
Competitive Non-migratory Scheduling for
Flow Time and Energy

Tak-Wah Lam
Department of Computer Science

University of Hong Kong
twlam@cs.hku.hk

Lap-Kei Lee
Department of Computer Science

University of Hong Kong
lklee@cs.hku.hk

Isaac K. K. To
Department of Computer Science

University of Liverpool, UK
isaacto@liv.ac.uk

Prudence W. H. Wong
∗

Department of Computer Science
University of Liverpool, UK

pwong@liv.ac.uk

ABSTRACT
Energy usage has been an important concern in recent re-
search on online scheduling. In this paper we extend the
study of the tradeoff between flow time and energy from the
single-processor setting [8, 6] to the multi-processor setting.
Our main result is an analysis of a simple non-migratory on-
line algorithm called CRR (classified round robin) on m ≥ 2
processors, showing that its flow time plus energy is within
O(1) times of the optimal non-migratory offline algorithm,
when the maximum allowable speed is slightly relaxed. This
result still holds even if the comparison is made against the
optimal migratory offline algorithm (the competitive ratio
increases by a factor of 2.5). As a special case, our work
also contributes to the traditional online flow-time schedul-
ing. Specifically, for minimizing flow time only, CRR can
yield a competitive ratio one or even arbitrarily smaller than
one, when using sufficiently faster processors. Prior to our
work, similar result is only known for online algorithms that
needs migration [21, 23], while the best non-migratory result
can achieve an O(1) competitive ratio [14].

The above result stems from an interesting observation
that there always exists some optimal migratory schedule S
that can be converted (in an offline sense) to a non-migratory
schedule S ′ with a moderate increase in flow time plus en-
ergy. More importantly, this non-migratory schedule always
dispatches jobs in the same way as CRR.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

∗This research is partly supported by EPSRC Grant
EP/E028276/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

General Terms
Algorithms, Performance, Theory

Keywords
Online scheduling algorithms, competitive analysis, dynamic
speed scaling, energy minimization

1. INTRODUCTION
Energy consumption has become a key issue in the de-

sign of modern processors. This is essential not only for
battery-operated mobile devices with single processors but
also for server farms or laptops with multi-core processors. A
popular technology to reduce energy usage is dynamic speed
scaling (see, e.g., [9, 15, 24, 28]) where the processor can
vary its speed dynamically. Running a job at a slower speed
is more energy efficient, yet it takes longer time and may
affect the performance. In the past few years, a lot of effort
has been devoted to revisiting classical scheduling problems
with dynamic speed scaling and energy concern taken into
consideration (e.g., [29, 7, 1, 8, 11, 2, 10, 26, 16]; see [17] for
a survey). The challenge basically arises from the conflicting
objectives of providing good “quality of service” (QoS) and
conserving energy.

One commonly used QoS measurement for scheduling jobs
on a processor is the total flow time (or equivalently, average
response time). Here, jobs with arbitrary size are released
at unpredictable times and the flow time of a job is the
time elapsed since it arrives until it is completed. When
energy is not a concern, the objective of a scheduler is sim-
ply to minimize the total flow time of all jobs. The study
of energy-efficient scheduling was initiated by Yao, Demers
and Shenker [29]. They considered deadline scheduling on
a model where the processor can run at any speed between
0 and ∞, and incurs an energy of sα per unit time when
running at speed s, where α ≥ 2 (typically 2 or 3 [9, 22]).
This model, which we call infinite speed model, also paves
the way for studying scheduling that minimizes both the
flow time and energy. In particular, Pruhs et al. [27] stud-
ied offline scheduling for minimizing the total flow time on a
single processor with a given amount of energy. They gave a
polynomial time optimal algorithm for the special case when
jobs are of unit size. However, this problem does not admit

any constant competitive online algorithm even if jobs are
of unit size [8].

Flow time and energy. To better understand the trade-
off between flow time and energy, Albers and Fujiwara [1]
proposed combining the dual objectives into a single objec-
tive of minimizing the sum of total flow time and energy.
The intuition is that, from an economic viewpoint, it can
be assumed that users are willing to pay a certain units
(say, ρ units) of energy to reduce one unit of flow time. By
changing the units of time and energy, one can further as-
sume that ρ = 1 and thus would like to optimize total flow
time plus energy. Albers and Fujiwara presented an online

algorithm that is 8.3e(3+
√

5
2

)α-competitive for jobs of unit
size. This result was recently improved by Bansal et al. [8],
who gave a 4-competitive algorithm for jobs of unit size.
They also considered the case for jobs with arbitrary size
and weight, and presented an O(1)-competitive online algo-
rithm for minimizing weighted flow time plus energy (pre-
cisely, the competitive ratio is μεγ1, where ε is any positive
constant, με = max{(1+1/ε), (1+ ε)α}, and γ1 < 2α/ lnα).

The infinite speed model has provided a convenient model
for studying power management, yet it is not realistic to as-
sume infinite speed. Recently, Chan et al. [11] introduced
the bounded speed model, where the speed can be scaled be-
tween 0 and some maximum T . Bansal et al. [6] successfully
adapted the previous results on minimizing flow time plus
energy to this model. For jobs of unit size and unit weight,
they gave a 4-competitive online algorithm. For jobs of ar-
bitrary size and weight, they gave a (μεγ2)-competitive al-
gorithm that uses a processor with maximum speed (1+ ε)T
for any ε > 0, where γ2 = (2 + o(1))α/ lnα.

Multiprocessor scheduling. All the results above are
about single-processor scheduling. In the older days, when
energy was not a concern, flow time scheduling on multiple
processors running at fixed speed was an interesting prob-
lem by itself (e.g., [4, 5, 19, 25, 13, 14]). In this setting,
jobs remain sequential in nature and cannot be executed by
more than one processor in parallel. Different online algo-
rithms like SRPT and IMD that are Θ(log P)-competitive
have been proposed respectively under the migratory and
the non-migratory model, where P is the ratio of the max-
imum job size to the minimum job size. Recently, IMD is
further shown to be O(1 + ε)-competitive, when using pro-
cessors (1+ε) times faster [14]; if migration is allowed, SRPT
can achieve a competitive ratio one or even smaller, when
using processors two or more times faster [21, 23].

The only previous work on multi-processors taking flow
time and energy into consideration was by Bunde [10], which
is about an offline approximation algorithm for jobs of unit
size. The literature also contains some multi-processor re-
sults on optimizing other classical objectives together with
energy in the infinite speed model. Pruhs et al. [26] and
Bunde [10] both studied offline algorithms for the makespan
objective. Albers et al. [2] studied online algorithms for
scheduling jobs with restricted deadlines.

Our work on flow time plus energy. We extend the
study of online scheduling for minimizing flow time plus en-
ergy to the setting of m ≥ 2 processors. This extension
is not only of theoretical interest. Modern processors uti-
lize speed scaling as well as multi-core technology (dual-core
and quad-core are getting common); and a multi-core pro-
cessor is essentially a pool of processors. To make the work

more meaningful, we aim at schedules without migrating
jobs among processors. In practice, migrating jobs requires
overheads and is avoided in many applications.

To save energy in a multiprocessor setting, we want to
balance the load of the processors so as to avoid running
any processors at high speed. It is natural to consider some
kind of round-robin strategy to dispatch jobs. Typical ex-
amples include IMD for flow time scheduling [4] and CRR
for energy-efficient deadline scheduling in the infinite speed
model [2]. The main contribution of this paper is a non-
trivial analysis of CRR (classified round robin) for opti-
mizing flow time plus energy. Unlike [2], we apply CRR
according to job size rather than job density. Specifically,
when a job arrives, CRR dispatches it immediately based on
the following notion of classes of job sizes. Consider some
λ > 0. A job is said to be in class k if its size is in the range
((1+λ)k−1, (1+λ)k]. Jobs of the same class are dispatched to
the m processors using a round-robin strategy (i.e., the i-th
job of a class will be dispatched to processor (i mod m)). It
is worth-mentioning that IMD is slightly more complicated
than CRR as it dispatches a job to the processor with the
smallest accumulated load of the corresponding class.

The most non-trivial result in this paper is that CRR al-
ways admits a non-migratory schedule S whose flow time
plus energy is within a constant factor of the optimal migra-
tory offline schedule. In an online setting, we do not know
how to compute this S, in particular how each individual
processor schedules jobs in S. Yet we can approximate S
by using the online algorithm BPS [8, 6] separately for each
processor. Since BPS is O(1)-competitive for minimizing
flow time plus energy in a single processor [8, 6], CRR plus
BPS would give a competitive result for the multiproces-
sor setting. Below is a summary of the results based on
the bounded speed model (where T denotes the maximum
speed). Our analysis can also be applied to the infinite speed
model, but it is of less interest. In addition to the constants
με, γ1, γ2 used in [8, 6], it is convenient to define a constant
ηε = (1 + ε)α[(1 + ε)α−1 + (1 − 1/α)(2 + ε)/ε2].

• Against the optimal non-migratory schedule: For any
ε > 0, CRR-BPS can be (2ηεμεγ2)-competitive for
minimizing flow time plus energy, when the maximum
allowable speed is relaxed to (1 + ε)3T . E.g., if α = 2
and ε = 0.6, the competitive ratio is at most 27μεγ2.

• Against the optimal migratory schedule: The compet-
itive ratio becomes 5ηεμεγ2.

Implication for flow-time scheduling. Our work also
contributes to the study of traditional flow-time scheduling,
which assumes fixed-speed processors. We adapt the above
result to show that for minimizing flow time only, CRR (plus
SRPT for individual processor) would give a non-migratory
online algorithm which, when compared with the optimal
migratory algorithm, has a competitive ratio of one or even
any constant arbitrarily smaller than one, when using suf-
ficiently fast processors. Prior to our work, similar result
is known only for online algorithms that need migration;
in particular, McCullough and Torng [21] showed that for
m ≥ 2 processors, SRPT is s-speed 1

s
-competitive for flow

time, where s ≥ 2 − 1
m

. Our non-migratory result is less

efficient. More precisely, for any s ≥ 1, it is s-speed 5(
√

s+1)

(
√

s−1)2
-

competitive. E.g., if s = 64, the competitive ratio is 0.92.

This paper is about online algorithms, yet the key tech-
nique is an offline transformation. Given an optimal mi-
gratory (or non-migratory) offline schedule O, we show how
to construct a schedule S that follows CRR to dispatch jobs
with the total flow time plus energy increasing by a constant
factor only. Note that S takes advantage of O to determine
how to schedule jobs and scale the speed within each pro-
cessor.

1.1 Definitions, notations, and a simple lower
bound

Given a job set J , we want to schedule J on a pool of
m ≥ 2 processors. Note that jobs are sequential in nature
and cannot be executed by more than one processor in par-
allel. All processors are identical and a job can be executed
in any processor. Preemption is allowed and a preempted
job can be resumed at the point of preemption. We differen-
tiate two types of schedules: a migratory schedule can move
partially-executed jobs from one processor to another pro-
cessor without any penalty, and a non-migratory schedule
cannot.

We use r(j) and p(j) to denote respectively the release
time and work requirement (or size) of job j. We let p(J) =P

j∈J p(j) be the total size of J . The time required to

complete job j using a processor with fixed speed s is p(j)/s.
With respect to a schedule S of a job set J , we use the

notations max-speed(S), E(S) and F (S) for the maximum
speed, energy usage, and total flow time of S , respectively.
Note that F (S) is the sum, over all jobs, of the time since
a job is released until it is completed, or equivalently, the
integration over time of the number of unfinished jobs. As
processor speed can vary dynamically and the time to exe-
cute a job j is not necessarily equal to p(j), we define the
execution time of job j to be the flow time minus waiting
time of j, and define the total execution time of S to be the
sum of execution time over all jobs in S .

It is convenient to define G(S) = F (S) + E(S). The fol-
lowing lemma shows a lower bound on G(S) which depends
on p(J), irrelevant of the number of processors.

Lemma 1. For any m-processor schedule S for a job set
J , G(S) ≥ α

(α−1)1−1/α p(J).

Proof. Suppose that a job in S has flow time t. The
energy usage for j is minimized if j is run at constant speed
p(j)/t throughout, and it is at least (p(j)/t)αt = p(j)α/tα−1.
Since t + p(j)α/tα−1 is minimized when t = (α − 1)1/αp(j),
we have t+p(j)α/tα−1 ≥ α

(α−1)1−1/α p(j). Summing over all

jobs, we obtain the desired lower bound.

2. THE ONLINE ALGORITHM
This section presents the formal definition of the online al-

gorithm CRR-BPS, which produces a non-migratory sched-
ule for m ≥ 2 processors. In the following sections, we will
show that, when compared with the optimal non-migratory
or migratory schedule, this algorithm is O(1)-competitive for
flow time plus energy, when the maximum allowable speed
is slightly relaxed.

Consider any λ > 0. Recall that a job is said to be in
class k if its size is in the range ((1 + λ)k−1, (1 + λ)k]. In a
CRR(λ)-dispatching schedule, jobs of the same class are dis-
patched upon their arrival (ties are broken using job ids) to
the m processors using a round-robin strategy, and different

classes are handled independently. Jobs once dispatched to
a processor will be processed there entirely; thus a CRR(λ)-
dispatching schedule is non-migratory in nature. For nota-
tional ease, when the value of λ is clear in the context, we
will simply use the term CRR-dispatching.

The intuition of using a CRR-dispatching schedule comes
from a new offline result that there is a CRR-dispatching
schedule such that the total flow time plus energy is O(1)
times that of the optimal (non-migratory or migratory) of-
fline schedule and the maximum allowable speed is only
slightly higher. Details are stated in Theorem 2 below (Sec-
tions 3, 4 and 5 are devoted to proving this theorem).

Theorem 2. Given a job set J , let N ∗ be an optimal
non-migratory schedule of J , and let S∗ be an optimal mi-
gratory schedule of J . Then for any λ, ε > 0,

i. there is a CRR(λ)-dispatching schedule S for J such
that G(S) ≤ 2(1 + λ)α((1 + ε)α−1 + (1 − 1/α)(2 +
λ)/λε)G(N ∗), and max-speed(S) ≤ (1 + λ)(1 + ε) ×
max-speed(N ∗); and

ii. there is a CRR(λ)-dispatching schedule S ′ for J such
that G(S ′) ≤ 5(1 + λ)α((1 + ε)α−1 + (1 − 1/α)(2 +
λ)/λε)G(S∗), and max-speed(S ′) ≤ (1 + λ)(1 + ε) ×
max-speed(S∗).

Theorem 2 naturally suggests an online algorithm that
first dispatches jobs using a CRR(λ)-dispatching policy, and
then schedules jobs in each processor independently and in a
way that is competitive in the single-processor setting. For
the latter we make use of the single-processor algorithm BPS
[8, 6]. Below we review the algorithm BPS (the definition is
for reference only, in this paper we only need to know the
performance of BPS), and define the multi-processor algo-
rithm CRRλ-BPSε, where λ, ε > 0 are constants.

Algorithm BPS. At any time t, run the job
with the smallest size at speed wa(t)1/α, where
wa(t) is the sum of the remaining fraction (i.e.,
remaining work divided by original work) of all
jobs. If wa(t)1/α exceeds the maximum allowable
speed T (if any), just use the maximum speed T .

Algorithm BPSε. At any time t, select the
job with the smallest size to execute, and the
speed to be used is (1+ε) times the current speed
of a simulated BPS schedule on the jobs. Note
that the maximum allowable speed is relaxed to
(1 + ε)T .

Algorithm CRRλ-BPSε . Jobs are dispatched
to the m processors with the CRR(λ)-dispatching
policy. Jobs in each processor are scheduled in-
dependently using BPSε.

It is known that BPSε performs well in minimizing flow
time plus energy for a single processor in the infinite speed
model [8] as well as the bounded speed model [6]. Recall
that the constants με, γ1 and γ2 are defined as max{(1 +
1/ε), (1 + ε)α}, 2α/ ln α, and (2 + o(1))α/ ln α, respectively.

Lemma 3. [6, 8] Consider any ε > 0. For minimizing
flow time plus energy on a single processor, BPSε is μεγ1-
competitive in the infinite speed model, and μεγ2-competitive
in the bounded speed model, when the maximum speed is re-
laxed to (1 + ε)T .

Analysis of CRR-BPS. With Theorem 2 and Lemma 3,
we can easily derive the performance of CRR-BPS against
the optimal non-migratory or migratory algorithm. In addi-
tion to the constants με, γ1, γ2, we define ηε = (1 + ε)α[(1 +
ε)α−1 + (1 − 1/α)(2 + ε)/ε2].

Corollary 4. For any ε > 0, the performance of CRRε-
BPSε for minimizing flow time plus energy is as follows.

i. Against a non-migratory optimal schedule: CRRε-BPSε

is (2ηεμεγ1)-competitive in the infinite speed model, and
(2ηεμεγ2)-competitive in the bounded speed model, if the
maximum speed is relaxed to (1 + ε)3T .

ii. Against a migratory optimal schedule: CRRε-BPSε is
(5ηεμεγ1)-competitive in the infinite speed model and
(5ηεμεγ2)-competitive in the bounded speed model, if the
maximum speed is relaxed to (1 + ε)3T .

Proof. Let N ∗ be the optimal non-migratory schedule
of a job set J . By Theorem 2, there exists a CRR(ε)-
dispatching schedule N1 for J such that G(N1) ≤ 2ηεG(N ∗)
and max-speed(N1) ≤ (1 + ε)2max-speed(N ∗). Let N be
the schedule produced by CRRε-BPSε for J . Applying
Lemma 3 to individual processors, we conclude that in the
bounded speed model, G(N) ≤ μεγ2G(N1) ≤ ηεμεγ2G(N ∗)
and max-speed(N) ≤ (1 + ε)3max-speed(N ∗). The analysis
of infinite speed model and the migratory case is similar.

3. RESTRICTED BUT USEFUL OPTIMAL
SCHEDULES

The remaining three sections are devoted to proving The-
orem 2. In essence, for any λ > 0, we want to construct a
CRR(λ)-dispatching schedule from an optimal schedule with
a mild increase in flow time plus energy and in maximum
speed. In this section, we introduce two notions to restrict
the possible optimal (non-migratory or migratory) schedules
so as to ease the construction.

• A job sequence J is said to be power-of-(1+λ) if every
job in J has size (1 + λ)k for some k.

• For any job sequence J and schedule S , we say that
S is immediate-start if every job starts at exactly its
release time in J .

The rest of this section shows that it suffices to focus on
job sequences that are power-of-(1 + λ) and optimal sched-
ules that are immediate-start. See Lemmas 5 and 6 below.
The former is relatively easy to observe as we can exploit
a slightly higher maximum speed. The latter is, however,
non-trivial or perhaps counter-intuitive.

Lemma 5. Given a job sequence J , we construct another
job sequence J1 by rounding up the size of every job in J
to the nearest power of (1 + λ). Then (i) any schedule S
for J defines a schedule S1 for J1 such that G(S1) ≤ (1 +
λ)αG(S) and max-speed(S1) ≤ (1 + λ)max-speed(S); and
(ii) any schedule S1 for J1 defines a schedule S for J with
G(S) ≤ G(S1) and max-speed(S) = max-speed(S1).

Proof. (i) S naturally defines a schedule S1 for J1 as
follows. Whenever S runs a job j at speed s, S1 runs j at

speed s1 = s × (1 + λ)�log1+λ p(j)�/p(j). Note that s1 ≤
(1 + λ)s, E(S1) ≤ (1 + λ)αE(S), and F (S1) = F (S). (ii)
is obvious as we can apply S1 to schedule J with extra idle
time.

Lemma 6. Consider a power-of-(1 + λ) job sequence J1

and an optimal schedule O1 for J1. We can convert them
to a power-of-(1 + λ) job sequence J2 and an immediate-
start, optimal schedule O2 for J2 such that any CRR(λ)-
dispatching schedule S2 for J2 defines a CRR(λ)-dispatching
schedule S1 for J1, and if G(S2) ≤ βG(O2) for some β ≥ 1,
then G(S1) ≤ βG(O1).

Proof. We first construct O2 from J1 and O1. Consider
any two jobs of the same size in J1. To construct O2 from
O1, each time we consider all jobs in J1 of a particular size,
and swap their schedules so that their release times and start
times in O2 are in the same order. That is, for all i, the job
with the i-th smallest release time will take up the schedule
of the job with the i-th smallest start time; note that the
i-th smallest start time can never be earlier than the i-th
smallest release time. Thus, O2 is also a valid schedule for
J1.

Next, we modify J1 to J2, by replacing the release time
of each job j with its start time in O2. Note that the release
time of j can only be delayed (and never gets advanced).
Any schedule for J2 (including O2) is also a valid schedule
for J1.

By construction, O2 is an immediate-start schedule for J2.
Next, we analyze the relationship between O1 and O2. To
ease the discussion, we add a subscript J to the notations
F, E, and G to denote that the job set under concern is J .

O1 and O2 incur the same flow time plus energy
for J1. Since O1 and O2 use the same speed at any time,
EJ1(O1) = EJ1(O2). Furthermore, at any time, O1 com-
pletes a job if and only if O2 completes a (possibly different)
job, and thus O1 and O2 always have the same number of
unfinished jobs. This means that FJ1(O1) = FJ1(O2) and
GJ1(O1) = GJ1(O2).

O2 is optimal for J2 (in terms of flow time plus
energy). Suppose on the contrary that there is a schedule
O′ for J2 with GJ2(O′) < GJ2(O2). Any schedule of J2,
including O′ and O2, is also a valid schedule for J1. Note
that EJ1(O′) = EJ2(O′), and FJ1(O′) = FJ2(O′)+d, where
d is the total delay of release times of all jobs in J2 (when
comparing with J1). Therefore, GJ1(O′) = GJ2(O′) + d,
and similarly for O2. Thus, if GJ2(O′) < GJ2(O2), then

GJ1(O′) = GJ2(O′) + d

< GJ2(O2) + d = GJ1(O2) = GJ1(O1) .

This contradicts the optimality of O1 for J1.

CRR-dispatching schedules preserve performance.
Consider any CRR(λ)-dispatching schedule S for J2 satis-
fying GJ2(S) ≤ βGJ2(O2), for some β ≥ 1. By definition,
jobs of the same class are also of same size and have the
same order of release times in J1 and J2. Therefore, S is
also an CRR(λ)-dispatching schedule for J1. For total flow
time plus energy,

GJ1(S) = GJ2(S) + d ≤ βGJ2(O2) + d

≤ β(GJ2(O2) + d) = βGJ1(O2) = βGJ1(O1) .

Thus the lemma follows.

In the rest of this paper, we exploit the fact that an op-
timal schedule runs a job at the same speed throughout its
lifespan. This is due to the convexity of the power function
sα. Also, without loss of generality, at any time an optimal

schedule never runs a job at speed less than the global crit-
ical speed, defined as 1/(α − 1)1/α [1], and the maximum
speed T is at least the global critical speed (see Appendix
for justifications).

4. COMPARING AGAINST
NON-MIGRATORY SCHEDULES

This section shows how to construct a CRR-dispatching
schedule from the optimal non-migratory schedule, provided
that it is immediate-start. The main result is stated in the
following lemma.

Lemma 7. Given a power-of-(1 + λ) job sequence J with
an optimal non-migratory schedule N ∗ that is immediate-
start, we can construct a CRR(λ)-dispatching schedule S
for J such that G(S) ≤ 2((1 + ε)α−1 + (1− 1/α)(2 + λ)/λε)
G(N ∗), and max-speed(S) ≤ (1 + ε) × max-speed(N ∗).

The above lemma, together with Lemma 5 about power-
of-(1 + λ) jobs and Lemma 6 about immediate schedules,
would immediately give a way to construct CRR-dispatching
schedules from optimal non-migratory schedules, with the
desired flow time and energy as stated in Theorem 2(i). De-
tails are omitted.

Below we describe a property of immediate-start, optimal
non-migratory schedules, and then present an algorithm for
constructing CRR-dispatching schedules. The analysis of its
flow time and energy and the proof of Lemma 7 are further
divided into three subsections.

First of all, we observe that any immediate-start, optimal
non-migratory schedule N ∗ for a power-of-(1 + λ) job se-
quence J satisfies the property that at any time, for each
job size, there are at most m jobs started but not com-
pleted. This is because jobs of the same size must work in
a First-Come-First-Serve manner, otherwise we can shuffle
the execution order to First-Come-First-Serve and reduce
the total flow time, so the schedule is not optimal.

Property 1. Consider any power-of-(1+λ) job sequence
J , and any immediate-start, optimal non-migratory sched-
ule for J on m ≥ 2 processors. At any time, for each job
size, there are at most m jobs started but not completed.

Given the schedule N ∗ for J , the algorithm below con-
structs a CRR(λ)-dispatching schedule S for J with a mild
increase in flow time and energy. The ordering of job execu-
tion in S could be very different from N ∗. Roughly speak-
ing, S only makes reference to the speed used by N ∗. Recall
that in N ∗, a job is run at the same speed throughout its
lifespan. For any job, S determines its speed as the average
of a certain subset of 2m jobs of the same size. These 2m
jobs are chosen according to the release times. Details are
as follows. Note that the processors are numbered from 0 to
m − 1.

Algorithm 1. The construction runs in multiple rounds,
from the smallest job size to the largest. Let S0 denote the
intermediate schedule, which is initially empty and eventu-
ally becomes S . We modify S0 in each round to include
more jobs. In the round for size p, suppose that J contains
n jobs {j1, j2, . . . , jn} of size p, arranged in increasing or-
der of release times. It is convenient to define jn+1 = j1,
jn+2 = j2, etc. For i = 1 to n, let xi be the average speed
in N ∗ of the fastest m jobs among the following 2m jobs:

ji, ji+1, . . . , ji+2m−1. We modify S0 by adding a schedule
for ji in processor (i mod m): it can start as early as at its
release time, runs at constant speed (1 + ε)xi, and occu-
pies the earliest possible times, while avoiding times already
committed to earlier jobs for processor (i mod m).

We claim that the schedule S produced by Algorithm 1
satisfies Lemma 7. In Section 4.1, we analyze the energy us-
age. The analysis of flow time is based on an upper bound on
the execution time S spends on jobs of certain classes within
a period of time. This upper bound is stated and proved in
Section 4.2. With this upper bound, we can analyze the flow
time in Section 4.3.

4.1 Speed and energy
We first note that in S , the speed of a job is (1 + ε) times

the average speed of m jobs in N ∗, so max-speed(S) ≤ (1 +
ε) × max-speed(N ∗). Next, we consider the energy.

Lemma 8. The energy used by S produced by Algorithm 1
is at most 2(1 + ε)α−1G(N ∗).

Proof. Consider m jobs of the same size being run at
different constant speed, and let x be their average speed.
Energy is a function of speed to the power of α − 1 ≥ 1,
which is convex. Running a job of the same size at speed x
incurs energy at most 1/m times the total energy for running
these m jobs. If we further increase the speed to (1 + ε)x,
the power increases by a factor of (1 + ε)α, and the running
time decreases by a factor of (1+ ε). Thus, the energy usage
increases by a factor of (1 + ε)α−1. In S , running a job at
(1 + ε) times the average speed of m jobs in N ∗ requires no
more energy than (1+ ε)α−1/m times the sum of the energy
usage of those m jobs in N ∗.

To bound E(S), we use a simple charging scheme: for a
job j in S , we charge to every one of the m jobs j′ chosen for
determining the speed of j in Algorithm 1; the amount to
be charged is 1/m times of the energy usage of j′ in N ∗. By
Algorithm 1, each job can be charged by at most 2m jobs.
Thus,

E(S) ≤ (1 + ε)α−1

m
2mE(N ∗)

≤ 2(1 + ε)α−1E(N ∗)

≤ 2(1 + ε)α−1G(N ∗) .

4.2 Upper bound on job execution time of S
To analyze the flow time of a job in S , we attempt to

upper bound the execution time of other jobs dispatched to
the same processor during its lifespan. The lemmas below
look technical, yet the key observation is quite simple—For
any processor z, if we consider all jobs that S dispatches to
z during an interval I , excluding the last two jobs of each
class (size), their total execution time is at most 	/(1 + ε),
where 	 is the length of I .

Consider any job h0 ∈ J . Let h1, h2, . . . , hn be all the
jobs in J such that r(h0) ≤ r(h1) ≤ · · · ≤ r(hn) and they
have the same size as h0. Suppose that n ≥ im for some
i ≥ 2. We focus on two sets of jobs: {h0, h1, . . . , him−1}
and {h0, hm, h2m, . . . , h(i−2)m}. The latter contains jobs dis-
patched to the same processor as h0. Lemma 9 below gives
an upper bound of the execution time of S for {h0, hm, h2m,
. . . , h(i−2)m} with respect to N ∗. This lemma stems from
the fact that N ∗ is immediate-start.

Lemma 9. For any job h0 and i ≥ 2, suppose him exists.
Let t be the execution time of N ∗ for the jobs h0, h1, . . . ,
him−1 during the interval [r(h0), r(him)]. Then in the entire
schedule of S, the total execution time of the jobs h0, hm, . . . ,
h(i−2)m is at most t/m(1 + ε).

Proof. Since N ∗ is immediate-start, jobs h0, . . . , him−1

each starts within the interval [r(h0), r(him)]. At the time
r(him), at most m jobs among these im jobs are not yet
completed (Property 1), or equivalently, N ∗ has completed
at least (i − 1)m jobs. Let Δ denote a set of any (i − 1)m
such completed jobs. Based on release times, we partition
Δ accordingly into i − 1 subsets Δ0, Δ1, . . . , Δi−2, each of
size exactly m. Δ0 contains the m jobs with smallest release
times in Δ, Δ1 contains jobs with the next m smallest release
times in Δ, etc.

Since Δ misses out only m jobs in {h0, h1, . . . , him−1},
each Δu, for u ∈ {0, . . . , i − 2}, is a subset of the 2m jobs
{hum, hum+1, . . . , hum+2m−1}. Because the speed used by S
for hum is (1+ε) times the average speed of the m fastest jobs
in hum, hum+1, . . . , hum+2m−1 used by N ∗, which is faster
than 1+ε times the average speed of Δu in N ∗, it follows that
the execution time of hum in S is at most 1/m(1 + ε) times
the total execution time of Δu in N ∗. Summing over all u ∈
{0, . . . , i−2}, the execution time of S for h0, hm, . . . , h(i−2)m

is no more than 1/m(1+ε) times the total execution time of
Δ in N ∗. In N ∗, Δ is only executed during [r(h0), r(him)],
and the lemma follows.

Below is the main result of this section (to be used for
analyzing the flow time of S later).

Lemma 10. Consider any k and any time interval I of
length 	. For jobs of size at most (1 + λ)k that are released
during I, the total execution time of any processor in S for
these jobs is at most 	/(1+ε)+2(1+λ)k ·(α−1)1/α/λ(1+ε).

Proof. Consider a particular k′ ≤ k. Let y be the ex-
ecution time over all processors that N ∗ uses for jobs of

size (1 + λ)k′
during the interval I . Consider a particular

processor z in S ; suppose that S dispatches i jobs of size

(1 + λ)k′
to processor z during I , and denote these i jobs as

J ′ = {h′
0, h

′
m, . . . , h′

(i−1)m}, arranged in the order of their
release times. We claim that the execution time of proces-
sor z in S for these i jobs is at most y/m(1 + ε) plus the
execution time of S for the last two jobs of J ′. This is
obvious if J ′ contains two or fewer jobs. It remains to con-
sider the case when J ′ has i ≥ 3 jobs. By Lemma 9, if t
is the execution time of N ∗ for h′

0, h
′
1, . . . , h

′
(i−1)m−1 dur-

ing [r(h′
0), r(h

′
(i−1)m)], then S uses no more than t/m(1+ ε)

time to execute h′
0, h

′
m, . . . , h′

(i−3)m. The claim then follows

by noticing that t ≤ y, and we only have two jobs h′
(i−2)m

and h′
(i−1)m not being counted.

Now we sum over all k′ ≤ k the upper bound of these flow
times, i.e., y/m(1 + ε) plus the execution time of S for the
last 2 jobs in J ′. The sum of the first part is

P
y/m(1+ ε).

Note that
P

y is the execution time of N ∗ during I , soP
y ≤ m|I | = m	, and the sum of the first part is

P
y

m(1 + ε)
≤ 	

1 + ε
.

The sum of the second part is over at most 2 jobs for each
k′. Recall that the speed used by N ∗ is at least the global

critical speed 1/(α−1)1/α, and the speed used by S is (1+ε)
times the average of some job speeds in N ∗. Thus the speed
used by S for any job is at least (1 + ε)/(α − 1)1/α, and

the execution time of each job of size (1 + λ)k′
is at most

(1+λ)k′
(α−1)1/α/(1+ε). Summing over all k′ the execution

time for these jobs, we have

kX

k′=0

2(1 + λ)k′
(α − 1)1/α

1 + ε
<

2(1 + λ)k+1(α − 1)1/α

λ(1 + ε)
.

The lemma follows by summing the two parts.

4.3 Flow time
In this section we show that the flow time of each job

in S is O(1/ε) times of its job size, which implies that the
total flow time is O(1/ε)G(N ∗). Together with Lemma 8,
Lemma 7 can be proved. We first bound the flow time of a
job of a particular job size in S , making use of Lemma 10.

Lemma 11. In S, the flow time of a job of size (1 + λ)k

is at most 2(2 + λ)(1 + λ)k(α − 1)1/α/λε.

Proof. Consider a job j of size (1+λ)k that is scheduled
on some processor z in S . Let r = r(j), and f be the flow
time of j in S , i.e., j completes at time r+f . To determine f ,
we focus on the scheduling of processor z in the intermediate
schedule S0 immediate after Algorithm 1 has scheduled j.
Note that f is due to jobs that have been executed in S
during [r, r + f]. They can be partitioned into two subsets:
J1 for jobs released at or before r, and J2 for jobs released
during (r, r + f]. Let f1 and f2 be the contribution on f
by J1 and J2, respectively, i.e., f = f1 + f2.

We first consider J1. Let t be the last time < r such that
processor z is idle right before t in S0. Thus all jobs executed
by processor z at or after t, and hence all jobs in J1, must
be released at or after t. By Lemma 10, the execution time
of processor z for jobs in J1 is no more than (r − t)/(1 +
ε) + [2(1 + λ)k+1(α − 1)1/α/λ(1 + ε)]. Since processor z is
busy throughout [t, r), the amount of execution time for jobs
in J1 remaining at r is at most

r − t

1 + ε
+

2(1 + λ)k+1(α − 1)1/α

λ(1 + ε)
− (r − t)

≤ 2(1 + λ)k+1(α − 1)1/α

λ(1 + ε)
.

This implies f1 ≤ 2(1 + λ)k+1(α − 1)1/α/λ(1 + ε).
Next we consider J2. Since Algorithm 1 schedules jobs

from the smallest to the largest size, jobs in J2 are of size
at most (1 + λ)k−1. We apply Lemma 10 to the interval
[r, r + f] for jobs of size at most (1 + λ)k−1. The execution
time of processor z for jobs in J2, i.e., f2, is no more than

f

1 + ε
+

2(1 + λ)k(α − 1)1/α

λ(1 + ε)
.

Then we have

f = f1 + f2 ≤ 2(2 + λ)(1 + λ)k(α − 1)1/α

λ(1 + ε)
+

f

1 + ε
,

immediately implying f ≤ 2(2+λ)(1+λ)k(α−1)1/α/λε.

Summing over all jobs and recalling that G(N ∗) ≥ (α/(α−
1)1−1/α)p(J) (see Lemma 1), we have the following corol-
lary. Then Lemma 7 is a direct consequence of Lemma 8
and Corollary 12.

Corollary 12. The total flow time incurred by S pro-
duced by Algorithm 1 is at most (2(1−1/α)(2+λ)/λε)G(N ∗).

5. COMPARING AGAINST MIGRATORY
SCHEDULES

The construction algorithm given in the previous section
can be applied to handle optimal migratory schedule, except
that Property 1 no longer holds for any optimal migratory
schedule. Nevertheless, the following weaker property is sat-
isfied by some (rather than all) optimal schedule, which we
show later in this section.

Property 2. For any job sequence J , there is an opti-
mal migratory schedule S∗ such that at any time, there are
less than 4m jobs of the same size started but not yet com-
pleted.

This schedule may not be immediately-start (indeed, for
most job sequences there is no immediately-start optimal
schedules). However, it is easy to check that if we apply the
construction of Lemma 6 to a schedule satisfying Property 2,
the resulting schedule also satisfies Property 2 (since the
only manipulation done in that construction is to swap the
scheduling of pairs of jobs completely). As a result, we can
extend Lemma 6 as follows.

Lemma 13. Consider a power-of-(1 + λ) job sequence J1

and an optimal migratory schedule O1 for J1. Then there
is a power-of-(1 + λ) job sequence J2 and an immediate-
start, optimal schedule O2 for J2 that satisfies Property 2,
such that any CRR(λ)-dispatching schedule S2 for J2 defines
a CRR(λ)-dispatching schedule S1 for J1, and if G(S2) ≤
βG(O2) for some β ≥ 1, then G(S1) ≤ βG(O1).

We can now make use of Algorithm 1 to construct a CRR-
dispatching schedule. Note that the new property causes a
minor change to Algorithm 1, namely, for each job ji, we
determine the speed x by considering the 5m jobs ji, ji+1,
. . . , ji+5m−1, instead of the 2m jobs ji, ji+1, . . . , ji+2m−1.
The following is the main result of this section, which is
a straightforward adaptation of Section 4 to the migratory
case based on Property 2. Details are left in the full paper.

Lemma 14. Given a power-of-(1+λ) job sequence J with
an optimal migratory schedule S∗ that is immediate-start
and satisfies Property 2, we can construct a CRR(λ)-dis-
patching schedule S for J with G(S) ≤ 5((1 + ε)α−1 +
(1 − 1/α)(2 + λ)/λε)G(S∗) and max-speed(S) ≤ (1 + ε) ×
max-speed(S∗).

The rest of this section is devoted to proving Property 2.
For comparing against non-migratory schedules, Property 1
obviously holds for an arbitrary schedule. On the contrary,
Property 2 is not obvious for any migratory optimal sched-
ules. We show that Property 2 is true for a lazy-start optimal
migratory schedule, defined as follows: Given a schedule S ,
we define its “start time sequence” to be the sequence of
start time of each job, sorted in the order of time. Among
all optimal migratory schedules (which may or may not be
immediate-start), a lazy-start optimal schedule is the one
with lexicographically maximum start time sequence. Such
a schedule has the following property.

Lemma 15. In a lazy-start optimal schedule, suppose a
job j1 is started at time t, when another job j2 of the same
size has been started, has not completed, and is not running
at t. Then after t, j1 runs whenever j2 runs.

Proof. Suppose the contrary, and let t′ be the first time
after t that j2 runs but not j1. Let p0 be the amount of
work processed for j1 during [t, t′] when j2 is not running.
We separate the analysis into three cases, each arriving at a
contradiction.

Case 1: j1 is not yet completed by t′. We can ex-
change some work of j2 done starting from t′ with those of j1
done starting from t, without changing processor speed at
any time. The start time of j1 is thus delayed without chang-
ing the start times of other jobs or increasing the energy or
flow time, so the original schedule is not lazy-start.

Case 2: j1 is completed by t′, and the amount of
work processed for j2 after t′ is at most p0. We can
exchange all work of j2 after t′ with some work of j1 starting
from t. The completion times of j1 and j2 are exchanged,
but the total flow time and energy is preserved. The start
time of j1 is delayed without changing the start times of
other jobs, so the original schedule is not lazy-start.

Case 3: j1 is completed by t′, and the amount of
work processed for j2 after t′ is more than p0. These
conditions imply that there must be some work processed
for j1 at other times, i.e., when both j1 and j2 are running.
Furthermore, j2 must be running slower than j1 during this
period, otherwise the total amount of work processed for j2
would be larger than the size of j1, so the two jobs cannot be
of the same size. Since jobs run at constant speed in optimal
schedules, the speed of j1 is higher than the speed of j2.

Note that j1 lags behind j2 at t but is ahead of j2 at t′.
So there must be a time t0 ∈ (t′, t) such that j1 and j2 has
been processed for the same amount of work. Exchange the
scheduling of j1 and j2 after t0 gives a schedule with the
completion time of j1 and j2 exchanged, while the energy
consumption and flow time remain the same. But now j1
and j2 are not running at constant speed, so the schedule is
not optimal.

Proof of Property 2. Suppose, for the sake of con-
tradiction, that at some time, 4m jobs have been started
but not yet completed. Consider these 4m jobs. When the
(m + i)-th job j is being started, at least i jobs previously
started must idle. For each such idling job j′, Lemma 15
dictates that after r(j), whenever j′ runs, j must also be
running. We say j precedes j′. Since there are 4m jobs, there
are 1 + 2 + · · ·+ 3m = 3

2
m(3m + 1) such relations. So some

job j0 must be preceded by at least 3
2
m(3m + 1)/4m > m

other jobs. After all these other jobs are released, they must
all run whenever j0 runs, contradicting that there are only
m processors. The property follows.

6. SCHEDULING FOR FIXED-SPEED
PROCESSORS

In this section, we consider traditional flow time schedul-
ing where processors always run at a fixed speed. Without
loss of generality, we assume the speed is fixed at 1. We
present an online algorithm CRRε-SRPT, which produces
a non-migratory schedule for m ≥ 2 processors. We show
that CRRε-SRPT, when compared with the optimal non-
migratory or migratory offline schedule for minimizing flow

time, has a competitive ratio of one or even any constant ar-
bitrarily smaller than one, when using sufficiently fast pro-
cessors.

Algorithm CRRε-SRPT. Jobs are dispatched
to the m processors with the CRR(ε)-dispatching
policy. Jobs in each processor are scheduled in-
dependently using SRPT: at any time, run the
job with the least remaining work.

Note that the objective function is total flow time, instead
of flow time plus energy. To analyze CRRε-SRPT, we adapt
Theorem 2 (in Section 2) as follows.

Theorem 16. Given a job set J , let N ∗ be an optimal
non-migratory schedule of J , and let S∗ be an optimal mi-
gratory schedule of J . Then for any λ, ε > 0,

i. there is a CRR(λ)-dispatching schedule S for J such
that F (S) ≤ (2(2 + λ)/λε)F (N ∗), and max-speed(S) ≤
(1 + λ)(1 + ε) × max-speed(N ∗); and

ii. there is a CRR(λ)-dispatching schedule S ′ for J such
that F (S) ≤ (5(2 + λ)/λε)F (S∗), and max-speed(S ′) ≤
(1 + λ)(1 + ε) × max-speed(S∗).

To prove Theorem 16, we first show that scheduling fixed-
speed processors to minimize flow time is actually a special
case of scheduling variable speed processors to minimize flow
time plus energy. Consider an optimal schedule for minimiz-
ing flow time plus energy when α = 2 and T = 1. Recall that
without loss of generality, the optimal schedule always runs
at a speed at least the global critical speed, 1/(α−1)1/α = 1,
which is also the maximum speed bound. Thus the proces-
sor runs at fixed speed T = 1, spending a constant amount
of energy. In this particular case, to minimize the total flow
time plus energy, the optimal schedule must thus minimize
the total flow time. We further note that running Algo-
rithm 1 on such a schedule produces a schedule that always
uses speed (1 + ε).

Since scheduling of fixed-speed processors is simply a spe-
cial case of scheduling of variable-speed processors, all ar-
guments in Section 4 and 5 works unchanged. It suffices to
adapt those theorems and lemmas in the previous sections
so that the comparison is made against the total flow time,
rather than the total flow time plus energy, of the optimal
schedule. For comparing against the non-migratory optimal
schedule, we adapt Lemma 7 as follows.

Lemma 17. Given a power-of-(1+λ) job sequence J with
an optimal non-migratory schedule N ∗ that is immediate-
start, we can construct a CRR(λ)-dispatching schedule S
for J such that F (S) ≤ 2(2+λ)

λε
F (N ∗) and max-speed(S) ≤

(1 + ε) × max-speed(N ∗).

Proof. We focus on the analysis about flow time in Sec-
tion 4.3. Since α = 2, Lemma 11 shows that in sched-
ule S , the flow time of a job of size (1 + λ)k is at most
2(2 + λ)(1 + λ)k/λε. Summing over all jobs in J , the total
flow time is F (S) ≤ 2(2 + λ)p(J)/λε. To relate F (S) and
F (N ∗), we note that N ∗ always runs at speed 1, so the flow
time of a job j is at least p(j). Summing over all jobs, we
have F (N ∗) ≥ p(J). Thus F (S) ≤ (2(2+λ)/λε)F (N ∗).

For comparing against the optimal migratory schedule, we
can use the same techniques to adapt Lemma 14 in Section 5.
The proof is left in the full paper.

Lemma 18. Given a power-of-(1+λ) job sequence J with
an optimal migratory schedule S∗ that is immediate-start
and satisfies Property 2, we can construct a CRR(λ)-dis-
patching schedule S for J with F (S) ≤ (5(2+λ)/λε)F (S∗),
and max-speed(S) ≤ (1 + ε) × max-speed(S∗).

Now consider any job set J0 (which may not be a power-
of-(1+λ) job set). The analysis in Section 3 can be adapted.
Then Lemmas 17 and 18 lead to Theorem 16.

Setting λ = ε in Theorem 16 and using the fact that SRPT
optimizes total flow time on a single processor, the perfor-
mance of CRRε-SRPT against the optimal non-migratory
or migratory algorithm is easily shown as follows.

Corollary 19. For any ε > 0, CRRε-SRPT achieves
the following performance for minimizing total flow time.

i. Against the non-migratory optimal schedule: given pro-
cessors of speed (1 + ε)2, CRRε-SRPT is (2(2 + ε)/ε2)-
competitive.

ii. Against the migratory optimal schedule: given proces-
sors of speed (1 + ε)2, CRRε-SRPT is (5(2 + ε)/ε2)-
competitive.

By setting s = (1 + ε)2, the above corollary is equiva-

lent to that for any s > 1, CRRε-SRPT is s-speed 2(
√

s+1)

(
√

s−1)2
-

competitive against the non-migratory optimal schedule, and

s-speed 5(
√

s+1)

(
√

s−1)2
-competitive against the migratory optimal

schedule, respectively.

7. REFERENCES
[1] S. Albers, and H. Fujiwara. Energy-efficient

algorithms for flow time minimization. ACM Trans.
Alg., 3(4):49, 2007 .

[2] S. Albers, F. Muller, and S. Schmelzer. Speed Scaling
on parallel processors. In Proc. SPAA, pages 289–298,
2007.

[3] J. Augustine, S. Irani, and C. Swany. Optimal
power-down strategies. In Proc. FOCS, pages 530–539,
2004.

[4] N. Avrahami, and Y. Azar. Minimizing total flow time
and total completion time with immediate
dispatching. In Proc. SPAA, pages 11–18, 2003.

[5] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev.
Minimizing the flow time without migration. SIAM J.
on Comput., 31(5):1370–1382, 2002.

[6] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee.
Scheduling for speed bounded processors. To appear in
Proc. ICALP, 2008.

[7] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed
scaling to manage energy and temperature. In Proc.
FOCS, pages 520-529, 2004.

[8] N. Bansal, K. Pruhs and C. Stein. Speed scaling for
weighted flow time. In Proc. SODA, pages 805–813,
2007.

[9] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson,
P.N. Kudva, A. Buyuktosunoglu, J.D. Wellman, V.
Zyuban, M. Gupta, and P.W. Cook. Power-aware
microarchitecture: Design and modeling challenges for
next-generation microprocessors. IEEE Micro,
20(6):26–44, 2000.

[10] D. P. Bunde. Power-aware scheduling for makespan
and flow. In Proc. SPAA, pages 190–196, 2006.

[11] H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S.
Mak, and P. W. H. Wong. Energy efficient online
deadline scheduling. In Proc. SODA, pages 795–804,
2007.

[12] H. L. Chan, T. W. Lam and K. K. To. Nonmigratory
online deadline scheduling on multiprocessors. SIAM
J. on Comput., 34(3):669–682, 2005.

[13] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for
minimizing weighted flow time. In Proc. STOC, pages
84–93, 2001.

[14] C. Chekuri, A. Goel, S. Khanna, and A. Kumar.
Multi-processor scheduling to minimize flow time with
ε resource augmentation. In Proc. STOC, pages
363–372, 2004.

[15] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey,
and M. Neufeld. Policies for dynamic clock scheduling.
In Proc. OSDI, pages 73–86, 2000.

[16] S. Irani, R. K. Gupta, and S. Shukla. Algorithms for
power savings. In Proc. SODA, pages 37–46, 2003.

[17] S. Irani and K. Pruhs. Algorithmic problems in power
management. SIGACT News, 32(2):63–76, 2005.

[18] B. Kalyanasundaram and K. Pruhs. Eliminating
migration in multi-processor scheduling. J. Alg.,
38:2–24, 2001.

[19] S. Leonardi, and D. Raz. Approximating total flow
time on parallel machines. In Proc. STOC, pages
110–119, 1997.

[20] M. Li, B.J. Liu, and F.F. Yao. Min-energy voltage
allocations for tree-structured tasks. In Proc.
COCOON, pages 283–296, 2005.

[21] J. McCullough and E. Torng. SRPT optimally utilizes
faster machines to minimize flow time. In Proc.
SODA, pages 350–358, 2004.

[22] T. Mudge. Power: A first-class architectural design
constraint. Computer, 34(4):52–58, 2001.

[23] C. A. Phillips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation. In STOC, pages 140–149, 1997.

[24] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
Proc. SOSP, pages 89–102, 2001.

[25] K. Pruhs, J. Sgall, and E. Torng. Online scheduling.
In J. Leung, editor, Handbook of Scheduling:
Algorithms, Models and Performance Analysis, pages
15-1–15-41. CRC Press, 2004.

[26] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed
scaling of tasks with precedence constraints. In Proc.
WAOA, pages 307–319, 2005.

[27] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting
the best response for your erg. In Proc. SWAT, pages
14–25, 2004.

[28] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proc. OSDI,
pages 13–23, 1994.

[29] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proc. FOCS, pages
374–382, 1995.

Appendix. Global critical speed
In this appendix we justify the assumptions that at any
time the optimal schedules N ∗ and S∗ never run a job at
speed less than the global critical speed 1/(α − 1)1/α, and
the maximum speed T is at least the global critical speed.
The assumption stems from an observation (Lemma 20) that
if necessary, a multi-processor schedule can be transformed
without increasing the flow time plus energy so that it never
runs a job j at speed less than the global critical speed.

Lemma 20. Given any m-processor schedule S for a job
set J , we can construct an m-processor schedule S ′ for J
such that S ′ never runs a job at speed less than the global
critical speed and G(S ′) ≤ G(S). Moreover, S ′ needs mi-
gration if and only if S does; and max-speed(S ′) is at most
max{max-speed(S), 1/(α − 1)1/α}.

Albers and Fujiwara [1] observed that when scheduling a
single job j on a single processor for minimizing total flow
time plus energy, j should be executed at the global critical
speed, i.e., 1/(α − 1)1/α.

Lemma 21. [1] At any time after a job j has been run
on a processor for a while, suppose that we want to further
execute j for another x > 0 units of work and minimize the
flow time plus energy incurred to this period. The optimal
strategy is to let the processor always run at the global critical
speed.

Proof of Lemma 20. Assume that there is a time inter-
val I in S during which a processor i is running a job j below
the global critical speed. If S needs migration, we transform
S to a migratory schedule S1 of J such that job j is always
scheduled in processor i. This can be done by swapping the
schedules of processor i and other processors for different
time intervals. If S does not need migration, job j is en-
tirely scheduled in processor i and S1 is simply S . In both
cases, G(S1) = G(S).

We can then improve G(S1) by modifying the schedule of
processor i as follows. Let x be the amount of work of j
processed during I on processor i. First, we schedule this
amount of work of j at the global critical speed. Note that
the time required is shortened. Then we move the remaining
schedule of j backward to fill up the time shortened. By
Lemma 21, the flow time plus energy for j is preserved.
Other jobs in J are left intact. To obtain the schedule S ′,
we repeat this process to eliminate all such intervals I .

Assumption on T . We assume that the maximum speed
T is at least the global critical speed. Otherwise, any multi-
processor schedule including the optimal one would always
run a job at the maximum speed. It is because when running
a job below the global critical speed, the slower the speed,
the more total flow time plus energy is incurred. In other
words, the problem is reduced to minimizing flow time alone.

