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Abstract. All-optical networks have been largely investigated due to
their high data transmission rates. The key to the high speeds in all-
optical networks is to maintain the signal in optical form, to avoid the
overhead of conversion to and from electrical form at the intermediate
nodes. In the traditional WDM technology the spectrum of light that can
be transmitted through the optical fiber has been divided into frequency
intervals of fixed width with a gap of unused frequencies between them.
In this context the term wavelength refers to each of these predefined
frequency intervals.
An alternative architecture emerging in very recent studies is to move
towards a flexible model in which the usable frequency intervals are of
variable width. Every lightpath is assigned a frequency interval which
remains fixed through all the links it traverses. Two different lightpaths
using the same link have to be assigned disjoint sub-spectra. This tech-
nology is termed flex-grid or flex-spectrum.
The introduction of this technology requires the generalization of many
optimization problems that have been studied for the fixed-grid technol-
ogy. Moreover it implies new problems that are irrelevant or trivial in
the current technology. In this work we focus on bandwidth utilization in
path toplogy and consider two wavelength assignment, or in graph the-
oretic terms coloring, problems where the goal is to maximize the total
profit. We obtain bandwidth maximization as a special case.

Keywords: all-optical networks, flex-grid, approximation algorithms,
network design.

1 Introduction

The WDM technology: All-optical networks have been largely investigated in

recent years due to the promise of high data transmission rates. Its major appli-
cations are in video conferencing, scientific visualization, real-time medical imag-
ing, high-speed super-computing, cloud computing, distributed computing, and



media-on-demand. The key to high speeds in all-optical networks is to maintain
the signal in optical form, thereby avoiding the prohibitive overhead of conver-
sion to and from the electrical form at the intermediate nodes.

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology: several signals con-
necting different source - destination pairs may share a link, provided they are
transmitted on carriers having different wavelengths of light. These signals are
routed at intermediate nodes by optical cross-connects (OXCs) that can route
an incoming signal arriving from an incident edge to another, based on the sig-
nal’s wavelength. A signal transmitted optically from some source node to some
destination node over a wavelength is termed a lightpath.

Fixed-grid and flex-grid DWDM networks: Traditionally the spectrum of light
that can be transmitted through the fiber has been divided into frequency in-
tervals of fixed width with a gap of unused frequencies between them. In this
context the term wavelength refers to each of these predefined frequency inter-
vals. This technology is termed WDM, DWDM or UDWDM depending on the
gap of unused frequencies between the wavelengths.

An alternative architecture emerging in very recent studies is to move away
from this rigid DWDM model towards a flexible model in which the usable
frequency intervals are of variable width (even within the same link). Every
lightpath has to be assigned a frequency interval (sub-spectrum), which remains
fixed through all the links it traverses. As in the traditional model, two different
lightpaths using the same link have to be assigned disjoint sub-spectra. This
technology is termed flex-grid or flex-spectrum, as opposed to fixed-grid or fixed-
spectrum current technology. Specifically this new technology is feasible due to
gridless wavelength selective switches (WSS), based on a very large number of
pixels. This sliceable transceiver technology is not as mature, but is critical to
the economic viability of flex-grid.

The introduction of the flex-grid technology requires the generalization of
most of the many optimization problems that have been studied under the
fixed-grid technology. For instance, as a result of the variability of the width
of the sub-spectra, lightpaths have different transmission impairments, thus dif-
ferent regeneration needs. Another major difference is that in the fixed-grid it
is assumed that lightpath requests are for one wavelength’s bandwidth because
otherwise it can be treated as multiple independent requests. In the flex-grid
technology this assumption does not hold because two lightpaths assigned two
arbitrary wavelengths are not equivalent to one lightpath assigned two consecu-
tive colors. This assignments differ both in terms of regeneration needs, and in
terms of bandwidth utilization.

In this work we focus on the bandwidth utilization in path topology as a basic
network to analyze in this introductory work. Results on path topology may
extend to rings and trees that are other natural topologies in optical networks.
Such results often have applications in the scheduling context in which the path
network becomes the time axis. For problems that are provably hard in the
general case we consider special cases such as bounded load and proper intervals.



We assume that the lightpath requests have bandwidth requirements that
are multiples of some basic unit. This unit is smaller than the traditional wave-
length bandwidth. The entire bandwidth of the fiber isW units. We consider two
wavelength assignment, or in graph theoretic terms coloring, problems. In both
problems every lightpath request consists of a path P , with minimum and maxi-
mum bandwidth requirements aP and bP respectively, and a unit profit wP (i.e.,
the profit for each color assigned). In the first problem such a lightpath P has
to be assigned a set w(P ) of colors such that ap ≤ |w(P )| ≤ bP where color is a
number between 0 and W−1. In the second problem, in addition, the set w(P ) of
colors assigned to a lightpath P constitutes an interval of colors from some color
λ to some color λ′ ≥ λ so that the loss, due to the otherwise unused gap between
the colors, is avoided. We term these colorings as non-contiguous colorings (or
just colorings), and contiguous colorings respectively. Note that these colorings
correspond to ordinary colorings and to interval colorings of the intersection
graph of the paths.

The profit obtained from a lightpath is proportional to the number of colors
it is assigned and its unit profit, i.e. wP · |w(P )|. Our goal is to maximize the
total profit. We have an important special case when wP is equal to the length
of the path P . In this case the profit is the total bandwidth utilization of the
network.

Related Work: [1] is a general reference for optical networks. For a discussion of
their data transmission rates see [2]. [3, 4] suggest flex-grid DWDM as an alter-
native emerging architecture. The network implications of this new architecture
are explained in detail in [5], which refers to the key enabling technologies for
the flex-spectrum.

Closely related to our work is the coloring and interval coloring of interval
graphs. [6] is an excellent reference book on these subjects. To find an interval
coloring with minimum colors in an interval graph is known as the shipbuilding
problem, and also as the dynamic storage allocation problem. The problem is
stated in [7] as Np-Complete under the latter name (problem [SR2]). In [8] it is
conjectured to be in Apx-Hard. Interval coloring of interval graphs with different
optimization functions have also been studied in the literature (see for instance
[9]).

Our Contribution: In this paper we consider three profit maximization prob-
lems, Pmc is for non-contiguous coloring, Pmcc is for contiguous coloring and
Pmccc is for circularly contiguous coloring. Circularly contiguous coloring means
that the interval of colors assigned can be wrapped around from W − 1 back
to 0. For Pmc, we show a polynomial time optimal algorithm for arbitrary a
and b when the network is a path. For Pmcc, we derive an algorithm that con-
verts a circularly contiguous coloring to a contiguous coloring with a small loss
in the profit. We observe that Pmcc is Np-Hard for path networks and study
special cases. We study the case when the number of paths that using any given
edge is bounded by some constant and give a polynomial time optimal algo-
rithm. We further consider the case when the input set of paths is proper, i.e.,



no path properly contains another, and show an approximation algorithm with
approximation ratio 4/3 for some special values of a and b.

2 Preliminaries

Graphs and paths: In path (multi) coloring problems we are given a network
modeled by a graph G and a set of lightpaths modeled by a set P of non-
trivial paths of G. V (G) and E(G) denote the vertex set and edge set of G,
respectively. We denote by δG(v) the set of edges incident to a vertex v in G, i.e.
δG(v) = {e ∈ E(G)|v ∈ e}, and dG(v) = |δG(v)| is the degree of v in G. For a
directed graph G, A(G) denotes the arc set of G. We denote by δ−G(v) and δ+G(v)
the sets of incoming arcs and outgoing arcs of a vertex v, respectively. Similarly
d−G(v) =

∣∣δ−G(v)
∣∣ (resp. d+G(v) = ∣∣δ+G(v)∣∣) denotes the in-degree (resp. out-degree)

of v in G.
We consider paths as sets of edges, e.g. for two paths P, P ′ we denote by

P ∩ P ′ the set of their common edges, and by |P | the length of P . For an edge
e of G, we denote by Pe the subset of P consisting of the paths containing e,

i.e. Pe
def
= {P ∈ P : e ∈ P}. The number of these paths is termed the load on

the edge e, and denoted by Le(P)
def
= |Pe|. An important parameter we consider

is the maximum load over all the edges of G. We denote it by Lmax(P)
def
=

max {Le(P) : e ∈ E(G)}. Note that in the intersection graph of the paths P, the
subset of vertices corresponding to Pe is a clique. Therefore Lmax(P) is a lower
bound to the size of the maximum clique of the intersection graph.

In this work we focus on the case where G is a path, i.e. the intersection
graph of P is an interval graph. It is well known that every clique of an interval
graph corresponds to some Pe, therefore Lmax(P) is equal to the size of the
maximum clique. A set of paths that no two of them intersect is an independent
set of the intersection graph. When we say that a set of paths is a clique (or an
independent set) we implicitly refer to their intersection graph.

Colors and Colorings: In addition to the graph G and the set P of paths, we
are given an integer W that denotes the number of colors available. For two

integers i, j such that i ≤ j, [i, j]
def
= {k ∈ N : i ≤ k ≤ j}. The set of available

colors is Λ = [0,W − 1]. A set [i, j] ⊆ Λ is said to be an interval of colors. When

0 ≤ j < i ≤ W − 1 we define [i, j]
def
= [i,W − 1] ∪ [0, j]. In both cases [i, j] is

termed a circular interval of colors, i.e. colors that are consecutive on a ring (in
which 0 is the successor of W − 1).

A (multi)coloring is a function w : P 7→ 2Λ that assigns to each path P ∈ P a
subset of the set Λ of colors. A coloring w is valid if for any two paths P, P ′ ∈ P
such that P ∩ P ′ ̸= ∅ we have w(P )∩w(P ′) = ∅. For a color λ ∈ Λ, Pw

λ denotes
the set of paths assigned the color λ by w, i.e. Pw

λ = {P ∈ P : λ ∈ w(P )}. If w
is a valid coloring, then for any two paths P, P ′ ∈ Pw

λ we have P ∩ P ′ = ∅. In
other words, Pw

λ is an independent set of P. When there is no ambiguity, we
omit the superscript w and denote Pw

λ as Pλ.



A coloring is contiguous (resp. circularly contiguous), if for every P ∈ P,
w(P ) is an interval (resp. circular interval) of colors.

Vector notation and profits: Throughout the paper we use vectors of integers
indexed by the elements of P. We denote vectors with bold typeface, e.g. v =
{vP : P ∈ P}. The vector 0 is the zero vector, 1 is the vector consisting of a 1
in every index.

The size vector of a coloring w is a vector s(w) such that s(w)P = |w(P )| for
every P ∈ P, i.e. the entries of s(w) are the number of colors assigned to each
path. We say that a coloring w is a (a−b)-coloring if a ≤ s(w) ≤ b, and w is a
v-coloring if it is a (v − v)-coloring. An ordinary coloring in which every path
is assigned one color corresponds to a 1-coloring, and clearly any coloring is a
(0−W · 1)−coloring.

Given a real vector w of weights, the profit pw(P,w) obtained by a coloring

w, from a path P is pw(P,w)
def
= wP · |w(P )|. The total profit due to a coloring

w is pw(P,w)
def
=

∑
P∈P pw(P,w).

In this work we use the term maximum independent set to mean an indepen-
dent set with maximum profit, and denote the profit obtained from such a set as
α(P,w). Usually the weight function under consideration will be clear from the
context and we will use pw(P) (resp. α(P)) as a shorthand for pw(P,w) (resp.
α(P,w)).

We note that pw(P) =
∑

P∈P pw(P ) =
∑

P∈P wP · |w(P )| = w · s(w). We
can write the profit of a valid coloring w, from a path P as the sum of the profits
obtained from every color of P , i.e. pw(P ) = wP · |w(P )| =

∑
λ∈w(P ) wP and

therefore

pw(P) =
∑
P∈P

∑
λ∈w(P )

wP =
∑
λ∈Λ

∑
P∈Pw

λ

wP ≤
∑
λ∈Λ

α(P) = W · α(P)

where the inequality follows from the fact that Pw
λ is an independent set.

The Problem(s): In this work we consider the following problem and its variants.

Profit Maximizing Coloring(Pmc)
Input: A tuple (G,P,W,a,b,w) where G is a graph, P is a set of paths on G,
W is an integer, a and b are two integer vectors and w is a real vector indexed
by P.
Output: A valid (a− b)-coloring w.
Objective: Maximize pw(P,w).

The problems Profit Maximizing Contiguous Coloring (Pmcc) and Profit
Maximizing Circularly Contiguous Coloring (Pmccc) problems are variants of
Pmc in which the coloring w has to be contiguous, and circularly contiguous,
respectively.

We denote the optimum of an instance (G,P,W,a,b,w) of a problem Prb ∈
{Pmc,Pmcc,Pmccc} by OptPrb(G,P,W,a,b,w). A contiguous coloring is a



circularly contiguous coloring, which is in turn a coloring. Therefore we have:

OptPmcc(G,P,W,a,b,w) ≤ OptPmccc(G,P,W,a,b,w)

≤ OptPmc(G,P,W,a,b,w). (1)

Any coloring, and in particular an optimal one that we denote by w∗, satisfies
pw

∗
(P) ≤ W · α(P). Therefore we have

OptPmc(G,P,W,a,b,w) ≤ W · α(P).

We now observe that the above inequalities are tight when the lower and upper
bounds a and b are trivial. In other words, in this case all the three problems
equivalent to the problem of finding α(P).

Proposition 1. If a = 0,b = W · 1 then

OptPmcc(G,P,W,a,b,w) = OptPmccc(G,P,W,a,b,w)

= OptPmc(G,P,W,a,b,w) = W · α(P).

Proof. It suffices to show that OptPmcc(G,P,W,a,b,w) ≥ W · α(P). Indeed,
let I be a maximum independent set of P. The coloring that assigns Λ to ever
path of I and ∅ to all the rest is a valid contiguous (0 − W · 1)-coloring with
profit W · α(P). ⊓⊔

Path Networks: When G is a path we assume without loss of generality that
the vertex set of G is [1, n] where the vertices are numbered according to their
order in G. We sometimes refer to the vertices and edges of G as drawn on the
real line where 1 is the leftmost vertex and n is the rightmost one. Given this
numbering, s(P ) and t(P ) denote the endpoints of a path P with s(P ) < t(P ).
We term these vertices as the start and termination vertices of P , respectively.
We denote a sub-path of G with endpoints i < j as [i, j], i.e. P = [s(P ), t(P )].
Given a sub-path δ of G, Pδ denotes the set of all paths of P that are contained
in δ.

3 Profit Maximizing Colorings

A maximum independent set can be calculated in polynomial time when the
network is a path [6]. By Proposition 1 this implies an algorithm for all three
problems for the case where G is a path and a = 0 and b = W · 1. In this
section we extend the study to path networks for arbitrary a and b, and provide
a polynomial-time optimal algorithm.

We first introduce notations and definitions that we use in this section. Let w
be a coloring of a set Q of paths, and Q′ ⊆ Q. w′ = w

∣∣
Q′ denotes the coloring w

restricted to Q′, i.e. w′(P ) = w(P ) whenever P ∈ Q′, and w′(P ) = ∅ otherwise.
We reduce Pmc to the Minimum Cost Maximum Flow (MinCostMaxFlow)

problem that is well known to be solvable in polynomial time [10]. Instances of



MinCostMaxFlow are tuples (H, s, t, κ, κ′, c) where H is a directed graph,
s ∈ V (H) (resp. t ∈ V (H)) is the source (resp. sink) vertex, κ : A(H) 7→ R
(resp. κ′ : A(H) 7→ R) determines the lower (resp. upper) bounds of the flow on
every arc, and finally c : A(H) 7→ R determines the cost of a unit flow on every
arc. The goal is to find a flow f : A(H) 7→ R from s to t that has a minimum
cost among all maximum flows, i.e. among all flows of maximum amount, as
follows. Recall that the amount of a flow f is the amount of flow entering t, i.e.∑

e∈δ−H(t) f(e) and its cost c(f) is
∑

e∈A(H) f(e) · c(e).
Given an instance I = (G,P,W,a,b,w) of Pmc, we build a flow net-

work N(I) = (H, s, t, κ, κ′, c). For convenience we introduce two additional
semi-infinite (i.e. having one endpoint) paths P (−) = [−∞, 1] and P (+) =
[n,∞] with zero profit, and we define P ′ = P ∪

{
P (−), P (+)

}
. V (H) = S ∪ T

where T = {tP : P ∈ P ′} , S = {sP : P ∈ P ′}. A(H) = A1 ∪ A2 where A1 =
{(sP , tP ) : P ∈ P ′} and A2 = {(tP , sP ′) : s(P ′) ≥ t(P )}. We proceed with the
bounds and costs of the arcs. For every path P ∈ P the bounds and costs
on the corresponding arc a = (sP , tP ) ∈ A1 are κ(a) = aP , κ

′(a) = bP and
c(a) = −wP . For each one of the two arcs a corresponding to the two semi-
infinite paths we set κ(a) = 0, κ′(a) = W and c(a) = 0. For an arc a = (tP , sP ′)
of A2 we set κ(a) = 0, κ′(a) = ∞ and c(a) = 0. Finally we set s = sP (−) and
t = tP (+) .

Lemma 1. For every feasible coloring w of an instance I of Pmc, there is a
maximum flow f (w) of N(I), such that c(f (w)) = −pw(P). Moreover, given a
maximum flow f of N(I) a coloring w such that f (w) = f can be found in
polynomial-time.

Proof. We first observe that the maximum flow of N(I) is W . Indeed a flow of
amount W can be pushed from sP (−) via tP (−) and sP (+) to tP (+) . On the other
hand this is a maximum flow because the arc (sP (−) , tP (−)) constitutes a cut of
weight W .

Given a feasible coloring w of I we define the flow f (w) as the sum of W flows

f
(w)
1 , f

(w)
2 , . . . , f

(w)
W . For each color λ ∈ Λ, f

(w)
λ corresponds to the independent

set Pw
λ . f

(w)
λ pushes one unit of flow from sP (−) to tP (+) over the path that

consists of the arcs of A1 corresponding to the paths of Pw
λ and the arcs of A2

connecting two consecutive paths of Pw
λ . The cost of an A2 arc is zero, and the

cost of an A1 arcs corresponding to a path P is −wP . Therefore the cost of fλ
is c(f

(w)
λ ) = −

∑
P∈Pw

λ
wP . Summing up over all colors λ we get

c(f (w)) =
∑
λ∈Λ

c(f
(w)
λ ) = −

∑
λ∈Λ

∑
P∈Pw

λ

wP = −pw(P).

f (w) satisfies the bounds κ and κ′. Indeed, for an arc a of A1 corresponding to a
path P ∈ P ′ we have f (w)(a) = |w(P )| and κ(a) = aP ≤ |w(P )| ≤ bP = κ′(a).
For the arcs of A2 we have κ(a) = 0 ≤ f (w)(a) ≤ ∞ = κ′(a).

Any maximum flow f of N(I) can be split, in polynomial time, into W unit
flows f1, f2, . . . , fW . Each unit flow uses a path from sP (−) to tP (+) . Such a path



starts with an A1 arc, and alternates between A1 and A2 arcs. The set of odd
arcs corresponds to an independent set paths of P. w is defined such that Pw

λ is
the independent set corresponding to fλ. ⊓⊔

Corollary 1. The profit pw(P) is maximized when c(f (w)) is minimum.

This implies the following a polynomial time algorithm for Pmc: Given an
instance I, calculate a minimum cost maximum flow f of N(I) and return a
coloring w such that f (w) = f .

4 Profit Maximizing Contiguous Colorings

In this section we consider contiguous colorings. We first observe that the prob-
lem is Np-Hard even if the graph is a path. In Section 4.1 we compare circularly
contiguous colorings to contiguous colorings and we provide an algorithm that
transforms a circularly contiguous coloring to a contiguous coloring with a small
loss in the profit. In Section 4.2 we consider the case where the load on the edges
is bounded by some constant and provide a polynomial-time algorithm for this
case. In Section 4.3 we provide an approximation algorithm for another special
case where the paths constitute a proper set.

Let G be a graph and f a weight function f : V (G) → N on its vertices.
An interval coloring w of G, f assigns an interval w(v) of f(v) integers to every
vertex v of G, such that f(v) ∩ f(v′) = ∅ whenever v and v′ are adjacent in G.
The weight f(K) of a clique K ⊆ V (G) is the sum

∑
v∈K f(v) of the individual

weights of its vertices. The clique number ω(G, f) of the weighted graph (G, f) is
the maximum weight of its cliques. The interval chromatic number of χ(G, f) is
the minimum number of colors used by an interval coloring of (G, f) [6]. Clearly
χ(G, f) ≥ ω(G, f). The problem of finding the interval chromatic number of a
weighted interval graph is also known as the shipbuilding problem, and also as the
dynamic storage allocation problem. This problem is known to be Np-Complete
[7]. Therefore

Lemma 2. Pmcc is Np-Hard even when G is a path.

Proof. Let (G, f) be a weighted interval graph, and P the set of paths on a
path H which represent G. Let w be any weight function on P. The instance
(H,P,W, f, f,w) is feasible if and only if the interval chromatic number of (G, f)
is at most W . ⊓⊔

4.1 Comparison with Circularly Contiguous Colorings

In this section we present the algorithm CircularToContiguous that con-
verts a circularly contiguous (a − b)-coloring wcc to a contiguous (⌈a/2⌉ − b)-
coloring wc such that pw

c

(P) ≥ 3
4p

wcc

(P).
A circularly contiguous interval [i, j] is either contiguous or the disjoint union

of two contiguous intervals [j,W−1], [0, i]. The size of one of these sub-intervals is



at least half of the size of the entire interval. CircularToContiguous chooses
a color λ̄ uniformly at random and renames all the colors such that λ̄ becomes
0, (λ̄ + 1) mod W becomes 1, and so on. Then to every path P for which
the obtained coloring is not contiguous it assigns the biggest among the two
corresponding contiguous colorings.

wc is clearly a contiguous (⌈a/2⌉ − b)-coloring. For a given path P we now
calculate the expected value of |wc(P )|. Let ℓ = |wcc(P )|, and [i, j] = wcc(P ).
We consider three cases: (a) λ̄ is not in [i+1, j]. In this case, after the renaming
phase, wc(P ) is contiguous. Therefore |wc(P )| = ℓ. (b) λ̄ = i+ k and k <= ℓ/2.
In this case |wc(P )| = ℓ − k. (c) λ̄ = i + k and l/2 < k < l. In this case
|wc(P )| = k. The probability that λ̄ gets any given value is 1/W. We consider
only the case that ℓ is even which leads to a smaller expected value. We have

E[|wc(P )|] = 1

W

 ℓ/2∑
k=1

(ℓ− k) +

l−1∑
k=ℓ/2+1

k + (W − ℓ+ 1)ℓ


=

1

W

(
3

4
ℓ2 − ℓ+ (W − ℓ+ 1)ℓ

)
= ℓ− ℓ

W

ℓ

4
≥ 3

4
ℓ =

3

4
|wcc(P )| .

We use the above inequality and linearity of expectation to calculate the
expected value of the solution.

E[pw
c

(P)] = E[w · s(wc)] = w · E[s(wc)] ≥ 3

4
E[s(wcc)] =

3

4
pw

cc

(P).

Therefore

Lemma 3. There is a randomized polynomial-time algorithm that converts a
valid circularly contiguous (a−b)-coloring wcc to a valid contiguous (⌈a/2⌉−b)-
coloring wc satisfying pw

c

(P) ≥ 3
4p

wcc

(P).

The above randomized algorithm can be de-randomized by trying every pos-
sible value of W and picking up the best result. Clearly at least one solution is
at least as good as the expected value. This de-randomization does not lead to a
polynomial-time algorithm whenever the value of W is exponential in the input
size. An efficient de-randomization can be obtained by guessing each one bit of
λ̄ at a time. We conclude

Lemma 4. There is a deterministic polynomial-time algorithm that converts a
valid circularly contiguous (a−b)-coloring wcc to a valid contiguous (⌈a/2⌉−b)-
coloring wc satisfying pw

c

(P) ≥ 3
4p

wcc

(P).

4.2 Bounded Load

Let I = (G,P,W,a,b,w) be an instance of Prb ∈ {Pmc,Pmcc,Pmccc}, and
let v ∈ [1, n]. We denote by I(v+) the instance obtained from I by restrict-
ing the paths set to ones that start at vertex v or before. Formally I(v+) =



(G,P(v+),W,a(v),b(v+),w(v+)) where P(v+) = {P ∈ P : s(P ) ≤ v}, a(v) = a
∣∣
P(v+) ,

b(v+) = b
∣∣
P(v+) and w(v+) = w

∣∣
P(v+) .

We say that two colorings w,w′ of two subsets Q,Q′ of P agree if w(P ) =
w′(P ) whenever P ∈ Q ∩ Q′, and we denote this by w ∼ w′. Let w̄ be a col-
oring of the paths Pev where ev denotes the edge {v − 1, v}. We denote by
OptPrb(I, v, w̄) the optimum of problem Prb for the instance I(v) when the
feasible colorings are restricted to colorings that agree with w̄. As our goal in
this section is to provide an optimal algorithm for Pmccc, and this implies an
optimal algorithm for all problems, in the sequel we refer only to this problem,
although the arguments hold for all three problems. Clearly

OptPmcc(I) = OptPmcc(I
(n)) = max {OptPmc(I, n, w̄) : w̄ is a cont. coloring of Pen} .

Consider a contiguous coloring w of P(v+), and a contiguous coloring w− of
P(v−1) that agrees w. We have

pw(P(v+)) = pw
−
(P(v−1)) +

∑
P s.t. s(P )=v−1

|w(P )| ·wP .

We note that the second term depends only on w
∣∣
Pev

. Among all contiguous

colorings w that agree with a given contiguous coloring w̄ of Pev , the second
term is a constant. Therefore the maximum is obtained at the maximum of the
first term. We conclude

OptPmcc(I, v, w̄) = max
w̄−∼w̄

{
OptPmcc(I, v − 1, w̄−)

}
+

∑
P s.t. s(P )=v−1

|w(P )| ·wP .

These equations imply the dynamic programming algorithm ContColor-
DynProg. For simplicity ContColorDynProg calculates the optimum of the
instance without explicitly finding an optimal coloring. It can be easily extended
to return an optimal coloring.

The loops at lines 3 and 6 constitute the dominant part in the running time of
the algorithm. A contiguous coloring of Pev can be found by fixing a permutation
of the ℓ = Lev paths, and assigning to each path a positive number so that their
sum does not exceed W . The number of permutations is ℓ! and the number of

possible assignments of the numbers is

(
W
ℓ

)
. Therefore each one of the loops

iterates at most ℓ!

(
W
ℓ

)
≤ W ℓ times, and the total number of iterations is at

most W 2·ℓ ≤ W 2·Lmax(P). Therefore

Lemma 5. There is a polynomial-time algorithm that solves Pmc(G,P,W,a,b,w)
when G is a path network and Lmax(P) is bounded by a constant.

4.3 Proper Sets of Paths

A set of paths is proper if no path in the set properly contains another. The
intersection graph of a proper set of paths on a path graph is a proper interval



Algorithm 1 ContColorDynProg I = (G,P,W,a,b,w)

1: OptPmc(I, 1, wempty)← 0. ◃ wempty is the empty coloring.
2: for v = 2 to v = n do
3: for all Contiguous colorings w̄ of Pev do
4: C ←

∑
P s.t. s(P )=v−1 |w(P )| ·wP .

5: M ← 0.
6: for all Contiguous colorings w̄− of Pev−1 s.t. w̄− ∼ w̄ do
7: if OptPmcc(I, v − 1, w̄−) > M then
8: M ← OptPmcc(I, v − 1, w̄−).
9: end if
10: end for
11: OptPmcc(I, v, w̄)←M + C.
12: end for
13: end for
14: return max {OptPmc(I, n, w̄) : w̄ is a contiguous coloring of Pen}.

graph. Let P, P ′ be two paths in a proper set P of paths. s(P ) ≤ s(P ′) if and
only of t(P ) ≤ t(P ′).

We present a simple algorithm ProperToCircular that converts any col-
oring w of a proper set of paths can to a circularly contiguous coloring wcc with
the same profit. ProperToCircular iterates over the paths according to the
total order implied by their start vertices. Every path is assigned a circular in-
terval [λ, λ+ |w(P )| − 1] where λ = 0 for the first path, and for each subsequent
path λ is the last color of the previous path, plus one. Clearly wcc is a circularly
contiguous (a− b)-coloring and pw

cc

(P) = pw(P). It remains to show that wcc

is valid.
Assume, by way of contradiction, that wcc is not valid. Then there are two

intersecting paths P, P ′ ∈ P and a color λ such that λ ∈ wcc(P ) ∩ wcc(P ′).
Assume without loss of generality that s(P ) ≤ s(P ′), and let e be the last edge
of P , i.e. e = {t(P )− 1, t(P )}. As P is a proper set of paths and P ∩P ′ ̸= ∅, we
have e ∈ P ′. Moreover any path P ′′ such that s(P ) ≤ s(P ′′) ≤ s(P ′) contains
the edge e. Therefore the set Q of all paths whose start vertices are between
s(P ) and s(P ′) (inclusive) is a subset of Pe. As ProperToCircular considers
the paths in the order of their start vertices, and λ was used in both P and P ′,
this means that the number of colors assigned by wcc to the paths of Q exceeds
W . However, this is exactly the number of colors assigned to these paths by
w. Then w assigns more than W colors to the paths of Pe, therefore invalid,
contradicting our assumption.

Combining with (1) we conclude

Lemma 6. When G is a path and P is a proper set of paths

OptPmccc(G,P,W,a,b,w) = OptPmc(G,P,W,a,b,w).

Moreover there is a polynomial-time algorithm solving Pmccc(G,P,W,a,b,w)
optimally.



Combining this with Lemma 4 we obtain the following two corollaries.

Corollary 2. There is a deterministic polynomial-time 4/3-approximation algo-
rithm for Pmcc (G,P,W,a,b,w) when G is a path, P is a proper set of paths,
b is a valid coloring and a ≤ ⌈b/2⌉.

5 Future Work

A few open problems regarding contiguous colorings in path networks that are
closely related to our results, namely: a) to find an approximation algorithm for
Pmcc, b) to obtain prove APX-hardness of Pmcc, c) To determine if Pmcc is
polynomial time solvable for proper intervals.

Another research direction is to extend the results to other topologies, es-
pecially those that are relevant in optical networks, such as rings, trees, grids,
bounded treewidth. Finally, as stated in the introduction, the flex-grid tech-
nology opens a wide range of problems, such as regenerator placement, traffic
grooming etc., that have been studied in the fixed-grid context, to be reconsid-
ered in the flex-grid context.

References

1. R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki. Optical Networks: A Practical
Perspective. Morgan Kaufmann Publisher Inc., San Francisco, 2009.

2. R. Klasing. Methods and problems of wavelength-routing in all-optical networks.
In Proceeding of the MFCS’98 Workshop on Communication, August 24-25, Brno,
Czech Republic, pages 1–9, 1998.

3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka.
Spectrum-efficient and scalable elastic optical path network: architecture, bene-
fits, and enabling technologies. Comm. Mag., 47:66–73, nov. 2009.

4. O. Gerstel. Realistic approaches to scaling the IP network using optics. In Optical
Fiber Communication Conference and Exposition and the National Fiber Optic
Engineers Conference (OFC/NFOEC), pages 1 –3, march 2011.

5. O. Gerstel. Flexible use of spectrum and photonic grooming. In Photonics in
Switching, OSA (Optical Society of America) Technical Digest, page paper PMD3,
2010.

6. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals
of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The
Netherlands, The Netherlands, 2004.

7. M. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman, 1979.
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