
Performing Partially Ordered Sets of Jobs on a MAC in Presence of
Adversarial Crashes

Marek Klonowski
Faculty of Fundamental Problems of Technology
Wrocław University of Science and Technology

Wrocław, Poland
marek.klonowski@pwr.edu.pl

Dariusz R. Kowalski
School of Computer and Cyber Sciences

Augusta University
Augusta, US

SWPS University of Social Sciences and Humanities
Warsaw, Poland

dariusz.kowalski@swps.edu.pl
Jarosław Mirek

Department of Computer Science
University of Liverpool

Liverpool, UK
j.mirek@liverpool.ac.uk

Prudence W. H. Wong
Department of Computer Science

University of Liverpool
Liverpool, UK

pwong@liverpool.ac.uk

Abstract—We study the problem of scheduling n similar
jobs on m machines, with respect to the fact that jobs are
dependent and some of them must be performed before others.
Dependencies between jobs are modeled as a partial order
relation. Machines are prone to crashes, induced by an Adaptive
f -Bounded adversary who can fail up to f machines, where
0 ≤ f < m. Communication takes place via a Multiple-Access
Channel (MAC), which restricts simultaneous transmissions. We
show an optimal solution (with respect to total work of all
machines) for partially ordered sets of jobs forming chains and
an algorithm and lower bound for trees.

I. INTRODUCTION

We focus on performing n jobs on m machines reliably.
This means that we expect all jobs to be done, as a result of
executing an algorithm. We examine jobs that are in a partial
order relation and the resulting task dependencies have to be
preserved (aka precedence constraints) during the execution.
Partially ordered sets of our particular interest consist of sets
of independent chains of arbitrary lengths and some types of
trees.

The communication medium that we analyze is a Multiple-
Access Channel (also called a shared channel or a MAC for
short) without collision detection. This means that simultane-
ous transmissions have no effect and only single broadcasts
at a particular time bring legible messages heard on the
channel. Furthermore, we assume that the system may suffer
from adversarial crashes performed by an Adaptive f -Bounded
adversary. Crashes take place arbitrarily with respect to the
bound f with 0 ≤ f < m i.e., at most f crashes can occur. The
measure of performance of protocols is the total work, i.e., sum
of time units of machines allocated for doing all jobs. Note
that this measure also accrues idle time units, where a machine

This work is supported by the Polish National Science Center (NCN)
grant UMO-2017/25/B/ST6/02553, and by Networks Sciences & Technologies
(NeST), School of EEECS, University of Liverpool.

does not perform any job and waits for jobs to be performed by
other machines. Work is a standard complexity measure used
for research considerations on the Do-All problem in various
models [11].

First, we show that the simplest case of ordered jobs forming
independent chains can be effectively solved by adopting
techniques used for scheduling arbitrary length jobs on a
Multiple-Access Channel, described in [14]. Then, we consider
more complex types of orders. In particular, we investigate
different types of trees-shaped orders.

A. Previous and related results

The topic in this paper lies on an intersection of two
different streams of research and combines a classic scheduling
problem of performing jobs with the problem of performing
jobs considered in distributed computing, where machines
cooperate in order to perform all the jobs, communicating
with each other via a medium with limited communication
capacities and may often suffer congestion.

Scheduling with precedence constraints was studied on
different objectives for decades [15], [16], [18]. The study
started on a single machine [2], [15], [16], [18], [19], [24] and
then extended to multiple machines [12], [17], [21], [23]. More
complex settings were studied, under various assumptions,
e.g., preemption has been considered in [17], [21]. Recently,
precedence constraints were also studied on machines with
different speeds by Chudak and Shmoy [7] and variable
speeds [1], [22]. More details on this line of research can
be found in [20].

On the other hand, Chlebus et al. [6] were the first who
considered performing jobs on a Multiple-Access Channel.
Their results originated from the seminal work by Dwork et
al. [9], who analyzed the problem of performing jobs in the
context of a message-passing model with processor crashes.
The problem was studied in a number of follow-up papers [3]–
[5], [8], [10] in the context of a message-passing model, in978-1-7281-2522-0/19/$31.00 ©2019 IEEE

which every node can send a message to any subset of nodes
in one round.

Considerations about performing jobs on a MAC originated
by Chlebus et al. [6] were continued in [13] in the context
of randomized solutions for performing jobs on a Multiple
Access Channel under ordered and delayed adversaries. Work
by Klonowski et al. [14] analyzed the problem of performing
arbitrary length jobs with preemption on a MAC. To best of
our knowledge this is the first work to combine scheduling
jobs with constraints and communication on a shared channel.

II. TECHNICAL PRELIMINARIES

We focus on performing n jobs on m machines communi-
cating via a shared channel. In this section we describe the
model for the considered problem.

Machines: We assume that there are m machines, with
unique identifiers from the set {1, . . . ,m}. They are synchro-
nized with a global clock, and time is divided into synchronous
slots, called rounds. All the machines start simultaneously at
a certain moment and each machine may halt voluntarily.
A machine that halted is considered to be non-faulty. The
complexity measure that we use in our considerations is work
i.e. the total number of available machines steps.

Communication: Machines communicate over a Multiple
Access Channel (MAC), where individually transmitted mes-
sages reach every operational machine. Thus, a broadcast is
successfully received by all stations if exactly one machine
transmits at a particular round. Simultaneous transmissions
result in background noise heard on the channel, which is
distinguishable from any meaningful message.

Adversary: Machines are prone to crashes because of an
adversary that interferes with the system. The adversary is
characterized by its power f and this defines how many
crashes it may enforce, where 0 ≤ f ≤ m− 1. Thus, at least
one machine remains operational in an arbitrary execution.
Crashes are permanent, so machines do not restart.

The adversary of our interest is the Adaptive f -Bounded
adversary. It may decide arbitrarily which machines will be
crashed at any given moment.

Complexity measure: The complexity measure that is used
throughout this paper is work. It is the number of available ma-
chine steps for computations. This means that each operational
machine that did not halt or crash contributes a unit of work
even if it is idling.

Precisely: consider algorithm A and assume that execution
E starts when all the machines begin simultaneously in some
fixed round r0. Let rv be the round when machine v halts
or is crashed. Then its work contribution is equal rv − r0. In
what follows, work accrued by A in execution E is the sum of
such expressions over all machines, i.e.:

∑
1≤v≤m(rv − r0).

The work complexity of A is the maximum over all possible
executions of A.

Work is a standard complexity measure for analyzing the
Do-All problem in various models [11].

Jobs and reliability: Machines have entire knowledge
about the jobs, their ID’s and their dependencies. Jobs are

assumed to be similar (require the same number of rounds
to be performed), idempotent (each can be performed many
times, even concurrently by different machines) and dependent
(the order in which they should be performed is described by
a partial order relation).

The relation of our particular interest is the precedence
relation ≺. If a ≺ b in the partial order, then we say that
job a precedes job b and hence job a must be done before
job b. If it holds that a ≺ b or b ≺ a, we say that a and b
are comparable. A subset of jobs where each pair of jobs is
comparable is called a chain. A subset of jobs where no two
different jobs are comparable is called an anti-chain.

A job is considered done, when it is performed by a machine
and it is confirmed, when a machine broadcasts the fact of it
being done. Consider some job a. Before a particular machine
begins working on a all jobs preceding a must be done and
confirmed on the channel.

Performing jobs in a certain order and confirming them
via the channel is motivated by the need of obtaining the
outputs of previous jobs as the input for the following ones.
Hence, we assume that machines transmit results of certain
jobs in a confirmation broadcast and this opens access to the
proceeding jobs for all machines. If some machine is working
on a particular chain of jobs, then it may be doing consecutive
jobs in this chain without confirming them on the channel until
the last job in the chain is done, as it has required inputs for
consecutive jobs computed locally.

We assume that our algorithms are reliable i.e., in any
execution: all the jobs are eventually performed, if at least
one machine remains non-faulty. Moreover each machine
eventually halts, unless it has crashed.

III. SETS OF CHAINS

Considerations in [14] include the problem of performing
n preemptive jobs of an arbitrary length, by m machines.
If performing some of the jobs takes more than one com-
putational time unit, then a natural question arises, whether
such jobs have to be performed fully by a specific machine
(non-preemptive model), or any intermediate progress is re-
membered and jobs may be reclaimed by some other machine
(preemptive model).

By preemption we define the option of performing jobs
partially. Consider job a of length la. If machine v is to
perform job a and performs x units of this job, then the
remaining part of la − x units of job a may be done by some
other machine w.

Because time is divided into rounds, we can assume that
there is some minimal length of a job that may be processed
in one step in the preemptive setting. Thus, all jobs can be
presented as a multiplicity of the minimal length. Hence, jobs
are assumed be built with minimal length units, called tasks
and in order to perform a job all its tasks have to be performed
consecutively one by one. Such view was the basis for solving
jobs of arbitrary lengths for the preemptive setting in [14].

Having explained preemptive jobs of arbitrary lengths, the
correspondence to partially ordered sets of chains is simple.

Tasks from the preemptive model will now represent jobs and
respectively jobs will be substituted by chains.

The described adjustments are actually only syntactic
changes, that allow us to improve the presentation and we
denote the resulting algorithm for solving chains of jobs AL-
GORITHM A. Consequently, all the results translate straight-
forwardly, so we can state the lower bound for our problem:

Theorem 1: ([14] Theorem 1) The Adaptive f -Bounded
adversary, for 0 ≤ f < m, can force any reliable, possibly ran-
domized and centralized algorithm and partially ordered sets of
chains of jobs, to perform work Ω(n+m

√
n+mmin{f, n}+

mH), where H represents the longest chain of jobs.
Theorem 2: ([14], Theorem 2) ALGORITHM A performs

work O(n+m
√
n+mmin{f, n}+mH) against the adaptive

adversary and partially ordered sets of chains of tasks, where
H represents the longest chain.

IV. TREES

In this section we analyze trees “growing upwards”, making
the root the least node. Observe that in such a critical part of
the partial order, as near the root, it is better to direct all effort
to perform all initial jobs, in order to open access to a wider
range of jobs which can be performed in parallel.

Our idea is based on decomposing the tree into a number
of layers and then performing them in consecutive phases. In
general machines can start performing jobs from layer i, when
all jobs from layer i− 1 are done and confirmed.

Lemma 1: A reliable algorithm, possibly centralized and
randomized, performs work Ω(mH) even in an execution in
which no failures occur, on a partial order of jobs forming an
upwards growing tree, where H is the height of the tree.
Combining Theorem 1 with the above leads us to the lower
bound for work in the assumed model.

Corollary 1: A reliable algorithm on a tree-shaped partial or-
der of jobs has to perform work Ω(n+m

√
n+mmin{f, n}+

mH) against the Adaptive f -Bounded adversary.

A. ALGORITHM B: construction

We begin with a construction allowing to decompose an
arbitrary tree into a set of disjoint components.
Tree decomposition. Consider the following construction. We
label each node in the tree by a pair (x, c) of natural numbers,
representing its colour and counter, respectively. Each leaf is
labelled (1, 1), i.e., its colour equals 1 and its counter is set to
1 as well. All non-leaf nodes are labelled recursively according
to the procedure described below.
Let us consider node v. Let x be the maximal colour over v’s
children.
• If exactly one child of v has colour x and its counter is c,
then v is labelled as (x, c + 1).
• If l > 1 children of v have colour x, let
(x, c1), (x, c2), . . . , (x, cl) denote their labels. We consider two
cases dependently on the value c =

∑l
i=1 ci.

– If c ≥ 2n/m, then v is labelled as (x + 1, 1).
(We reset the counter and start a group with a new colour).

– Otherwise, if c < 2n/m, then v is labelled as (x, c+1).
(We add v to the group marked with colour x).
This procedure partitions the tree into subtrees labelled with
different colours. Let us consider the properties of this parti-
tion.

Lemma 2: Let T be a tree labelled according to the
procedure described above with n nodes and let H be the
length the longest path in T .

1) None of the nodes will have colour greater than logm+
1.

2) Every connected monochromatic component (i.e., con-
nected set of nodes, labelled with the same colour) has
at most 2n/m + H nodes.

b

b b

b

b

bb

bb

b

bb

bbbb

b

b

b

b

b

b

T1

T2 T3 T4

T5 b

bb

bb

T4

1

2

3

4

5

b

b

b

b

b

3

2

1

4

5

(a) (b)

Fig. 1. (a) Decomposition of a tree. Layer 1 has 5 trees which can be
performed in parallel. (b) Subtree into chain translation.

ALGORITHM B design. Let us recall, that machines have
entire knowledge about the partial order of jobs. In what
follows machines may perform local computations regarding
the partial order and can follow the construction above.

Using the aforementioned construction we perform tree
decomposition as follows. Let the i-th layer be the set of all
nodes with colour i. Clearly each layer consist of monochro-
matic disjoint trees of size at most 2n

m + H each, by Lemma
2. We refer to this procedure as DECOMPOSE-TREE in the
pseudo-code of Algorithm 1.

Each such tree in a given layer can be translated into a
chain as follows: having a tree we construct a chain of the
same nodes that preserves the order of the tree, i.e., if a ≺ b in
the tree then a ≺ b in the chain as well. Note that it is possible
that a ≺ b in the chain, while a and b are incomparable in the
original tree. Clearly, such translation is not unique, except the
case when the tree is a chain.

Consequently, each layer is mapped to a set of independent
chains that can be performed by ALGORITHM A. In order
to preserve the clarity of the algorithm, in the pseudo-code
we simply execute SUBTREES-INTO-CHAINS to perform the
above mentioned operation. To complete ALGORITHM B we
simply execute ALGORITHM A for each of the l consecutive
layers.

We end with a statement about the work performance of
ALGORITHM B.

Theorem 3: ALGORITHM B performs work
O(m

√
n logm + mmin{f, n} + n logm + mH logm)

for m machines and n jobs ordered in a tree of height H in
the presence of an Adaptive f -Bounded adversary.

Algorithm 1: ALGORITHM B: machine v

1 initialize MACHINES to a sorted list of all m names of
machines;

2 initialize JOBS to a sorted list of all n names of jobs;
3 initialize CHAINS to an empty list;
4 initialize LAYERS to an empty list;
5 i := 0;
6 LAYERS := DECOMPOSE-TREE;
7 repeat
8 CHAINS = SUBTREES-INTO-CHAINS(LAYERSi);
9 execute ALGORITHM A(v, CHAINS, JOBS,

MACHINES);
10 i + + ;
11 until |JOBS| = 0;

Proof 1: ALGORITHM B decomposes the partial order using
the technique described in Section IV-A. All jobs having a
particular colour are grouped into a single layer. Hence, the
total work depends on the number of layers and the work
that is necessary in order to perform all the jobs within a
single layer.

Let ni be the number of jobs in the i-th layer and fi be
the number of machines crashed when the i-th layer is being
performed. Hi denotes the largest subtree within layer i. Since
the i-th layer consists of ni jobs, which are translated into
chains, so running ALGORITHM A on this layer performs all
the jobs with work Wi which does not exceed O(ni+m

√
ni+

mmin{fi, ni}+ mHi), according to Theorem 2.
On the other hand, we know that the longest chain in the

i-th layer was constructed from a single subtree. Hence by
Lemma 2 we know that Hi < 2n/m + H .

The total work, calculated over all l layers, does
not exceed

∑l
i=1 Wi ≤

∑l
i=1 O(ni + m

∑l
i=1

√
ni +

m
∑l

i=1 min{fi, ni} + m
∑l

i=1(2n/m + H)) ≤ O(n +

m
∑l

i=1

√
ni + mmin{f, n}+ l · n + lmH).

To estimate this further we need the following fact, that can
be easily proved using the Lagrange multipliers method:

Fact 1: Let n1 + n2 + . . . + nl = n and ni > 0 for all i.
Then

∑l
i=1

√
ni ≤

√
l · n .

Applying this fact to the estimate gives us that O(n +
m

∑l
i=1

√
ni + mmin{f, n} + l · n + lmH) = O(m

√
ln +

mmin{f, n}+ l · n + lmH).
According to the first point of Lemma 2 we know that
l ≤ logm + 1, so we conclude that the overall work of
ALGORITHM B is O(m

√
n logm+mmin{f, n}+n logm+

mH logm).

V. CONCLUSIONS

The tree decomposition construction in IV-A is independent
of the direction the tree grows, so ALGORITHM B can be
directly applied on a downwards growing tree with the root
being the greatest node and a generalized tree combining a
tree growing upwards and a tree growing downwards with the
same asymptotic work complexity.

An interesting open direction is to investigate whether there
are some classes of adversaries that can make an explicit
use of the impediment in the form of job dependencies and
impose greater work, even for some simple partial orders.
Furthermore, it is interesting to investigate whether one can
show a universal solution for arbitrary partially ordered sets
of jobs.

REFERENCES

[1] E. Bampis et al. A note on multiprocessor speed scaling with precedence
constraints. In SPAA, 2014.

[2] C. Chekuri et al. Precedence constrained scheduling to minimize sum
of weighted completion times on a single machine. D. Appl. Maths.,
98(1):29–38, 1999.

[3] B. Chlebus et al. Performing tasks on synchronous restartable message-
passing processors. Distrib. Comput., 14(1):49–64, Jan. 2001.

[4] B. Chlebus et al. Bounding work and communication in robust
cooperative computation. In DISC, 2002.

[5] B. Chlebus et al. Randomization helps to perform independent tasks
reliably. Rand. Struct. & Algo., 24(1), 2004.

[6] B. Chlebus et al. Performing work in broadcast networks. Distributed
Computing, 18(6):435–451, 2006.

[7] F. Chudak et al. Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds.
J. of Algo., 30(2):323 – 343, 1999.

[8] R. De Prisco et al. Time-optimal message-efficient work performance
in the presence of faults. In PODC, 1994.

[9] C. Dwork et al. Performing work efficiently in the presence of faults.
SIAM J. Comput., 27(5):1457–1491, 1998.

[10] Z. Galil et al. Resolving message complexity of byzantine agreement
and beyond. In FOCS, page 724, 1995.

[11] C. Georgiou and A. A. Shvartsman. Cooperative Task-Oriented Com-
puting: Algorithms and Complexity. 2011.

[12] J. Hurink and S. Knust. List scheduling in a parallel machine environ-
ment with precedence constraints and setup times. Operations Research
Letters, 29(5):231 – 239, 2001.

[13] M. Klonowski et al. Ordered and delayed adversaries and how to work
against them on a shared channel. Dist. Comp., Sep 2018.

[14] M. Klonowski et al. Fault-tolerant parallel scheduling of arbitrary length
jobs on a shared channel. In FCT, 2019.

[15] E. Lawler. Optimal sequencing of a single machine subject to precedence
constraints. Manage. Sci., 19(5), 1973.

[16] E. Lawler. Sequencing jobs to minimize total weighted completion
time subject to precedence constraints. In Algorithmic Aspects of
Combinatorics, volume 2. 1978.

[17] E. L. Lawler. Preemptive scheduling of precedence-constrained jobs on
parallel machines. In Deterministic and Stochastic Scheduling, pages
101–123, 1982.

[18] J. Lenstra et al. Complexity of scheduling under precedence constraints.
Oper. Res., 26(1):22–35, Feb. 1978.

[19] J. Leung et al. Minimizing total tardiness on a single machine with
precedence constraints. ORSA J. on Comp., 2(4), 1990.

[20] J. Leung et al. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. 2004.

[21] I. N. Lushchakova. Two machine preemptive scheduling problem with
release dates, equal processing times and precedence constraints. Euro.
J. Op. Res., 171(1), 2006.

[22] K. Pruhs et al. Speed scaling of tasks with precedence constraints.
TOCS, 43(1), Jul 2008.

[23] M. Skutella et al. Scheduling precedence-constrained jobs with stochas-
tic processing times on parallel machines. In SODA, 2001.

[24] G. Woeginger. On the approximability of average completion time
scheduling under precedence constraints. In ICALP, 2001.

