
Station Assignment with Reallocation

Miguel A. Mosteiro1, Yulia Rossikova1, and Prudence W.H. Wong2

1 Dept. of Computer Science, Kean University, Union, NJ, USA.
{mmosteir,rossikoy}@kean.edu

2 Dept. of Computer Science, University of Liverpool, Liverpool, UK.
pwong@liverpool.ac.uk

Abstract. We study a dynamic allocation problem that arises in various scenar-
ios where mobile clients joining and leaving have to communicate with static
stations via radio transmissions. Restrictions are a maximum delay, or laxity,be-
tween consecutive client transmissions and a maximum bandwidth that a station
can share among its clients. Clients are assigned to stations so that every client
transmits under those restrictions. We consider reallocation algorithms, where
clients are revealed at its arrival time, the departure time is unknown until they
leave, and clients may be reallocated to another station, but at a cost determined
by the laxity We present negative results for related previous protocols that mo-
tivate the study; we introduce new protocols that expound trade-offs between
station usage and reallocation cost; we prove theoretically bounds on our perfor-
mance metrics; and we show through simulations that, for realistic scenarios, our
protocols behave even better than our theoretical guarantees.

1 Introduction

We study a dynamic allocation problem in scenarios where data on mobile devices has
to be gathered and uploaded periodically to one of the staticaccess points available3.
Examples includewearable health-monitoring systems, where data gathered via physio-
logical sensors on ambulatory patients must be periodically uploaded, andparticipatory
sensing, where mobile device users upload periodically environment information.

Mobile devices, calledclients, join and leave continuously, and they communicate
with the static access points, calledstations, The clients’ ephemeral nature is modeled
by thelife interval of each client (from its arrival to departure), during whichthe client
has to communicate with some stationperiodically. Periodic communication is modeled
by the client’slaxity, which bounds the maximum duration a client is not transmitting
to some stations. The intrinsically shared nature of the access to stations is modeled by
a maximum sharedstation bandwidth, by aclient bandwidth, and by the client laxity.

Based on the above model, we study the problem of assigning clients to stations
so that every client transmits to some stations satisfying the laxity and bandwidth con-
straints. We consider settings where clients are revealed at its arrival time and their
departure time is only revealed when they depart (as in online algorithms). Clients may
be reassigned from one station to another and we call such reassignmentreallocation.

3 We consider an upstream model, but the same results apply to downstreamcommunication.

2

Intuitively reallocation causes more disturbance to a client with small laxity. There-
fore, we assume reallocation incurs a cost inversely proportional to a client’s laxity.
We aim to reduce the number of active stations and reduce the reallocation cost. How-
ever, these two goals are orthogonal, e.g., we can reallocate the clients every time a
client arrives/departs so that the number of active stations is minimized while incurring
a very high reallocation cost; alternatively we can keep thereallocation cost to zero but
we may use many active stations after a sequence of client departures. In this paper,
we aim to obtain a balance between the two performance metric. We call this problem
Station Assignment Problem with Reallocation(SA).

Previous work. The closest work to the present paper is [12], where reallocation algo-
rithms were presented for Windows Scheduling (WS). The WS problem [6,7,11,12] is
a particular case of SA where the bandwidth requirement of each client is the same and
each channel (a.k.a. station in our case) can only serve one client at a time. In [12], a
unit cost is incurred for each client reallocated and the objective is to minimize an ag-
gregate sum reflecting the amortized reallocation cost and the number of channels used.
A protocol called Classified Reallocation is shown to guarantee an amortized constant
number of reallocations. This protocol is also evaluated experimentally together with
two other protocols Preemptive Reallocation and Lazy Reallocation.

WS [6,7,11] was first studied without reallocation and the objective function was the
number of channels. Both static case where clients never depart [6,7] and dynamic case
where clients may depart [11] have been studied. For the dynamic case, the comparison
is against peak load which may occur at different time in the online algorithm and
the optimal offline algorithm. In [12] and this work, we compare against current load.
Clients with same laxity were considered in [14]. We also extend the objective function
in [12] such that the number of reallocated clients is weighted inversely by their laxity,
and we provide trade-off between reallocation cost and number of stations.

SA and other assignment problems.Our problem differs from various scheduling
problems. The load balancing problem [4] also assigns tasksof different load to servers,
yet does not consider periodic tasks and disallow reallocation. Interval coloring [1]
concerns the number of machines used but not periodic tasks.Periodic appearance of
tasks in real time scheduling [8] is determined by the input but not by the algorithm to
satisfy laxity constraint. The SA problem is also related tob-matching [15], fractional
matching [5], and adwords [13]. Among other details, the objective function is different.

There are two typical approaches of handling orthogonal objectives: to minimize
the summation of two costs, e.g., energy efficient flow time scheduling minimizes the
sum of energy usage and total flow time of the tasks [2]; and to formulate two approx-
imation ratios, e.g., energy efficient throughput scheduling algorithm ist-throughput-
competitive ande-energy-competitive [10]. We adopt the later approach.

Reallocation has been considered in scheduling [3, 9, 16]. In [9], a distinction is
made between reassignment within server (reschedule) and between servers (migra-
tion). Here, we assume rescheduling within a station is freeand we use “reallocation”
to refer to reassignment to other stations. It is often that the number/size of jobs reallo-
cated is bounded, e.g., by a function of the number of jobs in the system [9], the size
of the arriving job [16] or the number of machines [3]. In our problem, we bound the
reallocation by the weight (cumulative inverse laxity) of the clients departed.

3

2 Our Results

In this paper, we study reallocation algorithms for SA assuming that clients have ar-
bitrary laxities and bandwidth requirements, that clientsdepart from the system at ar-
bitrary times, and that they may be reallocated, but at some cost proportional to the
resources needed. Specifically, our contributions are the following.

– We define a characterization of SA reallocation algorithms,which we call(α, β)-
approximation, as a combination of the competitive ratio onstation usage (α) and
the cost of reallocations contrasted with the resources released by departures (β).

– We show a sequence of negative results proving that worst-case guarantees cannot
be provided by previous protocols Classified Reallocation and Preemptive Reallo-
cation [12], even if they are modified to our reallocation cost function.

– We present a novel SA protocol called Classified Preemptive Reallocation (CPR)
where clients areclassifiedaccording to laxity and bandwidth requirements, and
upon departures the remaining clients arepreemptivelyreallocated to minimize sta-
tion usage, but only within their class. The protocol presented includes a range of
classifications that exposes trade-offs between reallocation cost and station usage.
In fact, we found first experimentally what is the classification function that better
balances these goals, and then we provided theoretical guarantees for all functions.

– In our main theorem, we prove bounds on both of our performance metrics, and we
instantiate those bounds into three classifications and forspecific scenarios in two
corollaries (refer to Section 5 for the specific bounds.)

– Finally, we present the results of our extensive simulations that allowed us to find
the function that best balances station usage and reallocation cost. Additionally, our
simulations show that, for a variety of realistic scenarios, CPR performs better than
expected by the worst-case theoretical analysis, and closeto optimal on average.

3 Definitions

Model. We consider a setS of stations and a setC of clients. Each client must transmit
packets to some station. Time is slotted so that each time slot is long enough to transmit
one packet. A client can be assigned to transmit to only one station in any given time
slot. Starting from some initial time slot1, we refer to the infinite sequence of time slots
1, 2, 3, . . . asglobal time. Each clientc ∈ C is characterized by anarrival time ac and
a departure time dc, that define alife interval τc = [ac, dc] in which c is active. That
is, clientc is active from the beginning of time slotac up to the end of time slotdc. We
defineC(t) ⊆ C to be the set of clients that are active during time slott. With respect
to resources required, each clientc is characterized by abandwidth requirementbc, and
a laxity 0 < wc ≤ |τc|, such thatc must transmit to some station inS at least one packet
within eachwc consecutive time slots inτc 4. On the other hand, each stations ∈ S is
characterized by astation bandwidth or capacity B, which is the maximum aggregated
bandwidth of clients thatmaytransmit tos in each time slot.

4 To maintain low station usage, we will assume that the laxity can be relaxed during realloca-
tion.

4

Notation. Let theschedule of a clientc be an infinite sequenceσc of values from the
alphabet{0} ∪ S. Let σc(t) be thetth value ofσc. A station assignment is a setσ of
schedules that models the transmissions from clients to stations. That is, for each client
c ∈ C and time slott, it is σc(t) = s if c is scheduled to transmit to stations ∈ S in
time slott, andσc(t) = 0 if c does not transmit in time slott. If a clientc is scheduled
to transmit to a stations we say thatc is assigned to stations. We say that a station that
has clients assigned isactive, andinactive or empty otherwise.
Problem. The Station Assignment problem (SA) is defined as follows. For a given
set of stations and set of clients, obtain a station assignment such that (i) each client
transmits to some station at least once within each period oflength its laxity during its
life interval, (ii) in each time slot, no station receives from clients whose aggregated
bandwidth is more than the station capacity. Notice that, for any finite set of stations,
there are sets of clients such that the SA problem is not solvable. We assume in this
work thatS is infinite and what we want to minimize is the number ofactivestations.
Algorithms. We studyreallocation algorithms for SA. That is, the parameterswc and
bc needed to assign the client to some station are revealed at timeac, but the departure
time dc is unknown to the algorithm until the client actually leavesthe system (as in
online algorithms). Then, at the beginning of time slott, an SA reallocation algorithm
returns the transmission schedules of all clients that are active in time slott, possibly
reassigning some clients from one station to another. (I.e., the schedules of clients that
were already active may be changed from one time slot to another.) We refer to the
reassignment of one client as areallocation, whereas all the reassignments that happen
at the beginning of the same time slot are called areallocation event.
Performance Metric. Previous work [12] has considered the number of clients real-
located as the reallocation cost. In the present work, we consider a different scenario
where the cost of reallocating a client is proportional to resources requested by that
client. Specifically, we assume a cost for the reallocation of each clientc of ρ/wc,
whereρ > 0 is a parameter. Then, lettingR(ALG, t) be the cost of the reallocation
event incurred by algorithmALG at timet, andR(ALG, t) be the set of clients being
reallocated, the overall cost is the following.

R(ALG, t) = ρ
∑

c∈R(ALG,t)

1

wc
. (1)

We will drop the specification of the algorithm whenever clear from the context.
With respect to performance, we aim for algorithms with low reallocation cost and

small number of active stations. Unfortunately, these are contradictory goals. Indeed,
the reallocation cost could be zero if no client is reallocated (online algorithm), but the
number of active stations could be as big as the number of active clients (e.g. initially
multiple clients assigned to each station, and then all but one client from each active
station depart). On the other hand, the number of active stations could be minimized
applying an offline algorithm on each time slot, but the reallocation cost could be large.
Thus, we characterize algorithms with both metrics as follows.

For any SA algorithmALG, letS(ALG, t) be the number of active stations at time
t in the schedule, letD(ALG, t) be the set of clients departed since the last realloca-
tion up to timet. Denoting

∑

c∈C′ 1/wc as theweight of the clients inC ′ ⊆ C, let

5

D(ALG, t) be the weight of the clients departed since the last reallocation up to time
t, that is,D(ALG, t) =

∑

c∈D(ALG,t) 1/wc. Also, we denote the minimum number of
active stations needed at timet asS(OPT, t). Throughout, we will drop the specifica-
tion of the algorithm whenever it is clear from the context. Then, we say that an SA
reallocation algorithmALG achieves an(α, β)-approximation if the following holds
for any input.

max
t

S(ALG, t)

S(OPT, t)
≤ α

max
t

R(ALG, t)

D(ALG, t)
≤ β.

In words, the overhead on the number of stations used byALG is never more than
a multiplicative factorα over the optimal, and the reallocation cost, amortized on the
“space” left available by departing clients is never more thanβ. The latter is well de-
fined since reallocations only occur after departures. Notice that these ratios are strong
guarantees, in the sense that they are the maximum of the ratios instead of the ratio
of the maxima. (This distinction was called previously in the literatureagainst current
load versusagainst peak loadrespectively.) Moreover, the reallocation ratio computed
as the maximumover reallocation eventsis also stronger than the ratio of cumulative
weights since the system started.

4 Algorithms

Broadcast Trees.A common theme in WS algorithms withperiodictransmission sched-
ules is to represent those schedules withBroadcast Trees[6, 11, 12]. See Figure 1 for
illustration. Throughout the paper, we refer to a set of broadcast trees as theforest, and
to the distance in edges from a node to the root as thedepth. Generalizing, the2d nodes
at depthd in a complete binary tree represent the time slotst mod 2d (see Figure 1(a)).
Then, to indicate that some (periodic) time slot has been reserved for a clientc to trans-
mit to a given stations, we say informally thatc is assigned to the corresponding node
in the broadcast tree ofs. Throughout the rest of the paper, we use both indistinctively.
Refer to [6,11] for further details on broadcast trees.
WS algorithms. Chan et al. [11] presented a WS algorithm preserving the following
invariant. For each station, the broadcast tree has at most one available leaf at each
depth. In order to preserve this invariant, when a client departs, the remaining clients
in the same tree are rearranged. If reallocations among trees are possible, the algorithm
Preemptive Reallocation(PR) [12] extended the same idea to all trees, maintaining the
invariant thatthroughout all treesthere is at most one available leaf at each depth. For
laxities that are powers of2, PR achieves an optimal station usage. However, we show
in Lemma 1 (1) and (2) that simple modification to PR leads to negative results.

A WS algorithm with provable bounded reallocation cost guarantees was shown
also in [12]. The protocol, calledClassified Reallocation(CR), guarantees that all
clients assigned to the same station have the same laxity, except for one distinguished
station that handles all laxities linear and above. To attain constant amortized realloca-
tion cost, clients are moved to/from the distinguished station only after the number of

6

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

t mod 4 ≡ 1

1 2 3 4 5 6 7 8 910111213. . .
(a) Mapping node - time-slot.

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

cccc

c

1 2 3 4 5 6 7 8 910111213. . .
(b) First client assigned.

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

cccc

c

bbb

b

aa

a

1 2 3 4 5 6 7 8 910111213. . .
(c) Some clients assigned.

Fig. 1. Illustration of a binary broadcast tree. (a) A depth-2 tree corresponds to periodic broadcast
of period22. (b) Clients are assigned to leaves, e.g., clientc with laxity 4 is assigned the black
node meaning timeslot1, 5, 9, etc. are reserved for it. (c) Open leaf (white node) corresponds to
available slot.

clients has halved/doubled. However, for the reallocationcost function in Equation 1,
CR has an arbitrarily bad reallocation cost ratio, as we showin Lemma 1 (3).
Classified Preemptive Reallocation.The negative results in Lemma 1 apply to WS.
Given that WS is a particular case of SA fixingbc = B for all clients, the same negative
results apply to SA. Thus, should the reallocation cost be maintained low, a new ap-
proach is needed. We present now an online SA protocol (Algorithm 1), which we call
Classified Preemptive Reallocation(CPR), that provides guarantees in channel-station
usage and reallocation cost. The protocol may be summarizedas follows. Clients are
classified according to laxity and bandwidth requirements.Upon arrival, a client is al-
located to a station within its corresponding class to guarantee a usage excess (with re-
spect to optimal) of at most one station per class plus one station throughout all classes.
Upon departure of a client, if necessary to maintain the above-mentioned guarantee,
clients are reallocated, but only within the correspondingclass. The protocol includes
three different classifications providing different trade-offs between reallocation cost
and station usage. We recreate the idea of broadcast trees, but now we have multiple
trees representing the schedule of each station. On one hand, we use broadcast trees
with depth bounded by the class laxities. We call thembroadcast subtrees to reflect
that they are only part of a regular broadcast tree. On the other hand, we have the multi-
plicity yielded by the shared station capacityB. An example of broadcast subtrees can
be seen in Figure 2. Further details follow.

The mechanism to allocate an arriving client can be described as follows. Upon ar-
rival, a clientc is classified according to its laxity and bandwidth requirement. Specifi-
cally, c is assigned to a class for clients with bandwidth requirement B/⌊⌊B/bc⌋⌋ and
laxity in [wlow, whigh), for somewlow andwhigh that depend on the classification cho-
sen. Notice that each station has up to⌊⌊B/bc⌋⌋ · ⌈⌈wlow⌉⌉ subtrees. That is,⌊⌊B/bc⌋⌋
ways to share its capacityB and⌈⌈wlow⌉⌉ ways to share its schedule (see Figure 2).
Within its class, we assignc to an available leaf at depth⌊logwc⌋ − ⌈logwlow⌉ in
any subtree in the forest (see Figure 2(b)). If there is no such leaf available, we look
at smaller depths up in the forest one by one. If we find an available leaf at depth
⌈logwlow⌉ ≤ i < ⌊logwc⌋ − ⌈logwlow⌉, we allocate to that leaf a new subtree with

7

Algorithm 1: Classified Preemptive Reallocation.⌊⌊x⌋⌋ is the largest power of2
that is not larger thanx. We represent the transmission schedules with broadcast
trees. A node with both children available becomes an available leaf. A station
with no client assigned becomes non-active.〈wlow, whigh〉 are the boundaries of
the class of the input client.

1 Algorithm
2 upon arrival or departure of a clientc do
3 if arrival then allocate(c, 〈wlow, whigh〉)
4 else consolidate(c, 〈wlow, whigh〉)

5 Procedureallocate(c, 〈wlow, whigh〉)
6 for each depthi = ⌊logwc⌋ − ⌈logwlow⌉ down to0 do
7 for each active stations of class〈wlow, whigh, 1/⌊⌊B/bc⌋⌋〉 do
8 if there is a leafℓ available at depthi in the broadcast tree ofs then
9 allocate toℓ a new subtree with clientc assigned at depth

⌊logwc⌋ − i− ⌈logwlow⌉ of the broadcast subtree
10 return

11 activate a new stations in class〈wlow, whigh, 1/⌊⌊B/bc⌋⌋〉
12 choose one of the leavesℓ at depth0 of the broadcast subtrees ofs
13 allocate toℓ a new subtree with clientc assigned at depth⌊logwc⌋ − ⌈logwlow⌉ of

the broadcast subtree

14 Procedureconsolidate(c, 〈wlow, whigh〉)
15 for each depthi = ⌊logwc⌋ − ⌈logwlow⌉ down to1 do
16 if there are two active stations of class〈wlow, whigh, 1/⌊⌊B/bc⌋⌋〉 both with a

leaf at depthi availablethen reallocate sibling subtree of smaller weight
17 else return

// reallocations cleared a whole broadcast subtree
18 if there are two active stations of class〈wlow, whigh, 1/⌊⌊B/bc⌋⌋〉 with empty

broadcast subtreesthen reallocate a subtree from the station with at least one empty
subtree to the station with exactly one empty subtree

c assigned at depth⌊logwc⌋ − i with respect to the root of the broadcast subtree (see
Figures 2(a) and 2(c)). If no such leaf is available at any depth, a new broadcast subtree
T is created withc assigned at depth⌊logwc⌋ − ⌈logwlow⌉, andT is assigned to a
newly activated station. Refer to Algorithm 1 for further details.

The above allocation mechanism maintains the following invariant: (1) there is at
most one leaf available at any depth larger than⌈logwlow⌉ of the forest, and (2) there
is at most one station with leaves available at depth⌈logwlow⌉ (an empty broadcast
subtree). When a client departs, this invariant is re-established through reallocations
as follows. When a clientc departs, if⌊logwc⌋ > ⌈logwlow⌉, we check if there was
already a leafℓ available at depth⌊logwc⌋−⌈logwlow⌉. If there was one, either the sib-
ling of c or the sibling ofℓ has to be reallocated to re-establish the invariant. We greedily
choose to reallocate whichever sibling has smaller weight of the two (see Figure 3(a)).
The process does not necessarily stop here because, if⌊logwc⌋ − 1 > ⌈logwlow⌉ and

8

Station1

(a) Arrival of clienti with wi = 8.

Station1

(b) Arrival of client j with wj = 4.

Station1 Station2

(c) Arrival of clientk with wk = 4.

Fig. 2. Illustration of allocation mechanism. Class: laxities[4, 16), bandwidth1/2. Subtrees are
depicted connected to a broadcast tree to reflect their location in the station schedule.

there was a leaf already available at depth⌊logwc⌋− 1−⌈logwlow⌉, together with the
newly available leaf at depth⌊logwc⌋− 1−⌈logwlow⌉ due to the reallocation at depth
⌊logwc⌋−⌈logwlow⌉, it yields two leaves available at depth⌊logwc⌋−1−⌈logwlow⌉.
Hence, again one of the sibling subtrees has to be reallocated (see Figure 3(b)). This
transitive reallocations upwards the forest may continue until a depth where no real-
location is needed or until the depth⌈logwlow⌉ + 1 is reached, when the reallocation
leaves a broadcast subtree empty. In the latter case, we reallocate a whole broadcast
subtree so that only one station has empty subtrees and the invariant is re-established.
Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a station) its laxity may be
violated once. Consider for instance the schedule in Figure1(c). Letwa = 4, that is,a is
transmitting at its lowest possible frequency. If at the endof time slot7 clientb departs,
at the beginning of time slot8 clienta will be reallocated to the slot of clientb, that is, to
transmit next in slot11. This new schedule violateswa because the previous slot when
a transmitted was5. For WS, in [11] the issue is approached making a client transmit
once more within the original schedule. As the authors say, this approach introduces a
transition delay. In their model, there is no impact on station usage because their ratio is
against peak load. However, for a ratio against current loadsuch as our model, reserving
a slot for a client in more than one station implies an overhead on channel usage. Indeed,
for any given allocation/reallocation policy, an adversarial input can be shown so that

9

Station1 Station2

depart

reallocate

(a) Departure of clientj with wj = 4.

Station1 Station2

reallocate

(b) Upwards reallocation of sibling with smaller weight.

Fig. 3. Illustration of reallocation mechanism. Class: laxities[4, 16), bandwidth1/2. After the
second reallocation Station2 is left empty and, hence, deactivated. Subtrees are depicted con-
nected to a broadcast tree to reflect their location in the station schedule.

either the laxity is stretched or the channel usage is not optimal. Hence, in our model
we assume that when a client is reallocated the laxity may be stretched, folding the cost
in the reallocation cost.

5 Analysis

We start with negative results in Lemma 1, which apply to WS, and to SA fixingbc = B
for all clients. The proofs, left to the full paper, are all based on showing an adversarial
client set for which the claim holds.

Lemma 1. 1. There exists a client arrival/departure schedule such that, in Preemp-
tive Reallocation [12], the ratio of number of clients reallocated against the number
of arrivals plus departures is unbounded.

2. For Preemptive Reallocation [12], modified so that the sibling subtree of smaller
weight is reallocated to restore the invariant, rather than the subtree with less
clients, the following holds. For anyd > 0, there exists a client arrival/departure
schedule such that it ismaxt R(t)/D(t) ≥ ρ(2d − 1)2/2d.

3. For any integerx > 0 and anyw ≥ 2x+5 arbitrarily big such thatw is a power of
2, there exists a client arrival/departure schedule such that, in Classified Realloca-
tion [12], it is maxt R(t)/D(t) ≥ ρ/4

7·2xw.

The above lemma shows that the application of previous WS reallocation algorithms
to SA is not feasible. Theorem 1 gives guarantees on station usage and reallocation cost

10

for CPR. The proof, left to the full paper, shows that the invariant is re-established after
each arrival or departure. Then, competitiveness on station usage is derived from the
invariant properties. Finally, to boundβ, a worst case scenario minimizing the weight of
departed clients and maximizing the reallocated weight is shown. To provide intuition
and comparison for the simulations, we instantiate Theorem1 on a setting where all
laxities are powers of2 and all bandwidth requirements are the full capacity of a station.

Theorem 1. At any time slott, CPR achieves an(α, β)-approximation as follows.

α = max
t

4(1 + Γ (ALG, t) + S(OPT, t))

S(OPT, t)

β = max
t

ρ(2⌊⌊whighmax
(t)⌋⌋/⌈⌈wlowmax

(t)⌉⌉ − 1).

WhereΓ (ALG, t) is the number of classes used by CPR at timet, andwhighmax
(t) and

wlowmax
(t) are the maximum upper and lower limits of a class at timet.

Corollary 1. For a set of clientsC such that, for allc ∈ C, it is bc = B andwc = 2i

for somei ≥ 0, and for all t it is wmax(t) > wmin(t) ≥ 4, the following holds. At any
time slott, CPR achieves an(α, β)-approximation as follows.

1. If the client classification boundaries are[wi, wi+1), wherew1 = 1, andwi =
2wi−1, for anyi > 1, then

α = 1 + (2 + log(wmax(t)/wmin(t))) /H(C(t))

β = 3ρ.

2. If the client classification boundaries are[wi, wi+1), wherew1 = 1, w2 = 2, w3 =
4, andwi = wi−1 logwi−1, for anyi > 3, then

α = 1 + (2 + logwmax(t)/ log logwmin(t)) /H(C(t))

β = ρ(2 logwmax(t)− 1).

3. If the client classification boundaries are[wi, wi+1), wherew1 = 1, w2 = 2, and
wi = w2

i−1, for anyi > 2, then

α = 1 + (2 + log(logwmax(t)/ logwmin(t))) /H(C(t))

β = ρ
(

2
√

wmax(t)− 1
)

.

WhereH(C(t)) = ⌈
∑

c∈C(t) 1/wc⌉,wmax(t) = maxc∈C(t) wc,wmin(t) = minc∈C(t) wc,
bmax(t) = maxc∈C(t) bc, andbmin(t) = minc∈C(t) bc.

6 Simulations

In this section, we present the main experimental simulations results of the CPR algo-
rithm. We highlight here that the classification factor (logarithmic) that balances station
usage and reallocation cost was found through experimentation with various functions.

11

For the specific cases presented (constant, logarithmic, and linear factors) we have fo-
cused on a scenario where∀c ∈ C, bc = B andwc = 2i, i ≥ 0 (as in Corollary 1).
Simulations for arbitrary bandwidths and laxities are leftto the full version of this paper.

To evaluate thoroughly the performance of our protocol, we have produced vari-
ous sets of clients (recall that each client is characterized by arrival time, departure
time, and laxity). The laxity of each client was chosen independently at random from
{1, 2, 4, . . . , 1024}, with a distribution biased towards large laxities. More precisely, for
each clientc, wc = 1 with probability1/1024, orwc = 2i with probability2i/211, for
1 ≤ i ≤ 10. Forn = 4000 clients, time was discretized in2n slots. The arrival time of
each client was chosen: (a) uniformly at random within[1, 2n]; (b) in 3 batches ofn/3
clients arriving att = 1, t = n/2, andt = n; and (c) as a Poisson process with rate0.7.
For each client, the departure time was chosen uniformly at random from the interval
[ta, 2n], whereta is the time of arrival of such client. With respect to the protocol, three
different classification factors: constant, logarithmic,and linear, were used.

For each of the nine scenarios arising from the combination of the variants, we
evaluated experimentally the(α, β)-approximation of CPR. Our simulations showed
that the performance in practical settings is as expected orbetter than the theoretical
bounds. The reallocation vs. departures weight ratio (bounded byβ) is around1 most
of the time for all three algorithms. On the other hand, aftera period upon initial arrivals
and a period before last departures, the station usage ratioagainstH(C(t)), which is
only a lower bound of the optimal, (bounded byβ) is most of the time below2.

To evaluate the behavior of our algorithms in adverse conditions, we extended the
number of cases considering|C| = 4000, 8000, and16000 clients, and the range of
laxities to{16, 32, 64, . . . , wmax}, for wmax = 1024, 4096, and16384. The laxities
were drawn uniformly at random. These cases, combined with the arrival distributions
and the classification factors, yielded 81 scenarios tested. We observed that the trade-
offs betweenα andβ according to the algorithm used apply to all these scenarios.
Indeed, having more clients and setting higherwmax does not affect the trade-offs, only
their magnitude as expected from the functions boundingα andβ in Corollary 1. Should
the reallocation ratio be minimized, the constant factor classification achieves better
performance at a higher station usage. On the other hand, if channel usage must be kept
low, the linear factor classification performs better incurring in higher reallocation cost.
The logarithmic factor balances both costs. Figure 4 illustrates these trade offs for one
of the scenarios. In comparison with the bounds proved in Corollary 1, for the scenarios
simulated CPR behaves better than expected.
Acknowledgments.Authors would like to thank Martı́n Farach-Colton for useful dis-
cussions. This work has been supported in part by the National Science Foundation
(CCF-1114930); Kean University UFRI grant; U. of LiverpoolDepartmental Visiting
Fellowship; U. of Liverpool Network Sciences & Technologies (NeST).

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In WAOA, pages
1–12, 2003.

2. S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM
Trans. on Algorithms, 3(4):49, 2007.

12

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

S
ta

tio
n

us
ag

e
ra

tio
(a

lp
ha

)

Reallocations / Departures ratio (beta)

Uniform arrivals
Batched arrivals
Poisson arrivals

Constant

Logarithmic

Linear

Fig. 4.Worst caseα vs.β. |C| = 4000, wmax = 1024, wmin = 1, ρ = 1.

3. S. Albers and M. Hellwig. On the value of job migration in online makespanminimization.
In ESA, pages 84–95, 2012.

4. Y. Azar. On-line load balancing. InDevelopments from a June 1996 Seminar on Online
Algorithms: The State of the Art, pages 178–195, 1996.

5. Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches.Algorithmica,
45:69–90, 2006.

6. A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems.SIAM
Journal on Computing, 32(4):1091–1113, 2003.

7. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted version of bin
packing.ACM Trans. on Algorithms, 3(3):28, 2007.

8. S. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms and complexity. In
J. Leung, editor,Handbook of Scheduling: Algorithms, Models and Performance Analysis,
pages 15–1–15–41. CRC Press, 2004.

9. M. A. Bender, M/ Farach-Colton, S. P. Fekete, J. T. Fineman, andS. Gilbert. Reallocation
problems in scheduling. InSPAA, pages 271–279, 2013.

10. H-L Chan, J.W-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, andP.W.H. Wong. Optimizing
throughput and energy in online deadline scheduling.ACM Trans. on Algorithms, 6(1), 2009.

11. W.-T. Chan and P.W.H. Wong. On-line windows scheduling of temporary items. InISAAC,
pages 259–270, 2005.

12. M. Farach-Colton, K. Leal, M. A. Mosteiro, and C. Thraves. Dynamic windows scheduling
with reallocation. InSEA, pages 99–110, 2014.

13. J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan. Online stochastic matching:
Beating 1-1/e. InFOCS, pages 117 –126, 2009.

14. A. Ferńandez Anta, D. R. Kowalski, M. A. Mosteiro, and P.W.H. Wong. Station assignment
with applications to sensing. InALGOSENSORS, pages 155–169, 2013.

15. B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithmfor online b-
matching.Theoretical Computer Science, 233(1-2):319–325, 2000.

16. P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration. In
ICALP, pages 1111–1122, 2004.

