cost is minimum. The results in [1] state that there is a polynomial
time reduction from WMSA to MRCT. Each sequence in the input of WMSA corre-
sponds to a vertex in the input graph of MRCT. The edge weight between two vertices
is set to be the weighted edit distance between the two corresponding sequences. The
reduction result states that (1) there is a routing spanningtreeT whose routing cost is
at mostO(log2 n) times

∑

i,j w(i, j)d(i, j), whered(i, j) is the edit distance between
the two sequencesi andj; and (2) there is an alignmentS′ whose SP(S′, w) is at most
the routing cost ofT . Note that

∑

i,j w(i, j)d(i, j) is a lower bound on the weighted SP
score. Therefore, the following lemma follows.

Lemma 1. [23] There is anO(log2 n)-approximation algorithm for the WMSA prob-
lem, wheren is the number of sequences to be aligned.

3 The BMP problem

In this section, we study the BMP problem. We are to find a placement and an embed-
ding for the given probe set. AnO(

√
n log2 n)-approximation algorithm is given for

BMP (Section 3.2), which is based on an approximability result for a variant of BMP,
named P-BMP (Section 3.1). At the end of this section, we alsodiscuss the case when
the array is one-dimensional and we show that BMP admits better results in this case.

3.1 P-BMP: finding embedding when placement is given

In this section, we study the P-BMP problem, a variant of BMP with a placement
given in advance. The concern becomes to find an embedding. Weshow that P-BMP is



O(log2 n)-approximable by giving a reduction to the weighted multiple sequence align-
ment problem (WMSA), for which there is anO(log2 n)-approximation algorithm [23].

Lemma 2. There is a polynomial time reduction from P-BMP to WMSA.

Proof. Let I be an instance of the P-BMP problem with a given placementφ. We con-
struct an instanceI ′ for WMSA such that there is a solution forI with border lengthX
if and only if there is a solution forI ′ with a weighted SP score ofX .

Construction of I ′. We first show the construction ofI ′. The input sequence for
WMSA is the same as the input probe setP . The weightw(i, j) is defined as follows:

w(i, j) =

{

1 if φ(pj) ∈ N (φ(pi)),

0 otherwise.

The distance functionδ(a, b), for a, b ∈ Σ ∪ {−}, is defined as follows:

δ(a, b) =











0 if a = b,

1 if a 6= b and (a = “ − ” or b = “ − ”),

∞ otherwise.

Note that the edit distance ofpi andpj in WMSA is the same as dist(pi, pj) in BMP.
Solution for I implies solution for I ′. Suppose we have an embeddingε for I.

Note thatε = {ε1 · · · εn} is an alignment forP and the pairwise score ofεi andεj

equals confε(pi, pj). So, SP(P ′, w) = 1
2

∑

1≤i,j≤n w(i, j)
∑

1≤y≤|D| δ(εi[y], εj[y]) =
1
2

∑

1≤i,j≤n w(i, j)confε(pi, pj) = 1
2

∑

pi,pj :φ(pj)∈N (φ(pi))
confε(pi, pj) = BL(φ, ε).

The second last equality is due to the definition ofw(i, j), which is based onφ.
Solution for I ′ implies solution for I. On the other hand, suppose we have a

solution forI ′, i.e., an alignmentP ′ = (p′1 · · · p′n) for P and |p′i| = m′, for some
m′. In the alignmentP ′, each column contains the same character or“ − ” because
of the definition of the distance functionδ(a, b). We denote the resulting matrix as
ε = (ε1 · · · εn). It can be seen thatε is an embedding forP and the hamming dis-
tance betweenεi and εj equals the pair-wise score ofp′i and p′j. Then BL(φ, ε) =
1
2

∑

pi,pj :φ(pj)∈N (φ(pi))
confε(pi, pj) = 1

2

∑

pi,pj :φ(pj)∈N (φ(pi))

∑

1≤y≤|D| δ(p
′
i[y], p′j[y])

= 1
2

∑

1≤i,j≤n w(i, j)
∑

1≤y≤|D| δ(p
′
i[y], p′j [y]) = SP(P ′, w). Note that the second

last equality holds for the same reason as above. Therefore,the lemma follows. ⊓⊔

Corollary 1. The P-BMP problem isO(log2 n)-approximable.

3.2 BMP: finding placement and embedding

In this section, we study the BMP problem in which we are to findboth the placement
as well as the embedding. We give anO(

√
n log2 n)-approximation, which makes use

of the approximability result for P-BMP (Section 3.1). To make use of the result for
P-BMP, we need a certain placement, the choice of which is guided by some travel-
ling salesman path (TSP) on a particular graph (to be defined). Note that finding the
minimum TSP is NP-hard, yet there is a polynomial timeO(1)-approximation [6].

The algorithm PLACE&EMBED. The approximation algorithm PLACE&EMBED

is shown in Algorithm 1. The graphGc constructed in the algorithm is a weighted



Fig. 3. Row-by-row threading of a TSP (solid edges) on a grid. Solid and dotted edges connect
neighbors in the placement that are and are not, respectively, neighbors on the TSP.

complete graph with vertices representingP and edge weight representing dist() be-
tween the two vertices. A travelling salesman path (TSP) is obtained fromGc, which
we “thread” on the gridG in a row-by-row fashion to form a placement [12]: the TSP
is placed from left to right on the first row, right to left on the second, and then alternate
in the same way in the remaining rows (see Figure 3 for an example). We then employ
the approximation algorithm in Section 3.1. We denote the placement and embedding
computed by PLACE&EMBED asφ̃ andε̃, respectively.

Algorithm 1 PLACE&EMBED: Approximation algorithm for BMP.
Input: Probe setP = {p1, p2, . . . , pn} to be placed on a

√
n ×√

n array.
Output: A placement̃φ and an embedding̃ε for P .
1: Construct the weighted complete graphGc.
2: Find an approximate TSP̃Q for Gc using algorithm in [6].
3: ThreadQ̃ in a row-by-row fashion to obtain a placementφ̃.
4: Run the approximation algorithm for P-BMP in Section 3.1 (i.e., by reducing the P-BMP

instance to an WMSA instance) to obtain an embeddingε̃.

Theorem 1. AlgorithmPLACE&EMBED is anO(
√

n log2 n)-approximation for BMP.

To analyze the performance of PLACE&EMBED, we need some notations. Recall
that we define for any sequencesp, q, dist(p, q) = 2(ℓ − |LCS(p, q)|). We overload
the notation dist() for any subgraph ofGc. For any subgraphH of Gc, we define the
LCS distance ofH , denoted by dist(H), to be the sum of LCS distances of neighboring
probes inH , i.e., dist(H) = 1

2

∑

p, q : q ∈ N (p) in H dist(p, q).

As mentioned before in Section 2, dist(p, q) is the minimum conflict between probes
p andq. Yet the embeddings needed to achieve dist(p, q) may not be compatible with
each other in a particular placement. For example, considerthe placementφ in Fig-
ure 1, dist(φ) = 8 since dist(p, q) = 2 for every neighboring pairp, q. Yet the min-
imum border length is10 with CTAC as the deposition sequence, and embeddings
(−− AC,−TA−, CT−−, C− A−). We summarize this as follows.

Observation 1 Given a placementφ, dist(φ) ≤ BL(φ, ε), for any embeddingε.

Observation 1 implies that for the optimal placementφ∗ and embeddingε∗, dist(φ∗) ≤
BL(φ∗, ε∗). To approximate BMP, it suffices to bound the border length bydist(φ∗).
On the other hand, we make an observation about a graphH1 and its subgraphH2. The
observation is true since any neighbors inH2 are also neighbors inH1.

Observation 2 Consider any graphH1 and a subgraphH2 of it. dist(H2) ≤ dist(H1).

Corollary 2. SupposeQ∗ is the optimal TSP forGc. Then, we have dist(Q∗) ≤ dist(φ∗).



Proof. φ∗ can be viewed as threading a TSPQ in a row-by-row fashion. By Observa-
tion 2, dist(Q) ≤ dist(φ∗). As Q∗ is the optimal TSP, dist(Q∗) ≤ dist(Q) ≤ dist(φ∗).

⊓⊔

It is known that TSP can be approximated by3/2 (Lemma 3). So, dist(Q̃) ≤
3 dist(Q∗)/2.

Lemma 3. [6] The travelling salesman problem admits a3/2-approximation if the
weight satisfies the triangle inequality.

Lemma 4. (i) dist(φ̃) ≤ 2
√

n dist(Q̃); and (ii) BL(φ̃, ε̃) ≤ O(log2 n) dist(φ̃).

Proof (Sketch). (i) SupposẽQ = {u1, u2, . . . , un}. Note that the LCS distance dist()
satisfies the triangular inequality, i.e., dist(ui, uj) ≤ ∑

i≤k<j dist(uk, uk+1). Neigh-

boring probes oñQ are also neighbors iñφ but not vice versa. For any two probesui

anduj which are neighbors iñφ, we have1 ≤ |j−i| < 2
√

n. When we sum up dist(φ̃),
dist(uk, uk+1), for anyk, may be counted more than once, but no more than2

√
n times.

Therefore, dist(φ̃) ≤ 2
√

n dist(Q̃).
(ii) In Step 4 of PLACE&EMBED, we reduce the P-BMP instance with̃φ as the

placement to an WMSA instance. Lemma 2 asserts that the border length of the embed-
ding obtained is the same as the weighted SP score of the alignment. Furthermore, we
have seen in Section 2 that approximation for WMSA can be found by the approxima-
tion for MRCT and the resulting routing tree has a routing cost, and thus, the weighted
SP score, at mostO(log2 n) times the total weighted edit distance in WMSA. In the
proof of Lemma 2, we note that the weighted edit distance of two sequences is the same
as dist() of the two sequences. So, BL(φ̃, ε̃) ≤ O(log2 n) dist(φ̃). ⊓⊔

Proof (Theorem 1).By Lemmas 4, 3, and Corollary 2, we have BL(φ̃, ε̃) ≤ O(
√

n log2 n)
dist(Q̃) ≤ O(

√
n log2 n) dist(Q∗) ≤ O(

√
n log2 n) dist(φ∗) . Furthermore, Observa-

tion 1 holds for all placements, and hence forφ∗, in other words, dist(φ∗) ≤ BL(φ∗, ε∗).
Therefore, BL(φ̃, ε̃) ≤ O(

√
n log2 n) BL(φ∗, ε∗). ⊓⊔

3.3 One dimensional array

In this section, we study the special case on an 1D array. Intuitively, the problem is
easier than the 2D case. We show that P-BMP on an 1D array can besolved optimally
in polynomial time while BMP on an 1D array admits anO(1)-approximation.

P-BMP on 1D array. The algorithm EMBED1D shown in Algorithm 2 makes use
of a procedure called EXTEND. EXTEND takes two sequencesp andq, and a superse-
quenceS of p as input and returns a supersequence ofS andq. Let c = |LCS(p, q)|,
x1, x2, . . . , xc be the indices ofS corresponding top that belongs toLCS(p, q), and
y1, y2, . . . , yc be the indices ofq that belongs toLCS(p, q). EXTEND then extendsS by
inserting characters inq but not inLCS(p, q): characters betweenq[yk−1] andq[yk] are
inserted right beforeS[xk] and characters beyondq[yc] are appended to the end ofS.
EXTEND keeps track of the indices of the newS that correspond toq (see Figure 4).

Theorem 2. EMBED1D finds an optimal embedding for the P-BMP problem on 1D
array in polynomial time.
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Fig. 4. An illustration of EXTEND. Shaded squares refer to characters inLCS(p, q). Characters
in q but not inLCS(p, q) are inserted intoS so that the order preserves as inq (see the arrows).

Algorithm 2 EMBED1D: Optimal embedding for P-BMP on 1D array.
Input: Probe setP = {p1, p2, . . . , pn}, placed on a 1D array in that order.
Output: An embeddingε with minimum border length.
1: SetD = p1.
2: Fori > 1, call the procedure EXTEND with pi−1, pi andD as the input to obtain a newD.
3: For eachpi, setεi such thatε[y] = D[y] if D[y] corresponds to a character inpi kept track

by EXTEND, andε[y] = “ − ” otherwise.

Proof. We first observe thatD constructed in each iteration by EXTEND is a common
supersequence ofp1, . . . , pi. This is clear from the way EXTEND findsLCS(pi−1, pi)
and inserts characters intoD. It also implies that the number of nucleotides shared by
pi−1 andpi is maintained as|LCS(pi−1, pi)|, which is the maximum possible. Note
that this property does not change by later steps. Hence, theborder length of the final
embedding is the minimum. As for time complexity, the bottleneck is finding the longest
common subsequences of two sequences, which is known to takepolynomial time [13].
This is done forn−1 times only. Therefore, EMBED1D also takes polynomial time.⊓⊔

BMP on 1D array. Similar to the case on 2D array, we find a placement by finding
an approximate TSP on the weighted complete graphGc and then find an embedding
by EMBED1D. This algorithm gives a3/2-approximation for BMP on 1D array.

Theorem 3. There is a polynomial time algorithm for BMP on 1D array with approxi-
mation ratio3/2.

4 The maximum agreement problem (AMP)

In this section, we study the counter part of BMP, which we called maximum agree-
ment problem (AMP) (recall definition in Section 2). In contrast to BMP, AMP admits
constant approximations, whether the placement is given inadvance or not.

4.1 Approximation for P-AMP

We first study the P-AMP problem, a variant of AMP with a placement already given.
Algorithm AEMBED. The algorithm AEMBED (EMBED for Agreement) makes use

of procedure EXTEND in Section 3.3. The order of probes to be considered is deter-
mined by a certain treeT with the bottom rightmost probe inG being the root. To
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Fig. 5. (a) A set of probes placed on a3 × 3 grid G. The values represent the length of LCS
between the two neighboring probes. An arrow fromp to q meansparent(p) = q. (b) The tree
constructed by AEMBED with root CTT. (c) How the deposition sequenceD changes iteratively.
The sequences are drawn in a way the characters align with thefinal D.

constructT , for each probep, we assign a parent to the probe, denoted byparent(p).
We denote byr(p) andb(p) the right and bottom neighbors of probep, respectively.
The probes in the rightmost column and bottommost column hasr(p) = NULL and
b(p) = NULL, respectively. We setparent(p) to r(p) or b(p) depending on whether
|LCS(p, r(p))| or |LCS(p, b(p))| is larger. Details of AEMBED is shown in Algo-
rithm 3. The embedding found is denoted byε̂. Figure 5 shows an example.

Algorithm 3 AEMBED: Approximate algorithm for P-AMP.
Input: Probe setP = {p1, p2, . . . , pn} placed on a

√
n×√

n array according to a placementφ.
Output: An embeddinĝε for P .
1: Construct a treeT by assigning parent to each probep: if |LCS(p, r(p))| ≥ |LCS(p, b(p))|

setparent(p) = r(p) else setparent(p) = b(p).
2: SetD to be the bottom rightmost probe in the gridG.
3: TraverseT in a pre-order fashion: for each probep traversed, call the procedure EXTEND

with parent(p), p andD as input.
4: For eachpi, setε̂i such that̂ε[y] = D[y] if D[y] corresponds to a character inpi kept track

by EXTEND, andε̂[y] = “ − ” otherwise.

Analysis.To analyze the performance of AEMBED, we first observe that in the final
embeddinĝε, the number of nucleotides shared by a probe and its parent equals to the
length of their LCS (by a similar argument as the proof of Theorem 2). We then bound
the performance of AEMBED as follows.

Theorem 4. AEMBED is a polynomial-time2-approximation algorithm for P-AMP.

Proof. For the given placementφ and the optimal embeddingε∗, the optimal agreement
is: A(φ, ε∗) =

∑

p∈P(shareε∗(p, r(p))+shareε∗(p, b(p))). We assume shareε∗(p, q) =
0 if q = NULL. As mentioned in Section 2, for any embedding, the share between the
embeddings of probesp, q is at most2|LCS(p, q)|. Thus,2|LCS(p, r(p))| ≥ shareε∗(p,
r(p)) and2|LCS(p, b(p))| ≥ shareε∗(p, b(p)). Note that sharêε(p, parent(p)) = 2 max{
|LCS(p, r(p))|, |LCS(p, b(p))|} ≥ 1

2 (shareε∗(p, r(p)) + shareε∗(p, b(p))). Therefore,
A(φ, ε̂) =

∑

p∈P sharêε(p, parent(p)) ≥ 1
2A(φ, ε∗). Finally, AEMBED runs in poly-

nomial time as the bottleneck is finding LCS between two sequences. ⊓⊔



4.2 Approximation for AMP

In this section, we study the general AMP problem to find both the placement and the
embedding to maximize the agreement. We prove that the algorithm APLACE&EMBED

as shown in Algorithm 4 has an asymptotic approximation ratio of 4.

Algorithm 4 APLACE&EMBED: Approximation algorithm for AMP.
Input: Probe setP = {p1, p2, . . . , pn} to be placed on a

√
n ×√

n array.
Output: A placemenťφ and an embeddinǧε for P .
1: PartitionP into four disjoint groupsA, C, G andT : a probe belongs toA if the number of A

in the probe is the maximum over the number of other characters (similarly forC, G andT ).
2: Thread the probes in groupA on the array in a row-by-row fashion, followed by threading of

probes inC, G, andT to form the placemenťφ.
3: For probes inA, align them such that the maximum number of A are aligned while different

characters are not aligned. This forms a partial embeddingε̌a with deposition sequenceDa.
Similarly, find ε̌c, ε̌g, ε̌t andDc, Dg , Dt.

4: CombineDa, Dc, Dg, andDt to formD (append one after the other).
5: Extend the embeddingšεa, ε̌c, ε̌g, ε̌t according toD by inserting“ − ” in the columns

corresponding to other groups. The union of the extended embeddings is the resulting em-
beddingε̌.

Theorem 5. The asymptotic approximation ratio ofAPLACE&EMBED is 4.

Proof. Consider the optimal placementφ∗ and embeddingε∗. For every pair of neigh-
boring probesp, q, shareε(p, q) ≤ 2ℓ. There are a total of2(n − √

n) pairs of neigh-
bors on the grid in total. So, the optimal agreement A(φ∗, ε∗) ≤ 4ℓ(n − √

n). On the
other hand, consideřφ andε̌ returned by APLACE&EMBED. According to the way we
partition the probes into group, for any two probesp, q in a group, the number of nu-
cleotides that can be shared is at leastℓ/4. Hence, sharěε(p, q) ≥ 2(ℓ/4) = ℓ/2. As
we seen above, there are altogether2(n −√

n) pairs of neighbors in the grid. We may
not share any nucleotide when the pair belongs to different groups. According to the
way we thread the groups, there are at most3

√
n + 3 such pairs (

√
n pairs of vertical

neighbors between consecutive groups and3 pairs of neighbors that are the last one in
a group and the first one in the next group). As a result, we haveat least2n− 5

√
n− 3

pairs each with shareε̌() at leastℓ/2. Therefore, A(φ̌, ε̌) ≥ ℓ(n − 2.5
√

n − 1.5). Then
A(φ̌, ε̌)/A(φ∗, ε∗) tends to4 as A(φ∗, ε∗) tends to infinity. So, the asymptotic approx-
imation ratio of APLACE&EMBED is 4. ⊓⊔

5 Concluding remarks

To summarize, we study the border minimization problem which is believed to be NP-
hard with no known NP-hardness proof. An open question is to derive an NP-hardness
proof. Another interesting open question is to improve the approximation ratio and/or
derive inapproximability result. As mentioned before, there is an exponential time algo-
rithm to compute the optimal BMP solution. Improving the exponential time algorithm
could be useful in practice and is of theoretical interest.
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10. L. Gąsieniec, C.Y. Li, P. Sant, and P.W.H. Wong. Randomized probe selection algorithm for
microarray design.Journal of Theoretical Biology, 248(3):512–521, 2007.

11. D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds.Bulletin of Mathematical Biology, 55(1):141–154, 1993.

12. S. Hannenhalli, E. Hubell, R. Lipshutz, and P.A. Pevzner. Combinatorial algorithms for
design of DNA arrays.Advances in Biochemical Engineering/Biotechnology, 77:1–19, 2002.

13. D.S. Hirschberg. A linear space algorithm for computingmaximal common subsequences.
Communications of the ACM, 18(6):341–343, 1975.

14. L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify organisms using
DNA arrays.Bioinformatics, 18:1340–1349, 2002.

15. A.B. Kahng, I.I. Mandoiu, P.A. Pevzner, S. Reda, and A. Zelikovsky. Scalable heuristics for
design of DNA probe arrays.Journal of Computational Biology, 11(2/3):429–447, 2004.

16. A.B. Kahng, I.I. Mandoiu, S. Reda, X. Xu, and A. Zelikovsky. Computer-aided optimization
of DNA array design and manufacturing.IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(2):305–320, 2006.

17. S. Kasif, Z. Weng, A. Detri, R. Beigel, and C. DeLisi. A computational framework for
optimal masking in the synthesis of oligonucleotide microarrays.Nuc Acid Res, 30(20):e106,
2002.

18. F. Li and G. Stormo. Selection of optimal DNA oligos for gene expression arrays.Bioinfor-
matics, 17(11):1067–1076, 2001.

19. S. Rahmann. The shortest common supersequence problem in a microarray production set-
ting. Bioinformatics, 19(suppl. 2):156–161, 2003.

20. K. Reinert, H.P. Lenhof, P. Mutzel, K. Mehlhorn, and J.D.Kececioglu. A branch-and-cut
algorithm for multiple sequence alignment. InProc. 1st RECOMB, pages 241–250, 1997.

21. D.K. Slonim, P. Tamayo, J.P. Mesirov, T.R. Golub, and E.S. Lander. Class prediction and
discovery using gene expression data. InProc. 4th RECOMB, pages 263–272, 2000.

22. W.K. Sung and W.H. Lee. Fast and accurate probe selectionalgorithm for large genomes. In
Proc. 2nd CSB, pages 65–74, 2003.

23. B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi, and C.Y. Tang. A polynomial-time
approximation scheme for minimum routing cost spanning trees. SICOMP, 29(3):761–778,
1999.


