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Abstract. We study a dynamic allocation problem that arises in various scenar-
ios where mobile clients joining and leaving have to communicate with static
stations via radio transmissions. Restrictions are a maximum delay, or lzedty,
tween consecutive client transmissions and a maximum bandwidth thaios sta
can share among its clients. Clients are assigned to stations so that evety clie
transmits under those restrictions. We consider reallocation algorithmesewh
clients are revealed at its arrival time, the departure time is unknown uetil th
leave, and clients may be reallocated to another station, but at a coshitheter

by the laxity We present negative results for related previous protocaisrb-
tivate the study; we introduce new protocols that expound trade-offgelea
station usage and reallocation cost; we prove theoretically bounds ordar-p
mance metrics; and we show through simulations that, for realistic scenauio
protocols behave even better than our theoretical guarantees.

1 Introduction

We study a dynamic allocation problem in scenarios whera datmobile devices has
to be gathered and uploaded periodically to one of the statiess points availabfe
Examples includevearable health-monitoring systeymehere data gathered via physio-
logical sensors on ambulatory patients must be perioglicaloaded, angarticipatory
sensingwhere mobile device users upload periodically environi&ormation.

Mobile devices, calledlients join and leave continuously, and they communicate
with the static access points, callstitions The clients’ ephemeral nature is modeled
by thelife interval of each client (from its arrival to departure), during whtble client
has to communicate with some statfmeriodically. Periodic communication is modeled
by the client’slaxity, which bounds the maximum duration a client is not transngjtt
to some stations. The intrinsically shared nature of thessto stations is modeled by
a maximum sharestation bandwidthby aclient bandwidthand by the client laxity.

Based on the above model, we study the problem of assigniegtglto stations
so that every client transmits to some stations satisfyhieddxity and bandwidth con-
straints. We consider settings where clients are revedléd arrival time and their
departure time is only revealed when they depart (as in erigorithms). Clients may
be reassigned from one station to another and we call suskigeanenteallocation

3 We consider an upstream model, but the same results apply to downsweamunication.



Intuitively reallocation causes more disturbance to antligith small laxity. There-
fore, we assume reallocation incurs a cost inversely ptap@ to a client’s laxity.
We aim to reduce the number of active stations and reducesiil®cation cost. How-
ever, these two goals are orthogonal, e.g., we can reafidhatclients every time a
client arrives/departs so that the number of active statisminimized while incurring
a very high reallocation cost; alternatively we can keepréadiocation cost to zero but
we may use many active stations after a sequence of cliertrideps. In this paper,
we aim to obtain a balance between the two performance méfdaaall this problem
Station Assignment Problem with Reallocat{@®).

Previous work. The closest work to the present paper is [12], where redllmtalgo-
rithms were presented for Windows Scheduling (WS). The WSIpnol6,7,11,12] is
a particular case of SA where the bandwidth requirementc ebent is the same and
each channel (a.k.a. station in our case) can only servelmm at a time. In [12], a
unit cost is incurred for each client reallocated and thedbje is to minimize an ag-
gregate sum reflecting the amortized reallocation costlamdiumber of channels used.
A protocol called Classified Reallocation is shown to gutgaran amortized constant
number of reallocations. This protocol is also evaluateueexrnentally together with
two other protocols Preemptive Reallocation and Lazy Reation.

WS [6,7,11] was first studied without reallocation and the=otiye function was the
number of channels. Both static case where clients neverrtgp7] and dynamic case
where clients may depart [11] have been studied. For therdiynzase, the comparison
is against peak load which may occur at different time in théne algorithm and
the optimal offline algorithm. In [12] and this work, we comeagainst current load.
Clients with same laxity were considered in [14]. We als@gxtthe objective function
in [12] such that the number of reallocated clients is weiddghhversely by their laxity,
and we provide trade-off between reallocation cost and raurabstations.

SA and other assignment problemsOur problem differs from various scheduling
problems. The load balancing problem [4] also assigns wfstti$ferent load to servers,
yet does not consider periodic tasks and disallow reallmgatnterval coloring [1]
concerns the number of machines used but not periodic tBskmdic appearance of
tasks in real time scheduling [8] is determined by the inpuitriot by the algorithm to
satisfy laxity constraint. The SA problem is also related-toatching [15], fractional
matching [5], and adwords [13]. Among other details, theotiye function is different.
There are two typical approaches of handling orthogonataibjes: to minimize
the summation of two costs, e.g., energy efficient flow timeegaling minimizes the
sum of energy usage and total flow time of the tasks [2]; andnmilate two approx-
imation ratios, e.g., energy efficient throughput schedublgorithm ist-throughput-
competitive ana-energy-competitive [10]. We adopt the later approach.
Reallocation has been considered in scheduling [3, 9, B6]9], a distinction is
made between reassignment within server (reschedule) etnegeen servers (migra-
tion). Here, we assume rescheduling within a station is dre®we use “reallocation”
to refer to reassignment to other stations. It is often thattumber/size of jobs reallo-
cated is bounded, e.g., by a function of the number of jobkénsiystem [9], the size
of the arriving job [16] or the number of machines [3]. In ouwolplem, we bound the
reallocation by the weight (cumulative inverse laxity) oétclients departed.



2 Our Results

In this paper, we study reallocation algorithms for SA assgnthat clients have ar-

bitrary laxities and bandwidth requirements, that cliedgpart from the system at ar-
bitrary times, and that they may be reallocated, but at somsé groportional to the

resources needed. Specifically, our contributions areaifi@fing.

— We define a characterization of SA reallocation algorithwisich we call(«, 3)-
approximation, as a combination of the competitive ratictation usage«) and
the cost of reallocations contrasted with the resourcesseld by departures)

— We show a sequence of negative results proving that woss-gaarantees cannot
be provided by previous protocols Classified Reallocatiuth Breemptive Reallo-
cation [12], even if they are modified to our reallocationtdagaction.

— We present a novel SA protocol called Classified Preemptaai8cation (CPR)
where clients arelassifiedaccording to laxity and bandwidth requirements, and
upon departures the remaining clients preemptivelyeallocated to minimize sta-
tion usage, but only within their class. The protocol présérincludes a range of
classifications that exposes trade-offs between realtotabst and station usage.
In fact, we found first experimentally what is the classifisatfunction that better
balances these goals, and then we provided theoreticadgeas for all functions.

— In our main theorem, we prove bounds on both of our performametrics, and we
instantiate those bounds into three classifications anddecific scenarios in two
corollaries (refer to Section 5 for the specific bounds.)

— Finally, we present the results of our extensive simulatitrat allowed us to find
the function that best balances station usage and reatiacaist. Additionally, our
simulations show that, for a variety of realistic scengr@BR performs better than
expected by the worst-case theoretical analysis, and tdazgtimal on average.

3 Definitions

Model. We consider a sef of stations and a sét of clients. Each client must transmit
packets to some station. Time is slotted so that each timésdtimg enough to transmit
one packet. A client can be assigned to transmit to only cat@stin any given time
slot. Starting from some initial time slaf we refer to the infinite sequence of time slots
1,2,3,... asglobal time. Each client € C is characterized by aarrival time a. and

a departure time d.., that define difeinterval 7. = [a., d.] in which ¢ is active. That
is, clientc is active from the beginning of time slat up to the end of time slat.. We
defineC(t) C C to be the set of clients that are active during time sld¥ith respect
to resources required, each cliens characterized by lbandwidth requirement,., and
alaxity 0 < w,. < |7.|, such that must transmit to some station fhat least one packet
within eachw, consecutive time slots in. 4. On the other hand, each statiere S is
characterized by gtation bandwidth or capacity B, which is the maximum aggregated
bandwidth of clients thahaytransmit tos in each time slot.

4 To maintain low station usage, we will assume that the laxity can be relaxewdealloca-
tion.



Notation. Let theschedule of a clientc be an infinite sequence. of values from the
alphabet{0} U S. Let o..(t) be thet'" value ofc.. A station assignment is a setr of
schedules that models the transmissions from clients tios$a That is, for each client
¢ € C and time slot, itis o.(t) = s if ¢ is scheduled to transmit to statiene S in
time slot¢, ando.(t) = 0 if ¢ does not transmit in time slet If a clientc is scheduled
to transmit to a statiorn we say that is assigned to stations. We say that a station that
has clients assigned &stive, andinactive or empty otherwise.

Problem. The Station Assignment problem (SA) is defined as follows. For a given
set of stations and set of clients, obtain a station assighswech that (i) each client
transmits to some station at least once within each peridehgith its laxity during its
life interval, (ii) in each time slot, no station receivesifr clients whose aggregated
bandwidth is more than the station capacity. Notice thataf finite set of stations,
there are sets of clients such that the SA problem is not Bldv&Ve assume in this
work thatS is infinite and what we want to minimize is the numbeofivestations.
Algorithms. We studyreallocation algorithms for SA. That is, the parametets. and

b. needed to assign the client to some station are revealadeat i but the departure
time d.. is unknown to the algorithm until the client actually leathe system (as in
online algorithms). Then, at the beginning of time gloan SA reallocation algorithm
returns the transmission schedules of all clients that etieeain time slott, possibly
reassigning some clients from one station to another, the.schedules of clients that
were already active may be changed from one time slot to andt\e refer to the
reassignment of one client aseallocation, whereas all the reassignments that happen
at the beginning of the same time slot are calledatlocation event.

Performance Metric. Previous work [12] has considered the number of clients real
located as the reallocation cost. In the present work, wsiden a different scenario
where the cost of reallocating a client is proportional teorgces requested by that
client. Specifically, we assume a cost for the reallocatibeazh clientc of p/we,
wherep > 0 is a parameter. Then, lettif@(ALG,t) be the cost of the reallocation
event incurred by algorithm LG at timet, andR(ALG, t) be the set of clients being
reallocated, the overall cost is the following.

R(ALG.t)=p > E 1)

We
cER(ALG,t)

We will drop the specification of the algorithm whenever cligam the context.

With respect to performance, we aim for algorithms with I@altocation cost and
small number of active stations. Unfortunately, these argradictory goals. Indeed,
the reallocation cost could be zero if no client is realledgionline algorithm), but the
number of active stations could be as big as the number aofeaclients (e.g. initially
multiple clients assigned to each station, and then all betdient from each active
station depart). On the other hand, the number of activeoetatould be minimized
applying an offline algorithm on each time slot, but the i@zdtion cost could be large.
Thus, we characterize algorithms with both metrics as ¥aslo

For any SA algorithmALG, let S(ALG, t) be the number of active stations at time
t in the schedule, leD(ALG, t) be the set of clients departed since the last realloca-
tion up to timet. Denoting) | .., 1/w. as theweight of the clients inC" C C, let



D(ALG,t) be the weight of the clients departed since the last realmtap to time
t,thatis, D(ALG,t) = >_ cparc, 1/we. Also, we denote the minimum number of
active stations needed at timasS(OPT,t). Throughout, we will drop the specifica-
tion of the algorithm whenever it is clear from the contextem, we say that an SA
reallocation algorithmA LG achieves arja, 3)-approximation if the following holds
for any input.

L S(ALG,Y)
i S0PT1)
- R(ALG,t)
t D(ALG,t)

In words, the overhead on the number of stations used bg is never more than

a multiplicative factoro: over the optimal, and the reallocation cost, amortized en th
“space” left available by departing clients is never mor@nth. The latter is well de-
fined since reallocations only occur after departures.dedtiat these ratios are strong
guarantees, in the sense that they are the maximum of tlos ia8tead of the ratio
of the maxima. (This distinction was called previously ie theratureagainst current
load versusagainst peak loadespectively.) Moreover, the reallocation ratio computed
as the maximunover reallocation eventss also stronger than the ratio of cumulative
weights since the system started.

<«

<B.

4  Algorithms

Broadcast Trees A common theme in WS algorithms wigieriodictransmission sched-
ules is to represent those schedules Witbadcast Tree§6, 11, 12]. See Figure 1 for
illustration. Throughout the paper, we refer to a set of Hoaat trees as tHerest, and

to the distance in edges from a node to the root asléhth. Generalizing, the? nodes

at depthd in a complete binary tree represent the time slaisod 2¢ (see Figure 1(a)).
Then, to indicate that some (periodic) time slot has beegrvesd for a client to trans-

mit to a given statiors, we say informally that is assigned to the corresponding node
in the broadcast tree af Throughout the rest of the paper, we use both indistinigtive
Refer to [6, 11] for further details on broadcast trees.

WS algorithms. Chan et al. [11] presented a WS algorithm preserving theidatig
invariant. For each station, the broadcast tree has at nmestweailable leaf at each
depth. In order to preserve this invariant, when a clientagesp the remaining clients

in the same tree are rearranged. If reallocations among areepossible, the algorithm
Preemptive ReallocatiofPR) [12] extended the same idea to all trees, maintainiag th
invariant thathroughout all treeghere is at most one available leaf at each depth. For
laxities that are powers &, PR achieves an optimal station usage. However, we show
in Lemma 1 (1) and (2) that simple modification to PR leads gatiee results.

A WS algorithm with provable bounded reallocation cost gonas was shown
also in [12]. The protocol, calle€lassified ReallocatiofCR), guarantees that all
clients assigned to the same station have the same laxitgpefor one distinguished
station that handles all laxities linear and above. To mttanstant amortized realloca-
tion cost, clients are moved to/from the distinguishedatadnly after the number of
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Fig. 1. lllustration of a binary broadcast tree. (a) A depth-2 tree corresptinperiodic broadcast

of period22. (b) Clients are assigned to leaves, e.g., cliewith laxity 4 is assigned the black
node meaning timesldt 5, 9, etc. are reserved for it. (c) Open leaf (white node) corresponds to
available slot.

clients has halved/doubled. However, for the reallocatiost function in Equation 1,
CR has an arbitrarily bad reallocation cost ratio, as we shdvemma 1 (3).

Classified Preemptive ReallocationThe negative results in Lemma 1 apply to WS.
Given that WS is a particular case of SA fixing= B for all clients, the same negative
results apply to SA. Thus, should the reallocation cost bataiaed low, a new ap-
proach is needed. We present now an online SA protocol (Algarl), which we call
Classified Preemptive Reallocati¢8PR), that provides guarantees in channel-station
usage and reallocation cost. The protocol may be summaasizédllows. Clients are
classified according to laxity and bandwidth requiremedi{son arrival, a client is al-
located to a station within its corresponding class to guaea usage excess (with re-
spect to optimal) of at most one station per class plus oiestdroughout all classes.
Upon departure of a client, if necessary to maintain the eboentioned guarantee,
clients are reallocated, but only within the corresponditags. The protocol includes
three different classifications providing different treafés between reallocation cost
and station usage. We recreate the idea of broadcast trgesow we have multiple
trees representing the schedule of each station. On one handse broadcast trees
with depth bounded by the class laxities. We call themoadcast subtrees to reflect
that they are only part of a regular broadcast tree. On ther didind, we have the multi-
plicity yielded by the shared station capacidy An example of broadcast subtrees can
be seen in Figure 2. Further details follow.

The mechanism to allocate an arriving client can be destidisfollows. Upon ar-
rival, a clientc is classified according to its laxity and bandwidth requieein Specifi-
cally, ¢ is assigned to a class for clients with bandwidth requireni®fi | B/b.| | and
laxity in [wiow, Whign ), fOr SOMew,,,, andwy, 4y, that depend on the classification cho-
sen. Notice that each station has upg t®/b. || - [ [wiew | ] Subtrees. That ig,| B/b. | |
ways to share its capaci$ and [[w;.., || ways to share its schedule (see Figure 2).
Within its class, we assign to an available leaf at deptHogw.| — [log wiow ] N
any subtree in the forest (see Figure 2(b)). If there is nd $e@f available, we look
at smaller depths up in the forest one by one. If we find an aiilleaf at depth
[log wiow | < i < [logw.| — [logwiey |, We allocate to that leaf a new subtree with



Algorithm 1: Classified Preemptive Reallocatidnz | | is the largest power df

that is not larger tham. We represent the transmission schedules with broadcast
trees. A node with both children available becomes an availeeaf. A station

with no client assigned becomes non-acti;,.,, wn.gn) are the boundaries of
the class of the input client.

1 Algorithm

2 upon arrival or departure of a client do

3 if arrival then al | ocat e( ¢, (Wiow, Whigh))

4 else consol i dat e( ¢, (Wiow, Whigh))

5 Procedureal | ocat e( ¢, (Wiow, Whigh))

6 for each depth = |log w.| — [log wiow | down to0 do

7 for each active station of class(wiow, Whigh, 1/ | B/bc]]) do

8 if there is a lea¥ available at depth in the broadcast tree of then

9 allocate tof a new subtree with clienrtassigned at depth
|log we| — i — [log wiew | Of the broadcast subtree

10 return

11 activate a new stationin class(wiow, Whigh, 1/ | B/bc]])

12 choose one of the leavésit depth0 of the broadcast subtrees of

13 allocate tof a new subtree with clientassigned at deptiog w.| — [log wiow | Of
the broadcast subtree

14 Procedureconsol i dat e( ¢, (Wiow, Whigh))

15 for each depth = |log w.| — [log wiow | down tol do

16 if there are two active stations of claé®;ow, whign, 1/ | B/bc] |) both with a
leaf at depthi availablethen reallocate sibling subtree of smaller weight

17 else return

/1 reallocations cleared a whol e broadcast subtree

18 if there are two active stations of cla&®iow, Whigh, 1/ | B/bc]]) with empty
broadcast subtreethen reallocate a subtree from the station with at least one empty
subtree to the station with exactly one empty subtree

c assigned at deptHog w. | — ¢ with respect to the root of the broadcast subtree (see
Figures 2(a) and 2(c) ). If no such leaf is available at anyttdeppnew broadcast subtree
T is created withc assigned at depthlog w. | — [log wiey |, @andT is assigned to a
newly activated station. Refer to Algorithm 1 for furthettaiés.

The above allocation mechanism maintains the followingimnt: (1) there is at
most one leaf available at any depth larger theg w;,,, | of the forest, and (2) there
is at most one station with leaves available at depolg w;..,] (an empty broadcast
subtree). When a client departs, this invariant is re-eistadadl through reallocations
as follows. When a client departs, if|logw.| > [logwi.w |, We check if there was
already a leaf available at depthlog w.. | — [log w;,. |- If there was one, either the sib-
ling of ¢ or the sibling of? has to be reallocated to re-establish the invariant. Wedijyee
choose to reallocate whichever sibling has smaller weigthetwo (see Figure 3(a)).
The process does not necessarily stop here becauseg if.| — 1 > [logw;e, | @and
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(c) Arrival of client k with wj, = 4.

Fig. 2. lllustration of allocation mechanism. Class: laxitigs16), bandwidthl /2. Subtrees are
depicted connected to a broadcast tree to reflect their location in the sitiedute.

there was a leaf already available at defitlg w. | — 1 — [log wioy, |, together with the
newly available leaf at depthog w.| — 1 — [log w;,,, | due to the reallocation at depth
|log w, | — [log wiey |, it yields two leaves available at deptlvg w,. | — 1 — [log wiee |-
Hence, again one of the sibling subtrees has to be realthb¢s¢e Figure 3(b)). This
transitive reallocations upwards the forest may continoi@ a depth where no real-
location is needed or until the depfltog w;,., | + 1 is reached, when the reallocation
leaves a broadcast subtree empty. In the latter case, weacaal a whole broadcast
subtree so that only one station has empty subtrees andvidgaint is re-established.
Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a stgtits laxity may be
violated once. Consider for instance the schedule in Fig(@e Letw, = 4, thatis,a is
transmitting at its lowest possible frequency. If at the ehtime slot7 clientb departs,
at the beginning of time sl@clienta will be reallocated to the slot of clieht that is, to
transmit next in slot 1. This new schedule violates, because the previous slot when
a transmitted wa$. For WS, in [11] the issue is approached making a client trénsm
once more within the original schedule. As the authors $ay,approach introduces a
transition delay. In their model, there is no impact on statisage because their ratio is
against peak load. However, for a ratio against current$o@th as our model, reserving
a slot for a client in more than one station implies an ovedlwechannel usage. Indeed,
for any given allocation/reallocation policy, an adveiainput can be shown so that
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(b) Upwards reallocation of sibling with smaller weight.

Fig. 3. lllustration of reallocation mechanism. Class: laxit[@és16), bandwidthl/2. After the
second reallocation Statighis left empty and, hence, deactivated. Subtrees are depicted con-
nected to a broadcast tree to reflect their location in the station schedule.

either the laxity is stretched or the channel usage is natabt Hence, in our model
we assume that when a client is reallocated the laxity mayrb&ched, folding the cost
in the reallocation cost.

5 Analysis

We start with negative results in Lemma 1, which apply to W8, tarSA fixingb. = B
for all clients. The proofs, left to the full paper, are albled on showing an adversarial
client set for which the claim holds.

Lemma l. 1. There exists a client arrival/departure schedule sudlt,tim Preemp-
tive Reallocation [12], the ratio of number of clients remdhted against the number
of arrivals plus departures is unbounded.

2. For Preemptive Reallocation [12], modified so that thdisgpsubtree of smaller
weight is reallocated to restore the invariant, rather than the sab with less
clients, the following holds. For any > 0, there exists a client arrival/departure
schedule such that it isiax; R(t)/D(t) > p(2¢ — 1)?/24.

3. For any integetr > 0 and anyw > 2%+5 arbitrarily big such thatw is a power of
2, there exists a client arrival/departure schedule sudi,tim Classified Realloca-

tion [12], it is max; R(t)/D(t) > ;/2%

The above lemma shows that the application of previous W®uzdion algorithms
to SAis not feasible. Theorem 1 gives guarantees on stasiageuand reallocation cost
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for CPR. The proof, left to the full paper, shows that the iiasat is re-established after
each arrival or departure. Then, competitiveness on statiage is derived from the
invariant properties. Finally, to bourtt] a worst case scenario minimizing the weight of
departed clients and maximizing the reallocated weighhdsve. To provide intuition
and comparison for the simulations, we instantiate Thedtemn a setting where all
laxities are powers dof and all bandwidth requirements are the full capacity of aasta

Theorem 1. At any time slot, CPR achieves afw, 3)-approximation as follows.

A(1 + I'(ALG,t) + S(OPT, 1))
S(OPT, t)
B = max p2| [ Whighpa () ]/ T [Wi0wa ()] = 1)

Q= max
t

Wherel'(ALG, t) is the number of classes used by CPR at tinsadwy, g, (t) and
Wiow,,., (t) are the maximum upper and lower limits of a class at time

Corollary 1. For a set of clients” such that, for allc € C, itis b, = B andw, = 2°
for somei > 0, and for allt it iS wmax(t) > wmin(t) > 4, the following holds. At any
time slott, CPR achieves afw, 3)-approximation as follows.

1. If the client classification boundaries afe;, w;11), wherew; = 1, andw; =
2w;_1, for anyi > 1, then

a =14 (2 + log(wmax(t)/wmin(t))) /H(C(1))
B = 3p.

2. Ifthe client classification boundaries a@;, w;+1), wherew; = 1, wy = 2, w3 =
4, andw; = w;_1 logw;_1, for anyi > 3, then

a=1+ (2 + log wmax(t)/ log log wmin (t)) /H(C(t))
B = p(2log wmax(t) — 1).

3. If the client classification boundaries ae;, w; 1), wherew; = 1,wy = 2, and
w; = w?_,, foranyi > 2, then

a =1+ (2 +log(log wmax(t)/ log wmin(t))) /H(C(t))
B=p (2 Wnax () — 1) )
WhereH (C(t)) = [Xcecw) 1/wel, Wmax(t) = maXceo(r) We, Wmin (¢) = mincec(r) e,

bmax(t) = IMaXceC(t) be, andbmin(t) = mincec(t) be.

6 Simulations

In this section, we present the main experimental simuiati@sults of the CPR algo-
rithm. We highlight here that the classification factor @aghmic) that balances station
usage and reallocation cost was found through experimentaith various functions.
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For the specific cases presented (constant, logarithmiclisear factors) we have fo-
cused on a scenario wheve € C,b. = B andw,. = 2,7 > 0 (as in Corollary 1).
Simulations for arbitrary bandwidths and laxities aretiethe full version of this paper.

To evaluate thoroughly the performance of our protocol, weehproduced vari-
ous sets of clients (recall that each client is charactértne arrival time, departure
time, and laxity). The laxity of each client was chosen iretegently at random from
{1,2,4,...,1024}, with a distribution biased towards large laxities. Moregisely, for
each client, w. = 1 with probability 1/1024, or w,. = 2¢ with probability2¢ /211, for
1 <4 < 10. Forn = 4000 clients, time was discretized ilm slots. The arrival time of
each client was chosen: (a) uniformly at random withirgn|; (b) in 3 batches of./3
clients arriving at = 1, ¢t = n/2, andt = n; and (c) as a Poisson process with (@t
For each client, the departure time was chosen uniformlprdom from the interval
[ta, 2n], wheret,, is the time of arrival of such client. With respect to the puatl, three
different classification factors: constant, logarithnaiod linear, were used.

For each of the nine scenarios arising from the combinatiothe variants, we
evaluated experimentally they, 3)-approximation of CPR. Our simulations showed
that the performance in practical settings is as expectdukbtter than the theoretical
bounds. The reallocation vs. departures weight ratio (Hedrbyg) is aroundl most
of the time for all three algorithms. On the other hand, adtperiod upon initial arrivals
and a period before last departures, the station usageagdiostH (C(¢)), which is
only a lower bound of the optimal, (bounded Byis most of the time below.

To evaluate the behavior of our algorithms in adverse candit we extended the

number of cases considerifg| = 4000, 8000, and 16000 clients, and the range of
laxities t0{16,32,64, ..., Wmax }» fOr wmax = 1024,4096, and 16384. The laxities
were drawn uniformly at random. These cases, combined Wélatrival distributions
and the classification factors, yielded 81 scenarios teStedobserved that the trade-
offs betweena and 5 according to the algorithm used apply to all these scenarios
Indeed, having more clients and setting higher,. does not affect the trade-offs, only
their magnitude as expected from the functions boundiagd/ in Corollary 1. Should
the reallocation ratio be minimized, the constant factassification achieves better
performance at a higher station usage. On the other harfthiiinel usage must be kept
low, the linear factor classification performs better ingg in higher reallocation cost.
The logarithmic factor balances both costs. Figure 4 ilatss these trade offs for one
of the scenarios. In comparison with the bounds proved imlZoy 1, for the scenarios
simulated CPR behaves better than expected.
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